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Abstract
Learning policies that are robust to changes in
the environment are critical for real world de-
ployment of Reinforcement Learning (RL) agents.
They are also necessary for achieving good gener-
alization across environment shifts. Bisimulation
provides a powerful means for abstracting task rel-
evant components of the observation and learning
a succinct representation space for training the RL
agent in high dimensional spaces by exploiting
the rich metric structure induced by the RL dy-
namics. In this work, we extend the bisimulation
framework to also account for context dependent
observation shifts. We use simulator based learn-
ing as an exemplary setting to demonstrate the
use alternate observations to learn a representa-
tion space which is invariant to observation shifts
using a novel bisimulation based objective. This
allows us to deploy the agent to varying obser-
vation settings during test time and generalize
to unseen scenarios. Empirical analysis on the
high-dimensional image based control domains
demonstrates the efficacy of our method.

1. Introduction
Many practical scenarios in reinforcement learning (RL)
applications require the agent to be robust to changes in
the observations space between training and deployment.
Such changes can occur due to lack of complete information
about the deployment environment which often happens
as the training environment is usually highly controlled or
simulators are used for training the agent, both of these
scenarios seldom capture the complexity and noisiness of
the real world. Moreover, these changes can also occur
due to various practical errors and constraints under which
autonomous agents need to be deployed (e.g. variations
in sensor position and fitting on automobiles, change in
calibration settings of visual input, change in sensor types
due to upgrades, calibration changes due to wear and tear
etc.). In this work, we propose a novel solution to the
aforementioned problem using the concept of conditional
bisimulation and application of simulator/specialized setup
during train time which help explicitly teach the agent, the
similarities across changes in the observation space. Our
method leverages the MDP level isomorphism (Ravindran,
2004) in the observation shift setting for obtaining a richer

representation loss. Our methods offers two-fold advantage:

• We can learn representations which are robust to shifts
in observation space in a sample efficient manner.

• We learn to ignore task irrelavant features as our metric
is grounded in rewards.

2. Background
Reinforcement Learning: A Markov Decision Process
(MDP) is formally defined as a tuple ⟨S,U, P, r, γ, ρ⟩. Here
S is the state space of the environment and ρ is the initial
state distribution. At each time step t, an agent observes the
state s ∈ S and chooses an action a ∈ U using its policy
π : S → P(U), where P(·) represents the space of distri-
butions on the argument set. This leads to a state transition
governed by the distribution P (s′|s, a) : S×U×S → [0, 1],
and the agent receives reward r(s, a) : S × U → [0, Rmax]
which can be potentially stochastic. We consider the dis-
counted infinite horizon setting, where the discount factor
is given by γ ∈ [0, 1). The state-action trajectory of the
agent is represented by τ ∈ T ≡ (S × U)∗. The value of
a policy is defined as: Jπ = Eπ,ρ [

∑∞
t=0 γ

trτ (st)] where
the expectation on the RHS is well defined given bounds
on rewards and γ. The goal of MDP problem is to find the
optimal policy π∗ for the optimal policy value J∗.
Rich observations and Contextual MDPs: We now dis-
cuss the RL setting used in this work which considers the
presence of an underlying parametrized context θ, which
governs the rewards and transitions in the MDP. Formally,
we haveM ≜ ⟨S,U, P, r, γ, ρ,Θ, PΘ, Z, f⟩, where Θ de-
fines a space of context parameters, PΘ is a fixed distribution
over the contexts, Z is the set of observations emitted as
f : S × Θ → Z. Thus fixing a particular context θ gives
us a richly observed MDP (Krishnamurthy et al., 2016)
indexed by θ: Mθ. We assume that the agent observes
θ in our setting. Without loss of generality, we assume
S ⊂ [0, 1]n, Z ⊂ [0, 1]l, where typically n << l. We will
use f(s, θ), fθ(s) interchangeably to highlight the corre-
sponding (un)-curried versions of the observation function.
Bisimulation: MDP Bisimulation defines a notion of state
abstraction which groups states that are behaviorally equiv-
alent (Li et al., 2006). Two states si and sjare bisimilar if
they both share the same immediate reward and equivalent
distributions over the next bisimilar states for all possible
actions (Givan et al., 2003). Formally:
Definition 1 (Bisimulation Relations (Givan et al., 2003)).
Given an MDP M, an equivalence relation B between
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states is a bisimulation relation if, for all states si, sj ∈
S that are equivalent under B (denoted si ≡B sj) the
following conditions hold:

r(si, a) = r(sj , a) ∀a ∈ U,

P (G|si, a) = P (G|sj , a) ∀a ∈ U, ∀G ∈ SB ,

where SB is the partition of S under the relation B (the
set of all groups G of states equivalent under B), and
P (G|s, a) =

∑
s′∈G P (s′|s, a).

Finding the coarsest bisimulation relation is known to be
an NP-hard problem (Givan et al., 2003). Further, the exact
partitioning induced from a bisimulation relation is gen-
erally impractical as it a very strict notion of equivalence
and seldom leads to meaningful compression of the original
MDP, this is especially true in continuous domains, where
infinitesimal changes in the reward function or dynamics can
break the bisimulation relation but still imply exploitable
aggregation. Thus towards addressing this, Bisimulation
Metrics (Ferns et al., 2011) relaxes the concept of exact
bisimulation, and instead define a pseudometric space (S, d),
where a distance function d : S × S 7→ R≥0 measures the
behavioral similarity between two states. The bisimulation
metric is formally defined as a convex combination of the re-
ward difference added to the Wasserstein distance between
transition distributions:

Definition 2 (Bisimulation Metric). From Theorem 2.6 in
(Ferns et al., 2011) with c ∈ [0, 1):

d(si, sj) = max
a∈U

(1− c) · |rasi − rasj |+ c ·W1(P
a
si , P

a
sj ; d).

W refers to the Wasserstein-p metric between two proba-
bility distributions Pi and Pj , defined as Wp(Pi, Pj ; d) =
infγ′∈Γ(Pi,Pj)[

∫
S×S

d(si, sj)
p dγ′(si, sj)]

1/p, where
Γ(Pi, Pj) is the set of all couplings of Pi and Pj . The
metric has intuitive interpretations depending on the exact
value of p when viewed from the dual perspective, for
example W1(Pi, Pj ; d) denotes the cost of transporting
mass from distribution Pi to another distribution Pj where
the cost is given by the distance metric d. This is known
as the earth-mover distance. The above definition can
also be modified to include scenarios involving stochastic
rewards, where a similar metric is chosen between reward
distributions. To account for state similarities arising from
following a particular policy, the π-bisimulation metric
(Castro, 2020) is similarly defined by fixing a policy π and
replacing the rewards and transitions used by their policy
based expectations:

dπ(si, sj) = (1− c) · |rπsi − rπsj |+ c ·W1(P
π
si , P

π
sj ; d

π).

In this work we will consider the max entropy RL framework
as it ensures a unique optimal policy π∗

merl(referred as π∗

for brevity). Our goal is to leverage generalization and
transfer obtained from informing the agent representation
with the bisimulation similarity metric under π∗.

3. Methodology
As previously discussed, it is important that agent policies
in RL are robust to observation shifts for deployment in
real world scenarios. In this work we wish to learn poli-
cies which can generalize well across the support set of
the context distribution PΘ. Our goal specifically would
be to learn an effective representation function for the RL
task set, ϕ : Z × Θ 7→ Y which enables robust learning
and deployment of autonomous agents to potentially un-
seen observation shifts (governed by a change in θ), see
Fig. 1(a). Under suitable notions of invertibility ( eg. see
Appendix A), the problem of generalizing across parameter-
ized observation shifts (Section 2) lends itself naturally to
the notion of MDP isomorphism (Ravindran, 2004). This is
because given two contexts θi, θj , there is always a one to
one mapping between the observations inMθi ⇐⇒ Mθj

as directed by the underlying state, this is illustrated in
Fig. 1(a). This inter-context correspondence helps us inform
the representation more efficiently. Concretely, we spec-
ify the desiderata which the representation function ϕ must
follow, as shown in Fig. 1(b):

• Base Bisimulation (BB): Given a θ ∈ Θ, the rep-
resentation should accurately preserve bisimulation
distances between states, thus providing robustness
to unimportant noise in observations. Concretely
∀si, sj ∈ S:

d(si, sj) = dY (ϕ(fθ(si), θ), ϕ(fθ(sj), θ)),

where dY is a metric on Y (we use Y = Rm and L1
distance for our experiments).

• Inter-context consistency (ICC): The representation
should remain invariant under a fixed state as the con-
text changes. Concretely: ∀s ∈ S and θ1, θ2 ∈ Θ,

dY (ϕ(fθ1(s), θ1), ϕ(fθ2(s), θ2)) = 0.

• Cross consistency (CC): This requires that the repre-
sentation distance between two states are consistent
across observation shifts:

d(si, sj) = dY (ϕ(fθ1(si), θ1), ϕ(fθ2(sj), θ2)),

d(si, sj) = dY (ϕ(fθ2(si), θ2), ϕ(fθ1(sj), θ1)).

Fig. 1(b) depicts the above representation criteria for 2 differ-
ent contexts(θ1, θ2) on the Mujoco control domain with 3D
background objects acting as noise. Towards ensuring the
above desiderata, we propose Robust Conditional Bisimula-
tion (RCB, Algorithm 1), a data-efficient approach to learn
control policies from unstructured, high-dimensional obser-
vations. As evident from Fig. 1(b), for n parallel simulation
calls, our method captures

(
2n
2

)
∼ O(n2) interactions for

representation learning using the above conditional bisim-
ulation terms as opposed to O(n) interactions in existing
representation learning methods. For instance data augmen-
tation methods based on contrastive learning (like (Laskin
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(a) (b) (c)

Figure 1: (a) Learning representation invariant to observation shifts. (b) Various bisimulation losses. (c) RCB Network.

et al., 2020b)) focus only on (fθ1(s), fθ2(s)) pairs whereas
as plain bisimulation methods (like (Zhang et al., 2021)) fo-
cus only on (fθ(s1), fθ(s2)) pairs. This order of magnitude
increase in utilization of metric information in RCB allows
for fast and efficient convergence to an observation invariant
representation space.

Algorithm 1 Robust Conditional Bisimulation (RCB)
1: for Time t = 0 to∞ do
2: Observe zt, θ
3: Encode observation yt = ϕ(zt, θ)
4: Execute action at ∼ π(yt)
5: Record data: D ← D ∪ {zt, at, zt+1, rt+1}
6: Sample batch B ∼ D
7: Train policy: EB[J

π]
8: Train encoder using pairwise loss: Lrep(ϕ)
9: Train dynamics: J(P̂ ,ϕ)=(P̂ (ϕ(zt, θ), at)−yt+1)

2

10: end for

We combine the above three representation conditions into
a sum of squared loss components. For this we sample
pairs of experiences i, j from the buffer along with base
context θ1 and an alternate context θ2 both sampled from
PΘ at episode start. We next compute the embedding of the
underlying states under the contexts and finally compute the
representation loss term as follows:

Lrep(ϕ) = λicc

[
|yi,θ1 − yi,θ2 |

2
1 + |yj,θ1 − yj,θ2 |

2
1

]
+ λbase

[(
|yi,θ1 − yj,θ1 |1 − Ti,j

)2
+
(
|yi,θ2 − yj,θ2 |1 − Ti,j

)2]
+ λcc

[(
|yi,θ1 − yj,θ2 |1 − Ti,j

)2
+
(
|yi,θ2 − yj,θ1 |1 − Ti,j

)2]
where we use the following notation: yi,θ = ϕ(f(si, θ), θ)
with yi,θ representing embeddings with stopped gradient
and the target bisimulation distance Ti,j = |ri − rj | +
γW2(P̂ (·|yi,θ1 , ai), P̂ (·|yj,θ1 , aj)). The relative weights
for the three loss terms are given by hyper-parameters
λbase, λicc, λcc respectively. We use a permuted batch of
B for pairwise representation loss computation in step-8
of Algorithm 1. Similarly we a probabilistic dynamics
model P̂ which outputs a Gaussian distribution. This allows
for a simple to compute closed form W2 metric which is
used to replace the W1 metric in the original formulation:

W2(N (µi,Σi), N (µj ,Σj))
2 = ||µi − µj ||22 + ||Σ1/2

i −
Σ

1/2
j ||2F , where || · ||F is the Frobenius norm. Fig. 1(c) de-

picts the overall representation learning process. Finally,
for the policy optimization part in step-7, we can use any
max entropy policy gradient method. Access to simulator
helps us translate a sampled batch from buffer into any ran-
domly sampled contexts from which we can compute the
various losses. However, in general this technique can also
be extended to non-simulator settings like data augmenta-
tion (Laskin et al., 2020a), this could be specially promising
as the latter approaches currently only minimize representa-
tion distance between two views of same input and not the
bisimulation distance which is more aligned with solving
the RL task.

4. Experiments
We perform experiments towards understanding whether
our method Robust Conditional Bisimulation (RCB) helps
learn representations which generalize better to observa-
tion shifts. Towards this, we use the DeepMind control
suite (DMC, (Tassa et al., 2018)). We create new tasks for
various agent morphologies where we learn to control the
agent using image based input. Further, we also modify
the simulator to have 3D spheres randomly bouncing in
the environment, which contribute towards noise (we call
this Modified-DMC). We use two baselines for comparison:
(1) DeepMDP (Gelada et al., 2019) which uses reward and
forward dynamics predictability for learning a latent rep-
resentation space. (2) A reconstruction based agent which
uses a reward model and an image reconstruction based
emission model to inform the representation. We use SAC
(Haarnoja et al., 2018) as the base algorithm for optimizing
the MERL objective in Algorithm 1. The architecture for
common modules is kept similar across the methods. For
fair comparison, we ensure that all the methods get equal
access to the simulator experience and augment the rep-
resentation learning objective for baselines with any extra
simulator calls. Additional experiments and setup details
can be found in Appendix B.
Modified-DMC: For testing the ability to generalize across
observation shifts, we use a uniform distribution over the
range PΘ = U(−π/4, π/4) for the camera angle. At the be-
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(a) Walker Stand (b) Walker Walk (c) Walker Run (d) Cheetah Run

Figure 2: Empirical results on modified-DMC observation generalization tasks for different methods: RCB (our method),
DeepMDP, and Reconstruction.

ginning of each episode, we sample a camera angle context
from PΘ, the agents must adapt to changing image perspec-
tives across training and evaluation. For evaluation, we use
a fixed set of camera angles: {−π/4,−π/8, 0, π/8, π/4}
over which we compute the agent performance during the
evaluation phase and report the average across the angles
as the performance metric. Fig. 2 gives the evaluation per-
formance plots for the agents on five different scenarios
averaged over five seeds with one standard error shaded (our
method RCB in blue, DeepMDP in green, Reconstruction
in red). We see that RCB performs significantly better than
the baseline agents on all the scenarios. RCB consistently
achieves higher performance across the walker tasks (Fig-
ures 2(a) to 2(c)). We also note that the performance for
Reconstruction worsens as the task becomes more dynamic,
we hypothesize this is due to the lack of focus on the core
features of the observation which influence the reward and
dynamics. We observe a similar trend on the cheetah do-
main (Fig. 2(d)) which is slightly easier than walker run.
DeepMDP is often unable to perform satisfactorily in the
training budget, we posit that this happens as it does not
use any inter-context information to inform its representa-
tion. Thus, while it may learn close distance embeddings
for a fixed context, the embeddings fare poorly across the
contexts. RCB alleviates this problem by leveraging both
the ICC and cross-consistency objectives in its formulation.
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A. Discussion on invertability
One of the most straight-forward ways to ensure invertibilty would be through block structure:

Assumption 1 (Block structure). We assume that fθ1(s1) ∩ fθ2(s2) ̸= ∅ =⇒ si = sj ,∀θ1, θ2 so that the observation map
is invertible.

This means that the observation space Z can be partitioned into disjoint blocks, each containing the support for a particular
value of s ∈ S (Du et al., 2019). This also ensures that inverse observation map f−1

θ : Z → S exists. Relaxing Assumption 1
can break any guarantees obtainable on value function similarities arising from state similarity. This is because the same
observation can get mapped to entirely different states in the latent MDP each with very different values, making the
environment only partially observable. Note however that this requirement is not too restrictive, it is possible to consider
added noise scenarios (both independent and correlated) which maintain identifiability of the state. Finally, many real-world
task observations tend to satisfy this assumption for high dimensional scenarios: e.g. visual projection of non-degenerate
objects under different viewing angles.

B. Additional experiments and details
B.1. Additional experiments
Out-of-distribution Generalization: To test the ability of the algorithms in dealing with unseen observation contexts during
test time, we train on Modified-DMC where we use a uniform distribution over the range PΘ = U(−3π/16, 3π/16) for the
camera angle and test on the unseen {−π/4, π/4} angles. Fig. 3(a) gives the performance on the unseen angles for walker
walk domain across the algorithms. Once again we note that RCB is able to better generalize to the unseen context due to its
learning of a more accurate representation space using the inter-context objectives (ICC and CC terms in Section 3).

(a) Out-of-distribution (PΘ) (b) Ablation 1 (c) Ablation 2

Figure 3: Out-of-distribution generalization and ablations

Ablations: To understand the effects of the different bisimulation loss components, we perform ablations removing each
component. In Fig. 3(b) we remove the base (RCB-Base) and cross consistency (RCB-Cross) bisimulation terms. We
see that removing the cross term has a bigger effect on performance. We believe this is because the cross-bisimulation
term has a stronger anchoring effect as it also implicitly accounts for both the base and inter-context terms (see Fig. 1(b)).
Next, in Fig. 3(c) we remove the inter-context consistency term (RCB-ICC) and both the inter-context consistency and
cross consistency terms (RCB-Cross-ICC). We notice a slight decrease in performance arising from dropping the inter
context consistency loss. The RCB-Cross-ICC ablation is similar to DBC (Zhang et al., 2021) as it only contains base
bisimulation losses (regular and alternate). We observe a significant decrease in performance in this latter ablation as we
drop all the inter-context bisimulation terms helpful in generalization across the contexts. Thus it is important to ensure
explicit alignment across the representations for the richly observed MDPs defined by different θ context when desiring
good generalization across observation shifts.

B.2. Architecture details
We use separate deep networks for actor, critic, transition and reward models. The encoder network for each used 32 filters
and a 50 feature dimensions. The actor and critic models each used an MLP trunk of 4 layers and 1024 hidden dimensions
on top of the encoder. The reward model used MLP trunk of 2 MLP layers and 512 hidden dimensions on top of the encoder.
The transition model type used was a mixture of Gaussians of ensemble size 5. Each component in the transition ensemble
uses a 2 MLP layers of 768 hidden dimensions on top of the encoder with the final layer bifurcating for a value for mean
and standard deviation per feature dimension. Layer normalization was used for the reward and transition models. Target
networks were used for value estimates and were updated every 4 epochs. Relu non-linearity was used for the networks.
We exponentially anneal the representation loss with weight (1.8− 0.8 ∗ 2

steps
total steps ). We use identical architectures for the

overlapping components of the baselines (Reconstruction and DeepMDP). The reconstruction agent uses an image decoder
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with an MLP followed by 2 deconvolution layers with the intermediate layer using 32 filters. Adam optimizer was used for
training the parameters of the networks used. Grid search was used for tuning the hyperparameters. Our code is based on
implementation by (Zhang et al., 2021) for their work. Each seed takes around 4 days to run on an Nvidia V100 GPU.

B.3. Hyper-parameters used: Conditional bisimulation

Table 1: Hyper-parameters used: Conditional bisimulation

PARAMETER VALUE

λbase 0.24
λicc 0.32
λcc 0.24
Initial steps 1000
Batch size 512
Action repeat 2
Encoder learning rate 10−3

Encoder τ 5 · 10−3

Decoder learning rate 10−3

Frames 1000
Actor learning rate 10−3

Critic learning rate 10−3

Critic τ 10−2

α learning rate 10−4

γ 0.99
Total Steps 3.5 · 105
Temperature 0.1
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