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A Proofs1

Theorem 1. The random forest induced kernel Kx is always positive definite.2

Proof. The forest-induced kernel is a summation of permuted block diagonal matrix, with ones in3

each block and zeros elsewhere [5], i.e.,4

Kx =
1

m

m∑
w=1

QwBwQ
T
w,

where Q is a permutation matrix, and B is a block diagonal matrix with each block representing5

a leaf node, and the sum is over all m trees in the forest. For example, when each leaf node only6

contains one observation, B becomes the identity matrix.7

Each block matrix is always positive definite and still positive definite after permutation, because8

permutation does not change eigenvalues. As summation of positive definite matrices is still positive9

definite, KX is always positive definite.10

Next we show the kernel can be characteristic, when the tree partition area converges to zero. A11

similar property is also used for proving classification consistency in k-nearest-neighbor [6], and we12

shall denote N(φw) ∈ RLw

≥0 as the maximum area of each part.13

Theorem 2. Suppose as n,m → ∞, N(φw) → 0 for each tree φw ∈ P and each observation xi.14

Then the random forest induced kernel Kx is asymptotically characteristic.15

Proof. since the kernel is positive semidefinite, it suffices to prove16

E[k(·, X1)] = E[k(·, X2)] if and only if FX1 = FX2 . (1)

The forward implication is trivial. To prove the converse, it suffices to investigate when17

E[Kx(·, X1)] = E[Kx(·, X2)], or equivalently18

EX1

(
1

m

m∑
w=1

[I(φw(X1) = φw(z))]

)
= EX2

(
1

m

m∑
w=1

[I(φw(X2) = φw(z))]

)
for any observation z.19

We first show the above equality occurs if and only if φw(X1)
D
= φw(X2). Once again, the forward20

implication is trivial. The converse can be shown by contradiction: without loss of generality, suppose21

there exists a leaf node region U such that φw(X1) ∈ U with probability p1 while φw(X2) ∈ U22

with probability p2. Then for any point-mass observation z always in U , E[Kx(z,X1)] = p1 6=23

E[Kx(z,X2)] = p2, which is a contradiction.24
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Next we show φw(X1)
D
= φw(X2) if and only if FX1

= FX2
. The forward implication is again trivial.25

The converse is shown by contradiction. Suppose FX1
6= FX2

. Without loss of generality, there26

always exists a neighborhood N(x) such that Prob(X1 ∈ N(x)) = p3 6= Prob(X2 ∈ N(x)) = p4.27

Now, because each tree partition area converges to 0, we can always make N(x) small enough so28

that φw(N(x)) = U almost surely for some leaf node region U . Then Prob(φw(X1) = U) =29

p3 6= Prob(φw(X2) = R) = p4. Thus φw(X1)
D

6= φw(X2), contradiction. Therefore, Equation 1 is30

proved, and the kernel is characteristic.31

Corollary 2.1. KMERF satisfies32

lim
n→∞

cnk (x,y) = c ≥ 0,

with equality to 0 if and only if FXY = FXFY . Moreover, for sufficiently large n and sufficiently33

small type 1 error level α, this method is valid and consistent for independence and k-sample testing.34

Proof. As n→∞, K is asymptotically a characteristic kernel by Theorem 2. By Shen and Vogelstein35

[9], the Euclidean distance induced kernel is also characteristic. Therefore by Gretton et al. [7], Lyons36

[8], cnk (x,y) is asymptotically 0 if and only if independence.37

By Shen et al. [10], for sufficiently large n, the chi-square distribution χ2
1−1
n dominates the true38

null distribution of the unbiased correlation in upper tail. Therefore, when X and Y are actually39

independent, the testing power is no more than the type 1 error level α, making it a valid test. When40

X and Y are dependent, the distribution χ2
1−1
n converges to 0 in probability, such that the p-value41

converges to 0 and the testing power converges to 1, making it a consistent test.42

B Limitations43

There are a few limitations to this approach. In the problem setting that we are considering (composite44

null vs. composite alternative), there is no uniformly most powerful test [3]. So, while this paper45

presents its argument with simulated data, it is not yet known how this statistical method will perform46

against other statistics with real data. This is difficult to determine as distributions of data are47

oftentimes unknown and so may not fall cleanly in one of the 20 distributions that were tested. Given48

the performance of KMERF, it is likely safer to use KMERF over others as it appears to perform49

better than alternatives in most cases.50

In addition, we have currently have not explored the performance of our algorithm with respect to51

other decision forests types [4, 1, 11], and hyper-parameter tuning. It would be interesting the extend52

this approach using these decision forests to answer additional hypothesis testing problems, such as53

paired k-sample testing, etc.54

C Simulations55

C.1 Independence Simulations56

For the independence simulation, we test independence between X and Y . For the random variable57

X ∈ Rp, we denote X|d|, d = 1, . . . , p as the dth dimension of X . w ∈ Rp is a decaying vector with58

w|d| = 1/d for each d, such that wTX is a weighted summation of all dimensions of X . Furthermore,59

U(a, b) denotes the uniform distribution on the interval (a, b), B(p) denotes the Bernoulli distribution60

with probability p, N (µ,Σ) denotes the normal distribution with mean µ and covariance Σ, U and V61

represent some auxiliary random variables, κ is a scalar constant to control the noise level, and ε is62

sampled from an independent standard normal distribution unless mentioned otherwise.63

1. Linear(X,Y ) ∈ Rp × R:64

X ∼ U (−1, 1)
p
,

65

Y = wTX + κε.
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2. Exponential(X,Y ) ∈ Rp × R:66

X ∼ U (0, 3)
p
,

67

Y = exp
(
wTX

)
+ 10κε.

3. Cubic(X,Y ) ∈ Rp × R:68

X ∼ U (−1, 1)
p
,

69

Y =128

(
wTX − 1

3

)3

+ 48

(
wTX − 1

3

)2

− 12

(
wTX − 1

3

)
+ 80κε.

4. Joint Normal(X,Y ) ∈ Rp × Rp: Let ρ = 1/2p, Ip be the identity matrix of size p× p,70

Jp be the matrix of ones of size p× p, and Σ =

[
Ip ρJp
ρJp (1 + 0.5κ) Ip

]
. Then,71

(X,Y ) ∼ N (0,Σ) .

5. Step Function(X,Y ) ∈ Rp × R:72

X ∼ U (−1, 1)
p
,

73

Y = I
(
wTX > 0

)
+ ε,

where I is the indicator function; that is, I (z) is unity whenever z is true, and 0 otherwise.74

6. Quadratic(X,Y ) ∈ Rp × R:75

X ∼ U (−1, 1)
p
,

76

Y =
(
wTX

)2
+ 0.5κε.

7. W-Shape(X,Y ) ∈ Rp × R: For U ∼ U (−1, 1)
p,77

X ∼ U (−1, 1)
p
,

78

Y = 4

[((
wTX

)2 − 1

2

)2

+
wTU

500

]
+ 0.5κε.

8. Spiral(X,Y ) ∈ Rp × R: For U ∼ U (0, 5), ε ∼ N (0, 1),79

X|d| = U sin (πU) cosd (πU) for d = 1, ..., p− 1,
80

X|p| = U cosp (πU) ,
81

Y = U sin (πU) + 0.4pε.

9. Uncorrelated Bernoulli(X,Y ) ∈ Rp × R: For U ∼ B (0.5), ε1 ∼ N (0, Ip), ε2 ∼82

N (0, 1),83

X ∼ B (0.5)
p

+ 0.5ε1,
84

Y = (2U − 1)wTX + 0.5ε2.

10. Logarithmic(X,Y ) ∈ Rp × Rp: For ε ∼ N (0, Ip),85

X ∼ N (0, Ip) ,
86

Y|d| = 2 log2

(∣∣X|d|∣∣)+ 3κε|d| for d = 1, ..., p.

11. Fourth Root(X,Y ) ∈ Rp × R:87

X ∼ U (−1, 1)
p
,

88

Y =
∣∣wTX

∣∣1/4 +
κ

4
ε.
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12. Sine Period 4π(X,Y ) ∈ Rp × Rp: For U ∼ U (−1, 1), V ∼ N (0, 1)
p, θ = 4π,89

X|d| = U + 0.02pV|d| for d = 1, ..., p,
90

Y = sin(θX) + κε.

13. Sine Period 16π(X,Y ) ∈ Rp ×Rp: Same as above except θ = 16π and the noise on Y91

is changed to 0.5κε.92

14. Square(X,Y ) ∈ Rp × Rp: For U ∼ U (−1, 1), V ∼ U (−1, 1), ε ∼ N (0, 1)
p, θ = −π8 ,93

X|d| = U cos (θ) + V sin (θ) + 0.05pε|d|,
94

Y|d| = −U sin (θ) + V cos (θ) .

15. Diamond(X,Y ) ∈ Rp × Rp: Same as above except θ = π/4.95

16. Two Parabolas(X,Y ) ∈ Rp × R: For ε ∼ U (0, 1), U ∼ B (0.5),96

X ∼ U (−1, 1)
p
,

97

Y =
((
wTX

)2
+ 2κε

)
·
(
U − 1

2

)
.

17. Circle(X,Y ) ∈ Rp × R: For U ∼ U (−1, 1)
p, ε ∼ N (0, Ip), r = 1,98

X|d| = r

sin
(
πU|d+1|

) d∏
j=1

cos
(
πU|j|

)
for d = 1, ..., p− 1,

99

X|p| = r

 p∏
j=1

cos
(
πU|j|

) ,

100

Y = sin
(
πU|1|

)
+ 0.4ε|p|.

18. Ellipse(X,Y ) ∈ Rp × Rp: Same as above except r = 5.101

19. Multiplicative Noise(x, y) ∈ Rp × Rp: u ∼ N (0, Ip),102

x ∼ N (0, Ip) ,
103

y|d| = u|d|x|d| for d = 1, ..., p.

20. Multimodal Independence(X,Y ) ∈ Rp × R: For U ∼ N (0, Ip), V ∼ N (0, Ip),104

U ′ ∼ B (0.5)
p, V ′ ∼ B (0.5)

p,105

X = U/3 + 2U ′ − 1,
106

Y = V/3 + 2V ′ − 1.

Figure E1 visualizes these equations. The light grey points in the figure are each simulation with107

noise added and the dark grey points are each simulation without noise added. Note that the last two108

simulations don’t have any noise parameters.109

C.2 Two-Sample Simulations110

We do two-sample testing between Z and Z ′, generated as follows: let Z = [X|Y ] be the respective111

random variables from the independence simulation setup. Then define Qθ as a rotation matrix for a112

given angle θ, i.e.,113

Qθ =


cos θ 0 . . . − sin θ

0 1 . . . 0
...

...
. . .

...
sin θ 0 . . . cos θ


Then we let114

Z ′ = QθZ
T

be the rotated versions of Z.115

Figure E2 visualizes the above simulations. The simulations light grey points is a simulated data set116

and the dark grey points are the same dataset rotated by 10 degrees counter-clockwise. Simulations117

were plotted with min-max normalization for visualization purposes.118
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Linear Exponential Cubic Joint Normal Step

Quadratic W-Shaped Spiral Bernoulli Logarithmic

Fourth Root Sine 4 Sine 16 Square Two Parabolas

Circle
Ellipse Diamond Noise Independence

Noisy No Noise

Independence Simulations

Figure E1: Simulations used for Figures 1 and 3. 100 points from noisy simulations (light grey points)
on 1000 points from simulations without noise (dark grey points) for each of the 20 dimensional
simulations shown above.

D Real Data119

Previous studies have shown the utility of selection reaction monitoring when measuring protein and120

peptide abundance [12], and one was used to identify 318 peptides from 33 normal, 10 pancreatic121

cancer, 28 colorectal cancer, and 24 ovarian cancer samples [13]. For all tests, we created a binary122

label vector, where 1 indicated presence of pancreatic cancer in the patients and 0 otherwise. We then123

evaluated at a type 1 error level of α = 0.05, and used the Benjamini-Hochberg procedure to control124

the false discovery rate [2] for our 318 p-values. All data used in this experiment are provided in the125

supplmental.126

E Hardware and Software Configurations127

• Operating System: Linux (ubuntu 20.04)128

• VM Size: Azure Standard D96as v4 (96 vcpus, 384 GiB memory), Azure Standard B20ms129

(20 vcpus, 80 GiB memory)130

• Software: Python 3.8, hyppo v0.4.0131
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Linear Exponential Cubic Joint Normal Step

Quadratic W-Shaped Spiral Bernoulli Logarithmic

Fourth Root Sine 4 Sine 16 Square Two Parabolas

Circle Ellipse Diamond Noise Independence

Sample 1 Sample 2

Two-Sample Simulations

Figure E2: Simulations used for Figure 2. The first dataset (black dots) is 1000 samples from each of
the 20 two-dimensional, no-noise simulation settings. The second dataset is the first dataset rotated
by 10 degrees counter-clockwise. Simulations were normalized using min-max normalization for
visualization purposes.
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