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1 DATASETS AND BENCHMARKS
The hallucination problem within the robust VQA task is chal-
lenging, and models that cleverly exploit biases or shortcuts may
generate predictions that influence human decisions. Therefore, we
select the VQA-CP v1 and VQA-CP v2 [1] datasets as benchmarks
to evaluate the performance under artificially changed prior con-
ditions. Additionally, to prove that our performance improvement
comes from reducing hallucinations, we also evaluate our model
on the VQA v2 datasets [11].

VQA-CP v2 contains three types of ∼658K questions, based
on ∼122K Microsoft COCO images, with the same dataset splits.
Following previous work, answers that appeared more than 9 times
in the training set were selected as candidate answers, resulting in
3129 candidate answers. Notably, the answers to the 𝑡𝑟𝑎𝑖𝑛 set and
𝑡𝑒𝑠𝑡 set are inversely distributed, making it convincing to evaluate
the model against the hallucination problem.

VQA-CP v1 is developed from the VQA v1 dataset and contains
∼122K images and ∼370K questions. Similarly, it serves as a bench-
mark to evaluate the robustness of the VQAmodel under artificially
changed prior conditions.

VQA v2 is the most commonly used VQA balanced benchmark
dataset, with its images identical to those in VQA-CP v2. The dis-
tribution difference between the divided 𝑡𝑟𝑎𝑖𝑛 set and 𝑡𝑒𝑠𝑡 set is
significantly reduced. Used as a benchmark to demonstrate whether
model improvements come from reducing hallucinations.

2 BASELINES AND EVALUATION METRIC
We refine the experimental section in the main paper and provide
more baseline analysis. A summary of different types of baselines
is as follows;

• General VQA frameworks, including UpDn, S-MRL. These
models have become the basic architecture for VQA models,
and we follow the Updn framework.

• Modify vision-language models, including VGQE, DLR.
• Balancing data methods can be categorized into those with
additional annotations (CSS, CSS + CL, CSS + IntroD, ECD,
and Mutant) and those without annotations (SSL-VQA, D-
VQA, KDDAug, and DDG). Following the previous setup
[4, 8, 15, 21, 23, 24], we do not make direct comparisons with
methods that add annotations to balance the dataset.

• Biases mitigation methods, such as AdvReg, RUBi, LMH,
GGE-iter, AdaVQA, COB, PWVQA, CVIV, GENB, GGD, and
RMLVQA, are specifically designed to enhance VQA robust-
ness by addressing biases. These methods are particularly
relevant to our work.

For evaluation on all datasets, all experiments use the standard
VQA evaluation metric [3]. When provided with an image and a
corresponding question, the accuracy of a predicted answer A is

Table 1: Model performance on the VQA-CP v2 test set. In
comparison with baselines, MSCD based on the multi-space
co-debias learning paradigm shows the best performance.
The ∗ represents a reproduction that follows the official code.

Datasets VQA-CP v2
Methods Overall-CP Y/N-CP Num-CP Others-CP
(I) General VQA Frameworks
UpDn [2] 39.74 42.27 11.93 46.05
S-MRL [5] 38.46 42.85 12.81 43.20
(II) Modify Vision-Language Models
VGQE [18] 50.11 66.35 27.08 46.77
DLR [16] 48.87 70.99 18.72 45.57
(III) Biases Mitigation Methods
UpDn [2] 39.74 42.27 11.93 46.05
AdvReg [22] 41.17 65.49 15.48 35.48
RUBi [5] 47.11 68.65 20.28 43.18
LMH [9] 52.15 70.29 44.10 44.86
GGE-iter [13] 57.12 87.35 26.16 49.77
AdaVQA* [12] 55.76 72.47 53.81 45.58
COB [15] 57.53 88.36 28.81 49.27
PWVQA [24] 59.06 88.26 52.89 45.45
GENB* [8] 59.10 87.96 40.03 49.21
GGD [14] 59.37 88.23 38.11 49.82
CVIV [21] 60.08 88.85 40.77 50.30
RMLVQA* [4] 60.42 89.86 47.93 49.72
MSCD 62.26 88.03 55.50 50.45

(IV) Balancing Data Methods
CSS [6] 58.95 84.37 49.42 48.21
CSS+CL [19] 59.18 86.99 49.89 48.21
CSS+ IntroD[20] 60.17 89.17 46.91 48.62
ECD [17] 59.92 83.23 52.29 49.71
MUTANT [10] 61.72 88.90 49.68 50.78
SSL-VQA [27] 57.59 86.53 29.87 50.03
D-VQA* [26] 60.50 89.61 48.49 48.53
KDDAug [7] 60.24 86.13 52.29 49.71
DDG [25] 61.14 88.77 49.33 49.90

computed as follows:

𝐴𝑐𝑐 (A) = min
(
1,

#humans that provide Ans
3

)
. (1)

3 MORE EXPERIMENTAL ANALYSIS
To further validate the effectiveness of our robust learning par-
adigm in mitigating hallucinations, we compare MSCD with the
latest methods outlined in Table 1. These methods encompass Gen-
eral VQA Frameworks, Modify Vision-Language Models, Biases
MitigationMethods, and Balancing Data Methods. To reduce the im-
pact of equipment errors, we re-implemented AdaVQA [12], Genb
[8], RMLVQA [4], and D-VQA [26] according to the official code.



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Train_gt Baseline RMLVQA MSCD Test_gt
left right west south dogs

(B) �ℎ��ℎ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Train_gt Baseline RMLVQA MSCD Test_gt
1 2 17 43 6

(A) ℎ�� ���� ������ ��� ��

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Train_gt Baseline RMLVQA MSCD Test_gt
white black orange multicolored red and blue

(C) �ℎ�� ����� ��� �ℎ�

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Train_gt Baseline RMLVQA MSCD Test_gt
yes no boy rain private

(D) �� �ℎ�� �

(C) Baseline on �ℎ�� ��� (D) MSCD on �ℎ�� ���(A) Baseline on �ℎ�� ���� ��
(B) Ours on �ℎ�� ���� ��
(B) MSCD on �ℎ�� ���� ��

Figure 1: Illustrations of combatingVQAhallucinations formore question types.Weplotmore types of hallucination distribution
legends to demonstrate the effect of combating hallucinations, and MSCD still maintains continuous improvement.

Table 2: Performance on VQA-CP v2 test set with various
proportions of training data. The MSCD learning method
can achieve excellent performance with low data volume.

Proportion of Training Set

Methods 20% 40% 60% 80% 100%

Updn 36.22 38.90 39.40 40.61 41.53
Genb 48.08 53.98 56.22 57.78 59.10
Adavqa 49.54 52.95 53.67 54.88 55.76
RMLVQA 54.77 57.84 58.95 59.72 60.42

MSCD 56.79 59.67 61.12 61.86 62.26

SSL-VQA 52.71 54.42 56.83 57.31 57.59
D-VQA 52.76 56.67 58.39 59.37 60.50

what is this awhat is the
what kind of does theare

(A) TSNE visualization of MSCD with different question types (Left) amd (Right)  

where is the what type of is
what iswhichwhat are the

Figure 2: T-SNE Visualization of the discriminative space
within different question types on the VQA-CP v2 test set.

From the comparative analysis, we draw the following conclusions:
1) Our proposed multi-space co-debias paradigm outperforms all
other methods, achieving state-of-the-art performance. 2) Com-
pared with the latest methods, such as RMLVQA (based on feature
learning), GenB (based on ensemble models) and CVIV (based on
causal inference), we have achieved at least 1.85% improvement,
which is an encouraging performance for the multi-space co-debias
paradigm. 3) Even compared with balancing data methods, which
often involve adding artificial annotations or entail cost-free data,
the MSCD model stands out. These methods primarily rely on data
balancing rather than addressing hallucinations inherent in the data
patterns. While the MSCD model incorporates cost-free examples
during the counterexample learning phase, its main purpose is to

enhance the prior independence of Spherical debias learning rather
than just balancing the data set.

4 DATA DEPENDENCY EXPERIMENT
As shown in Table 2, our method performs better when data is
limited, indicating that the MSCD is less dependent on data and can
focus on instance semantic reasoning with fewer samples. These re-
sults further demonstrate the effectiveness of our MSCD. Benefiting
from the robust training process based on multi-space co-debias,
our MSCD outperforms all comparison methods on the VQA-CP
v2 dataset. Specifically, in the 60% data scenario, our MSCD outper-
forms other state-of-the-art models by at least 0.7% when compared
to their performance at full data volume. This indicates that MSCD
holds promise for extending to low-data tasks, achieving superior
generalization performance with smaller data sizes and faster train-
ing speeds. Simultaneously, it surpasses balanced dataset methods
such as SSL-VQA and D-VQA by approximately 4.67% and 1.76%,
respectively. This highlights that MSCD isn’t reliant on data and
addresses inherent shifts phenomena through multi-space collabo-
ration to enhance semantic reasoning capabilities.

5 MORE ANSWERS DISTRIBUTION
The Fig. 1 displays the answer distributions for more question types
in VQA-CP v2, encompassing the 𝑡𝑟𝑎𝑖𝑛 set, 𝑡𝑒𝑠𝑡 set, and prediction
distributions resulting from three methods. In fact, the answer dis-
tribution between the 𝑡𝑟𝑎𝑖𝑛 set and the 𝑡𝑒𝑠𝑡 set almost exhibits an
inverse distribution. This disparity significantly undermines the
robustness of the models and underscores the formidable challenge
of mitigating hallucinations. Due to its simple design lacking debias
constraints, the baseline model produces many incorrect predic-
tions. Even state-of-the-art RMLVQA models struggle to effectively
mitigate biases present in the training data, as evidenced by the
persistence of numerous unreasonable distributions in the test set.
Notably, MSCD employs multi-space co-debias learning to generate
predictions that align more closely with real semantics, effectively
combating hallucinations. It’s apparent from the legends that for
classes appearing only a few times in the 𝑡𝑟𝑎𝑖𝑛 set, MSCD can
produce accurate predictions through semantic reasoning during
the testing process. Similarly, MSCD’s answer distribution closely
mirrors the ground-truth answers from the 𝑡𝑒𝑠𝑡 set, indicating that
MSCD doesn’t rely on priors and biases in the 𝑡𝑟𝑎𝑖𝑛 set, but gen-
uinely comprehends instance semantics to mitigate hallucinations.
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Figure 3: Confusion matrix between the predictions and ground-truth labels of top 20 class accuracy based on question types.
Two question types were randomly selected for comparison to verify the effectiveness of MSCD in mitigating instance shift.
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Figure 4: Attention region visualization and hallucination analysis for instances. By classifying the hallucinations of these four
image-question instances into two types: dominant answers and non-dominant answers.
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Figure 5: Visualizations for more question types showing
predictions and attention regions. We demonstrate model
attentional regions under the influence of hallucinations.

6 VISUALIZATION OF DIFFERENT QUESTION
TYPES

To verify the robustness of the spatial learning representation, we
randomly visualize the distribution of MSCD answers to six differ-
ent question types on the VQA-CP v2 test set. As shown in Fig. 2,
we observe that MSCD’s representation exhibits a discriminative

space across various question types. This shows that our multi-
space co-debias paradigm effectively utilizes the representation
space to differentiate answers for each instance. It is worth noting
that: 1) Among the different types of Fig. 2 (Left), there are obvious
boundaries between question types composed of different ground
truths (such as "is", "where is the", "which" and "what is"), there is no
entanglement between these types. Likewise, in the different types
of Fig. 2 (Right), there are yes/no question types closely clustered
together with an overwhelming majority of "no" answers ("is this a"
and "does the"), while the question types that give overwhelmingly
"yes" ground-truth answers are further away ("are"). 2) In a question
type space with multiple ground truth answer classes (e.g. "what",
"what is the", "what kind of", etc.), question types with higher di-
versity exhibit a loose distribution. In summary, the above analysis
shows that the MSCD model can better distinguish instances in the
discriminative space.

7 CONFUSION MATRIX FOR ROBUST VQA
To delve deeper into the phenomenon of instance shift and dis-
tribution shift, we present Fig. 3, which randomly visualizes the
confusion matrices of two question types. We select the answer
predictions of the top twenty classes to assess the degree of shift
calibration of MSCD.



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

In summary, among the question types, the distribution of the
top twenty classes can provide insight into the model’s answer
predictions. It’s evident that MSCD effectively calibrates the shift
between the predictions of the top twenty classes and the ground
truth labels, thereby enhancing model robustness.

8 MORE DE-HALLUCINATION EXAMPLES
In this section, Fig. 4 shows how MSCD focuses on key regions
and makes correct predictions under different prior conditions. The
main reason for this success is that MSCD reduces the detrimental
effects of priors and biases in both spaces from a homeomorphic
perspective, effectively addressing biases and avoiding potential
prior traps that lead to wrong answers. We further explored the
internal mechanism of hallucinations and found that whether the
answer is dominant or not, it may lead to model hallucinations.
For Fig. 4 (A), during the training process, many instances will
shift to dominant feature areas, and these dominant answers in
the training set will seriously affect the robustness performance in
testing. Obviously, even if the prior distributions are very different,
MSCD still effectively avoids this phenomenon. It is worth noting
that Fig. 4 (B) shows that even non-dominated answers can lead to
model hallucination, which may be an entanglement effect between
some semantically similar spaces. However, MSCD’s proficiency
in disentangling instance-semantic entanglements and prioritizing
semantic reasoning can further enhance robustness. Furthermore,
we list more different types of examples in Fig. 5, which reflects
the consistent improvement of our model for different types of
image-question instances.
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