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Abstract
Federated learning (FL) is undergoing significant traction due to
its ability to perform privacy-preserving training on decentralized
data. In this work, we focus on sensitive time series data collected
by distributed sensors in real-world applications. However, time
series data introduce the challenge of dual spatial-temporal feature
skew due to their dynamic changes across domains and time, differ-
ing from computer vision. This key challenge includes inter-client
spatial feature skew caused by heterogeneous sensor collection
and intra-client temporal feature skew caused by dynamics in time
series distribution. We follow the framework of Personalized Fed-
erated Learning (pFL) to handle dual feature drifts to enhance the
capabilities of customized local models. Therefore, in this paper,
we propose a method FedST to solve key challenges through or-
thogonal feature decoupling and regularization in both training
and testing stages. During training, we collaborate time view and
frequency view of time series data to enrich the mutual information
and adopt orthogonal projection to disentangle and align the shared
and personalized features between views, and between clients. Dur-
ing testing, we apply prototype-based predictions and model-based
predictions to achieve model consistency based on shared features.
Extensive experiments onmultiple real-world classification datasets
and multimodal time series datasets show our method consistently
outperforms state-of-the-art baselines with clear advantages.

CCS Concepts
• Computing methodologies→ Distributed artificial intelli-
gence; • Mathematics of computing → Time series analysis.
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Figure 1: Illustration of the spatial-temporal heterogeneous
federated learning setting. Data feature skew exists among
clients during the training stage. For test time, unlabeled test
data also shows a domain gap due to non-stationarity.
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1 Introduction
Nowadays, machine learning (ML) is undergoing a paradigm shift
from cloud data centers to distributed edges [19, 29]. With the de-
velopment of mobile Internet of Things (IoT) [61] and multimedia
computing platforms [16, 24, 48, 72], a large amount of valuable time
series data is recorded by distributed smart devices or entities. Time
series data refers to a series of data points or observations arranged
in chronological order. It has been widely used in anomaly detec-
tion [23, 26], activity recognition [13, 74], weather forecasting [7],
healthcare diagnosis [59, 66], recommendation system [21, 22, 68],
and emotion analysis [30]. One of the major research topics is time
series classification (TSC) by deep neural networks (DNN) [41, 58].
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Figure 2: Visualization of feature distribution shifts of time
series data by two samples with the same label space but of
different domains. The two samples hold the same label space
but show domain-variant representation on both dimensions
of features (monitored multi-dimension time series). The
data is based on WIDSM [28]

However, due to the sensitivity and privacy issues of users’ data,
the model training in a centralized data way faces challenges in
practice. Traditional centralized machine learning methods require
all data to be concentrated on a central server for training, which
not only increases the overhead of data transmission but also raises
potential risks of privacy leaks.

To tackle the challenges of data confidentiality and communi-
cation efficiency, federated learning (FL) [1, 25, 32, 44, 60, 62, 71]
emerged as a promising distributed training paradigm. Federated
learning can collaboratively train from massive multi-source data
without exchanging the original data, retaining data ownership [34]
while reducing the communication burden [43]. Specifically, edge
devices preserve their private data locally, and federated learning
mainly realizes training a robust model by aggregation and distri-
bution of local models through multiple rounds of communication.

Although FL shows promising prospects in data collaboration, it
still faces the challenge of data heterogeneity in practice [44]. Time
series data collected by sensors often come from different individu-
als and institutions, where the client’s local data is non-independent
and equally distributed (non-IID).Non-IID data can lead to model
drifts and catastrophic forgetting of global knowledge in federated
learning, which further leads to model performance degradation
and slow convergence. Data heterogeneity in federated learning
can be categorized into label space heterogeneity and feature space
heterogeneity. Much work has focused on the problem of non-IID in
the label space heterogeneity among clients [1, 6, 31, 32, 35]. Com-
pared with the more obvious label distribution deviation caused
by class imbalance, the feature skew data in federated learning is
more hidden and more difficult to overcome [5, 33, 77, 78].

Although general feature distribution skew has been explored in
FL, it becomes more challenging when applied to time series data
beyond image processing [5, 33, 77, 78], i.e., the data exhibit dual
feature heterogeneity in both spatial and temporal perspectives.

Challenge 1: Spatial feature heterogeneity. In real-world
deployment, the time series data collection methods of different
devices and individuals vary greatly, resulting in cross-client fea-
ture skew [10]. As shown in Figure 2, two samples share the label
space but exhibit heterogeneity in feature space. In the FL context,
each client may become a domain, and the complex dependence of

time steps makes it difficult to extract invariant features [3], hin-
dering the cross-domain generalization ability of FL models. From
another perspective, time series have two perspectives: time view
and frequency view. Domain shift may occur in both time view and
frequency view. It is also possible to shift the time feature while
leaving the frequency feature relatively unchanged, as shown in
Figure 3. Explicitly modelling time and frequency domain features
becomes more challenging.

Challenge 2: Temporal feature heterogeneity. The non-
stationarity of time series data has been an under-addressed chal-
lenge [11, 27, 40, 76]. Since the time series data is observation data
discretely sampled by sensors at a certain recording frequency, its
future data (horizons) may show different feature distributions from
the past observations (look-backs) [11, 27]. In the FL, it reflects in
the distribution shifts between training sample features and testing
sample features [18, 45, 52, 57]. The feature drifts of test samples
make the original model unable to perform ideally on the changing
dynamics. Accessing the original data will cause huge computa-
tional costs for complete retraining of the model. How to realize test
time adaption for robust FL deployment is under-explored [20, 54].

Encountering the dual challenges of spatial-temporal heteroge-
neous federated learning, we need to introduce a training scheme:
personalized federated learning (pFL) [6, 8, 9, 31, 32, 55, 63, 64]
which is tightly associated with dual feature-skewed FL and test
time adaption. Differing from vanilla generalized FL, pFL aims
to enhance the capability of clients’ personalized models during
the local test phase. From the perspective of spatial feature het-
erogeneity, a well-collaborated generic model finally needs to fit
each local test set’s domain. Thus, previous works about feature-
skewed FL were often presented as a uniform challenge along with
pFL [5, 33, 42, 54, 56, 78]. Besides, some pFL works mainly focus
on label distribution shifts [6, 8, 31, 32, 53]. From the point of view
of temporal feature heterogeneity, clients’ time series data shows
concept drifts during test time. The optimization goal of pFL is that
the trained model performs better on each client’s test samples,
which coincides with the test-time adaption objective of fine-tuning
the model online to improve test-time performance.

To overcome these challenges, in this paper, we propose FedST,
a two-stage updated federated learning framework to solve spatial-
temporal feature heterogeneity. The framework mainly consists of
two modules: orthogonal training and consistency testing. In the
training phase, we propose an orthogonal decoupling of cross-view
and cross-client representations to extract and utilize shared and
private features. In the testing phase, we align the predictions of the
prototype and the predictions of the model based on the orthogonal
subspace, minimizing uncertainty and fine-tuning representations.

Specifically, for the feature-skewed FL, previous work has dis-
covered the importance of decoupling personalized knowledge and
global knowledge. Multi-model methods have been used to disen-
tangle different features in images [12, 42, 70] for promoting local
personalization. For the distributed feature shifts of time series,
we focus on not only the decomposition of cross-domain features
between clients but also the decomposition of view-wise features
of time series. Time series data can be converted into multimodal
information, and supplementary information from different views
can be used to effectively analyze time series data [73, 75]. Multi-
view learning can extract extra information [38, 73, 75] of time
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Figure 3: Visualization of feature distribution about time view
and frequency view. The displayed data are sensor records
from two walking persons (domains) in a public dataset. Cor-
responding polar coordinates of frequency features show
that frequency features aremore domain-invariant than time
features in some cases. The data is fromWISDM [28].

series than single-view in the latent space, as exhibited in Figure 3.
We hope that the optimization objective is to improve the orthogo-
nal between shared features and private features of the same view,
the private features between different views, and private features
between clients. Therefore, we can capture the private features and
shared features between views, and the personalized knowledge
and global knowledge between clients through the orthogonal space
of factorization. We adopt contrastive learning and prototype-based
methods to achieve our cross-client and cross-modal orthogonal
training. In the federated inference phase, the visited model learned
a feature representation ability that fits the local domain with global
knowledge. However, since the feature concept of the time series
drifts over time, the model may not be able to generate accurate
representations for newly exposed samples. We leverage aligning
the predictions of the prototype and the predictions of the model
based on orthogonal subspaces to maintain model consistency and
representation quality. We summarize our contributions as follows:

• We consider a unique spatial-temporal feature skew chal-
lenge tailored for time series in the real-world application of
federated learning.

• We propose FedST which leverages orthogonal latent space
to disentangle client-level and view-level features, and adopts
prototype-based consistency for test time adaption.

• Extensive experimental results, FedST has achieved superior
empirical performance better than SOTA solutions for pFL,
feature-skew FL and FL for time-series.

2 Related Work
2.1 Federated Learning for Time Series
Recently, many deep learning methods have been adopted to pro-
cess distributed sensitive time series data monitored by private
sensors. Federated learning, as a significant decentralized deep
learning paradigm, has been widely used to analyze these time
series data. In [39] an attention mechanism-based convolutional
neural network-long short-term memory (AMCNN-LSTM) model
is proposed for industrial anomaly detection. FedTSC [36] presents
a two-level secure mechanism for time series classification with

secure feature extraction and secure model training. They empha-
size security and interpretability. EFDLS [65] focuses on a multi-
task time series classification setting and proposes a knowledge
distillation-based framework. MetePFL [7] proposes a prompt learn-
ing method for weather forecasting with foundation models. How-
ever, it holds a strong hypothesis that each client can fine-tune
a foundation model, which is not universally practical in mobile
computing scenarios for time series. FLAMES2Graph [69] also tar-
gets the interpretability of time series classification. They adopt
a Multivariate Highly Activated Period (MHAP) evolution graph
aggregation for better interpretable performance. It is notable that
these works mostly focus on the general performance of time series
classification or forecasting, ignoring the challenges of the time
series data modality itself, such as the time and frequency feature
and non-stationarity that this paper focuses on. Also, they did not
consider the challenge resulting from the implementation of fed-
erated learning but adopted time series as a general downstream
task.

2.2 Feature-Skewed Federated Learning
Feature-skewed federated learning focuses on improving the cus-
tomized capability of clients’ local models under diverse feature
spaces or domains held by clients. As pFL methods for label skew,
model decoupling [6, 20] and prototypical methods [55, 56] are
also widely adopted for feature-skewed FL. FedBN [33] preserves
the batch normalization layers, aggregating other parameters to
overcome feature concept shifts among clients. AlignFed [78] per-
forms a reverse aggregation strategy of decoupled personalized
federated learning for label skew. They craft personalized feature
extractors and generalized classifiers. FedPCL [56] adds contrastive
loss as an incremental approach of FedProto [55]. The pre-trained
parameters are also considered to improve the initial performance
of FL. DFL [42] aims to disentangle shared and private features
by multi-branch feature extractor and applies mutual information
loss to optimize the training. Differing from model decoupling,
FedFA [77] and FedRDN [67] focus on the data itself, applying data
augmentation to enrich data representations. With expanded fea-
ture representation, models are more robust to different underlying
distributions across clients. However, previous works mainly em-
phasize the distribution shifts in the computer vision context. The
spatial feature heterogeneity of time series data is under-explored.

2.3 Test-Time Adaptation
Test-time adaptation, which has been widely investigated in the
fields of computer vision [17, 45, 52, 57], aims to improve model
performance on unknown target domain data during the test time.
FedTHE [20] as a pioneerwork, explore the ID and out-of-distribution
(OOD) situations that clients will encounter during federated de-
ployment. They decouple the original model into a global head and
personalized head and perform robust cross-entropy. They also en-
force feature space alignment via prototypes. FedICON [54] adopts
contrastive learning to FedProto [55], making the predictions of dif-
ferent augments of a sample more stable to achieve robust updates
during test time. These works concentrate on the domain shifts
and common corruptions of image processing, but we extend to
the unique distribution drifts of time series.
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Feature distributions of time series in the real world are often
dynamic and change over time, especially for scenarios such as
weather forecasting and clinical detection. Many works have fo-
cused on it. Non-stationary [40] proposed a new transformer that
contains Series Stationarization and De-stationary Attention mod-
ules. Dish-TS [11] introduces a dual-conet framework to learn the
distribution of input and output spaces separately, naturally captur-
ing the distribution differences between the two spaces. OneNet [76]
uses reinforcement learning to train two networks to balance tem-
poral correlation and cross-variable dependence. RevIN [27] normal-
izes the input time series to fix its distribution in terms of mean and
variance, then returns the output to the original distribution. [26]
first propose test-time adaption in unsupervised time series anom-
aly detection. They utilize trend estimates and normal instances
based on the model prediction itself for model updates.

3 Preliminaries
3.1 Problem formulation
Basic setting. In this work, we introduce a pFL problem with
spatial-temporal heterogeneous feature-skewed data D. In the FL
system, we consider each 𝑘 ∈ {1, 2, · · · , 𝐾} client holding a private
time series dataset D𝑘 = {(𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 }

𝑛𝑘
𝑖=1, where 𝑛𝑘 denotes the

number of samples of local dataset as 𝑛𝑘 = |D𝑘 |. For a given time
series sample 𝑥𝑖 ∈ R𝑇×𝑑 includes 𝑑-demesions variate over 𝑇 time
points, and it’s corresponding label 𝑦𝑖 ∈ C = {1, 2, · · · ,𝐶}. Given
the local time series datasets for 𝑖−th client, D𝑖 can be divided into
training set D𝑡𝑟𝑎𝑖𝑛

𝑖
and test set D𝑡𝑒𝑠𝑡

𝑖
.

Spatial heterogeneity. For arbitrary client 𝑖 and client 𝑗 , the
feature skew heterogeneity across clients can be denoted as:

𝑃𝑖 (𝑥 |𝑦) ≠ 𝑃 𝑗 (𝑥 |𝑦), 𝑤ℎ𝑒𝑟𝑒 C𝑖 = C𝑗 , ∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [𝐾], (1)

where 𝑃𝑖 (𝑥 |𝑦) refers to the conditional probability of 𝑥 given 𝑦 for
client 𝑖 . The label space of C𝑖 remains homogeneous, and 𝑃𝑖 (𝑦) is the
same. Otherwise, it leads to a label distribution shift 𝑃𝑖 (𝑦) ≠ 𝑃 𝑗 (𝑦).

Temporal heterogeneity. Consider the temporal context of
time series data, the training sample {𝑥𝑡−𝐿:𝑡 } = [𝑥𝑡−𝐿+1, · · · , 𝑥𝑡 ] ∈
D𝑡𝑟𝑎𝑖𝑛
𝑖

follow a probability distribution P𝑡𝑟𝑎𝑖𝑛
𝑖

in the training phase.
𝐿 refers to the recorded time steps of time series data. The test set
{𝑥𝑡 :𝑡+𝐻 } = [𝑥𝑡+1, · · · , 𝑥𝑡+𝐻 ] also follow the distribution P𝑡𝑒𝑠𝑡

𝑖
. The

underlying distribution P𝑖 is non-stationary, where P𝑡𝑟𝑎𝑖𝑛𝑖
≠ P𝑡𝑒𝑠𝑡

𝑖
can be formulated as:

|𝑑 (P𝑡𝑟𝑎𝑖𝑛𝑖 ), 𝑑 (P𝑡𝑒𝑠𝑡𝑖 ) | ≥ 𝛿, (2)

where 𝛿 is the threshold and 𝑑 (·) is the distance metric to evaluate
the distributions’ divergence, such as KL divergence.

Optimization objective. We denote 𝜽 as the basic model archi-
tecture with two-part: feature extractor 𝑓 parameterized by 𝜽 𝑓 and
prediction head 𝑐 parameterized by 𝜽𝑐𝑙𝑠 . The typical FL considers a
generalized optimization problem, to minimize the empirical risks:

minL(𝜽 ) =
𝐾∑︁
𝑖=1

|D𝑖 |
|D| L𝑖 (𝜽 ),∀𝑖 ∈ [𝐾] . (3)

In contrast to traditional generalized FL, pFL aims to improve
every client’s personalized models. Clients pursue adapting to each
local data distribution collaboratively. The client-wise personalized

learning objective can be formulated as:

min
{𝜽 1,𝜽 2,· · · ,𝜽𝐾 }∈𝚯

L(𝚯) =
𝐾∑︁
𝑖=1

|D𝑖 |
|D| L𝑖 (𝜽 𝑖 ),∀𝑖 ∈ [𝐾], (4)

where clients’ personalized objectives can be computed by loss
function and reach a better performance to tackle the cross-client
feature skew and test time feature skew.

3.2 Time series frequency features
The Discrete Fourier Transform (DFT) is often applied to transform
signals in the time domain into the frequency domain. With dif-
ferent domains, the cognitive perspective of the same thing also
changes. From a new view of the frequency domain, more represen-
tations can be revealed. For each dimension of a time series sample
𝑥 , the DFT process can be denoted as:

𝑋 [𝑘] =
𝑇−1∑︁
𝑡=0

𝑥 [𝑡] · 𝑒−𝑖
2𝜋
𝑇
𝑘𝑡 , (5)

where 𝑋 [𝑘] is the 𝑘-th frequency component in the frequency
domain, 𝑥 [𝑡] is the 𝑡-th data point in the time series, 𝑇 is the time
step (total number of data points), 𝑘 is the current frequency index,
𝑖 is the imaginary unit.

4 Method
4.1 Overview
In this section, we describe the proposed novel federated learning
method: FedST. We consider two main processes: federated training
and federated inference. In the training phase, to tackle the feature
distribution shifts across clients, we adopt an orthogonal factoriza-
tion way. By projecting features to orthogonal subspace, we align
the shared feature between time and frequency view, and local and
global representations. The communication between clients and
the server includes spatial model aggregation and global prototype
aggregation. Considering the feature distribution shift in the test
time of time series data, we craft an adaption objective to fine-tune
the representation and make prediction more confident. Figure 4
visualizes the training procedure of both phases.

4.2 Client Update
Time-Frequency Feature Encoder. To build multi-view collab-
orative training, two single-view encoders are first developed to
map the input time series data into two latent spaces. With recent
advances in time series learning, many network structures have
been proposed to extract time series features. The encoder network
structure is not the original contribution of this paper, we focus
on handling the skew problem of extracted features. Given a sam-
ple 𝑥𝑖 , we adopt a time encoder 𝜽𝑇

𝑓
and a frequency encoder 𝜽𝐹

𝑓

to obtain the features 𝒛𝑇
𝑖
and 𝒛𝐹

𝑖
, respectively. We conduct some

warm-up rounds with the classifier 𝜽𝑐𝑙𝑠 , and aggregate the initial
global prototypes, defined as:

𝒑𝑇
𝑘,𝑐

=
1

|D𝑘,𝑐 |
∑︁

(𝑥𝑖,𝑘 ,𝑦𝑖,𝑘 ) ∈D𝑘,𝑐
𝑓 (𝜽𝑇

𝑓
;𝑥𝑖,𝑘 ), ∀𝑐 ∈ C, (6)

where 𝒑𝑇
𝑘,𝑐

refers to the mean of time domain representations for a
class 𝑐 . With the fusion of participated clients, the global prototypes
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Figure 4: The framework overview of the proposed FedST.
as a global knowledge, written as:

𝒑𝑇𝑐 =

𝐾∑︁
𝑘=1

|D𝑘 |
|D| 𝒑

𝑇
𝑘,𝑐
,∀𝑘 ∈ [𝐾], (7)

where the set of global prototypes can be obtained as {𝒑𝑇𝑐 }𝑐∈C , and
frequency prototype {𝒑𝐹𝑐 }𝑐∈C can also be derived.

Orthogonal Space Factorization. We first recall the definition
of orthogonality, given two vectors 𝑣 and 𝑢:

𝑣 · 𝑢 = 𝑣⊤𝑢 = 𝑢⊤𝑣 = 0, (8)

where the product of two vectors is zero, then we derive they are
orthogonal. Given a vector space V , we can define two orthogonal
subspaces V𝑠 and V𝑝 . Thus, any vector in space can be disen-
tangled into two orthogonal subspaces via projection matrixes 𝑃𝑖 .
Inspired by previous literature [4, 12, 38], for shared subspace and
personalized subspace, we ensure the orthogonality of the projec-
tion matrix: 𝑃⊤𝑠 𝑃𝑠 = 𝐼 , 𝑃⊤𝑝 𝑃𝑝 = 𝐼 , 𝑃⊤𝑠 𝑃𝑝 = 0, 𝑃⊤𝑝 𝑃𝑠 = 0. Given a
intermediate layer 𝑙 of feature extractor 𝑓𝑙 with 𝐿 hidden layers, the
optimization objective of gradients can be decomposed as:

𝑔
{𝑠,𝑝 }
𝑙

=
𝜕𝑙

𝜕𝑓𝑙
=

(
𝜕𝑙

𝜕𝑓𝐿

)
𝜕𝑓𝐿

𝜕𝑓𝑙
=

(
𝜕𝜙𝑃{𝑠,𝑝}

𝜕𝑓𝐿

𝜕𝑙

𝜕𝜙𝑃{𝑠,𝑝}

)
𝜕𝑓𝐿

𝜕𝑓𝑙

=

(
𝑃{𝑠,𝑝 }

𝜕𝑙

𝜕𝜙𝑃{𝑠,𝑝}

)
𝐿−1∏
𝑘=𝑙

𝜕ℎ𝑘+1
𝜕ℎ𝑘

= 𝑔
𝑃{𝑠,𝑝}
𝐿

𝐿−1∏
𝑘=𝑙

𝐷𝑘+1𝜃
𝑘+1
𝑓

, (9)

where 𝐷𝑘 denotes a diagonal matrix that embodies the Jacobian
matrix associated with the pointwise nonlinearity. 𝑃𝑖 refers to the

projection matrix, 𝜙𝑃 denotes the product of 𝑃𝑖 and 𝑙-layer pa-
rameters. Due to the orthogonal gradient updates, we can project
features into orthogonal subspaces and disentangle them. After re-
ceiving the output of time-frequency encode, each view embedding
𝒉𝑇𝑖 ,𝒉

𝐹
𝑖 are projected by a non-linear multilayer perceptron (MLP)

projector, into two orthogonal embeddings: personalized feature
embeddings 𝒉𝑇,𝑝

𝑖
,𝒉
𝐹,𝑝

𝑖
and shared feature embeddings 𝒉𝑇,𝑠

𝑖
,𝒉𝐹,𝑠
𝑖

.
View-wiseOrthogonality Loss. Inspired by [73, 75], we convey

wealth to mining the mutual information among different time
series views and enhance representation training by pulling in
shared features and pushing away personalized features. In the
orthogonal latent subspace, we adopt a contrastive way to achieve
this objective, written as:

L𝑇
𝑣𝑜𝑙

= − 1
|D𝑘 |

∑︁
𝑥𝑖 ∈D𝑘

(
log

exp( |𝒉𝑇,𝑠
𝑖

· 𝒉𝐹,𝑠
𝑖

|/𝜏)∑
𝑥 𝑗 ∈B exp( |𝒉𝑇,𝑠

𝑖
· 𝒉𝐹,𝑠
𝑗

|/𝜏)︸                                   ︷︷                                   ︸
shared features align

−

log
exp( |𝒉𝑇,𝑝

𝑖
· 𝒉𝐹,𝑝
𝑖

|/𝜏)∑
𝑥 𝑗 ∈B exp( |𝒉𝑇,𝑝

𝑖
· 𝒉𝐹,𝑝
𝑗

|/𝜏)︸                                    ︷︷                                    ︸
personalized features disentangle

)
, (10)

where B denotes a batch in the learning process, 𝜏 refers to a
temperature parameter to control the tolerance. The corresponding
contrastive loss for frequency view L𝐹

𝑣𝑜𝑙
can be obtained in the

same way. Within a single view, we also enforce the projection
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in orthogonal subspace to minimize the angular between shared
feature and personalized feature. We define the private orthogonal
loss for an unimodal as:

L𝑇
𝑝𝑜𝑙

=
1

|D𝑘 |
∑︁

𝑥𝑖 ∈D𝑘
|𝒉𝑇,𝑠
𝑖

· 𝒉𝑇,𝑝
𝑖

|, (11)

where we are able to formulate frequency view loss L𝐹
𝑝𝑜𝑙

as well. In
this way, orthogonality between these two features can be strength-
ened. The local encoder and projector possess the capacity to ac-
quire invariances and variances of shared and personalized features.

Domain-wise Orthogonality Loss. As discovered in [12, 54,
70], the domain gap between clients is vital for feature-skewed FL.
Learning to decouple the global feature and personalized feature
remains to be investigated. In this work, we continue to adopt
orthogonal subspace projection for global knowledge and local
embedding. We utilize global prototypes as global knowledge and
project them into orthogonal subspace as �̃�𝑇,𝑠𝑐 and �̃�

𝑇,𝑝
𝑐 , as well as

frequency view �̃�
𝐹,𝑠
𝑐 , �̃�

𝐹,𝑝
𝑐 . We facilitate each sample to be invariant

in the shared feature space, and orthogonal in the personalized
feature space. We perform cross-client orthogonality constraint
with the loss function as below:

L𝑇
𝑑𝑜𝑙

= − 1
|D𝑘 |

∑︁
𝑥𝑖 ∈D𝑘

|𝒉𝑇,𝑠
𝑖

· �̃�𝑇,𝑠𝑦𝑖 | +
1

|D𝑘 |
∑︁

𝑥𝑖 ∈D𝑘
|𝒉𝑇,𝑝𝑐 · �̃�𝑇,𝑝𝑦𝑖 |, (12)

We summarize the total orthogonal loss for each view {𝑇, 𝐹 } as:

L{𝑇,𝐹 }
𝑜𝑝𝑙

= 𝜆1L{𝑇,𝐹 }
𝑑𝑜𝑙

+ 𝜆2 (L{𝑇,𝐹 }
𝑣𝑜𝑙

+ L{𝑇,𝐹 }
𝑝𝑜𝑙

) . (13)

The general optimization objective cross-entropy loss to min-
imise empirical loss is formulated as follows:

L𝑐𝑒 = − 1
|D𝑘 |

|D𝑘 |∑︁
𝑖=1

𝑦𝑖 log(𝑓 (𝜽𝑐𝑙𝑠 ; 𝒛𝑖 )) . (14)

Finally, the overall loss function is denoted as:

L = L𝑐𝑒 + 𝜆(L𝑇𝑜𝑝𝑙 + L𝐹
𝑜𝑝𝑙

), (15)

4.3 Server Aggregation
Vanilla Fedavg [44] aggregates clients’ models based on local dataset
size as 𝜽 (𝑡+1) =

∑
𝑘∈[𝐾 ]

|D𝑘 |
|D | 𝜽

(𝑡 )
𝑘
. Averaged aggregation strategy

fits the goal of generalization, not for personalization. For label-
skewed pFL, model decoupling has been widely adopted, where
the classifier is regarded as the source of model shifts. So, a shared
feature extractor with a personalized classifier stands out as a pop-
ular structure [6, 8, 20, 70]. In contrast to label skew, a reversed
aggregation is commonly implemented with a personalized feature
extractor with a shared classifier [12, 42, 54, 78] for feature skew.
In this work, we aggregate the classifier 𝜽𝑐𝑙𝑠 and preserve the time-
frequency encoder 𝜽 {𝑇,𝐹 }

𝑓
and projector to fit the feature-skewed

personalization task, as previous work 𝜽 (𝑡+1)
𝑐𝑙𝑠

=
∑
𝑘∈[𝐾 ]

|D𝑘 |
|D | 𝜽

(𝑡 )
𝑐𝑙𝑠,𝑘

.
In addition, clients also upload local time-frequency prototypes
{𝒑{𝑇,𝐹 }
𝑐 }𝐶𝑐 for global knowledge fusion [55, 56, 78], denoted as:

𝒑 (𝑡+1)
𝑐 =

∑︁
𝑘∈[𝐾 ]

|D𝑘 |
|D| 𝒑

(𝑡 )
𝑘,𝑐
,∀𝑐 ∈ C. (16)

Table 1: Summary of datasets used in the experiments.
HAR HHAR WISDM Sleep-EDF Epilepsy

# Train 7352 12716 1350 35503 9200
# Test 2947 5218 720 6805 2300
Length 128 128 128 3000 178

# Subjects 30 9 30 20 500
Channel 9 3 3 1 1
# Class 6 6 6 5 2

4.4 Client Inference
In the federated inference phase, training data is no longer ap-
proachable. The feature distributions of coming test samples show
dynamic shifts due to the non-stationary time series. In this case,
gradually updating the trained model with unsupervised data can
help the model adapt to the changing feature concept.

Prototypical Orthogonal Adaption. Given an unlabeled test
sample 𝑥𝑖 during adaption, we can obtain the projected feature
𝒉𝑠𝑖 ,𝒉

𝑝

𝑖
as a shared feature and personal feature for both time and

frequency view. We maintain the pre-trained global prototypes
{𝒑𝑐 }𝑐∈C as a prototypical classifier. Instead of computing cosine or
Euclidean similarity to get the nearest prototype as a pseudo label,
we produce the pseudo label via a minimized angler of the shared
feature in the orthogonal subspace:

𝑦𝑖 = argmin
𝑐
𝜎 ({|𝒉𝑠𝑖 · �̃�

𝑠
𝑐 |}𝐶𝑐=1), (17)

where 𝜎 (·) is the normalized prediction by a softmax function. We
align the predictions of the prototype (in the orthogonal subspace)
with the predictions of themodel to ensure that the extracted feature
distribution of the current test data should be consistent with the
feature distribution of all previous data of the same class. Thus, the
loss to maintain consistency and align representation is defined as:

L𝑝𝑜𝑎 (𝑝𝑖 , 𝑦𝑖 ) = −𝜎 (𝑝𝑖 ) log𝑦𝑖 , (18)

where we omit the notation for time and frequency views, the
total loss is calculated by the sum of L𝑇𝑝𝑜𝑎 and L𝐹𝑝𝑜𝑎 . The process
mentioned above is undergoing for both views. By minimizing the
entropy, themodel is able to generate more accurate representations
of samples in the target domain. We then update the prototypes
with new data, gradually fitting the dynamic distributions.

5 Experiments
5.1 Experimental Setup
Datasets.We use five real-world time-series datasets for evaluation,
which are commonly used in domain adaption and other feature
drifts works for time series [15, 37, 47], involving human activity
recognition HAR [13], HHAR [51],WISDM [28] and Electroen-
cephalogram (EEG) signal data: Sleep-EDF [14],Epilepsy [2]. The
summary is given in Table 1.

Baselines. We take four groups of methods as baselines. (1)
typical FL and pFL for label distribution shifts: FedAvg [44], Fed-
Prox [32], FedDyn [1], FedRoD [6], FedProto [55] (2) pFL for feature
distribution shifts: FedBN [33], AlignFed [78], FedFA [77] (3) pFL
for test time adaption: FedTHE [20], FedICON [54] (4) FL tailored
for time series: FLAMES2Graph [69].

Data distributions.We consider dual feature distribution shifts.
• Spatial feature heterogeneity: For spatial feature hetero-
geneity, we adopt the general feature-skewed setting in pFL.
We treat each entity in time series data as a domain, the
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Table 2: Results of natural temporal feature skew in terms of personalization accuracy (%) of local models on five datasets
under different numbers of clients (𝐾) (domains). Green/bold fonts highlight the best baseline/our method.

Dataset HAR HHAR WISDM Sleep-EDF Epilepsy

Number of Clients (𝐾 ) 30 60 9 18 30 60 20 40 100 200

FedAvg2017 81.29±0.64 76.15±1.41 63.07±0.28 60.45±2.21 64.83±1.76 59.51±1.48 76.02±0.56 65.70±1.35 85.52±2.46 72.15±3.57
FedProx2020 83.04±0.23 81.46±1.26 66.94±0.74 62.88±1.42 63.34±0.77 61.09±0.81 74.53±1.78 66.02±1.49 87.15±1.58 71.90±1.56
FedDyn2021 81.98±0.39 72.40±2.46 64.33±0.77 62.75±1.80 58.47±1.58 62.50±0.61 76.86±1.06 62.88±2.27 84.56±2.96 73.45±2.49
FedProto2022 82.16±0.37 78.41±0.84 66.20±0.42 64.49±0.18 69.97±1.94 66.45±1.52 77.36±0.23 59.56±1.07 85.82±1.44 73.87±3.27
FedRoD2022 83.53±0.70 82.78±1.13 67.42±1.28 66.72±0.12 66.24±0.62 65.91±1.39 75.36±0.64 65.23±1.65 88.41±0.83 75.20±1.59

FedBN2021 86.21±0.31 82.55±0.44 69.04±0.75 65.39±0.92 62.79±1.06 63.90±2.03 77.58±1.61 70.93±2.54 86.63±0.29 74.06±1.37
AlignFed2022 85.98±0.66 84.51±0.20 69.95±0.37 68.26±0.53 67.01±1.26 70.84±0.49 76.57±1.86 72.98±2.04 90.06±1.33 76.12±1.65
FedFA2023 87.90±0.29 86.09±0.88 72.51±1.66 68.82±1.97 68.26±0.55 72.59±1.04 79.56±0.86 70.24±1.09 92.04±1.87 86.52±2.57

FedTHE2023 86.76±1.15 79.61±0.98 70.45±0.25 62.01±2.25 66.17±1.28 71.04±1.09 77.22±1.30 68.09±0.45 89.36±1.75 76.41±2.59
FedICON2023 88.15±0.87 84.50±1.73 71.37±1.04 67.93±1.32 70.83±1.45 70.52±2.61 79.97±1.44 72.41±2.59 92.45±1.33 85.37±1.70

FLAMES2Graph2023 87.72±1.06 85.69±1.35 74.24±1.16 70.52±2.35 69.92±1.70 63.99±1.04 81.57±1.21 71.44±1.29 91.30±1.76 80.54±1.89

Our FedST 93.02±0.65 90.53±0.45 78.82±0.76 73.86±1.34 81.19±1.13 79.82±0.90 93.49±0.36 87.51±1.97 94.82±1.76 92.05±1.64

Table 3: Ablation study of FedST in terms of local model’s
personalized accuracy. The experiment is under synthetic
shifts with 1 × clients, equals to # of entities.

Methods/Dataset HAR HHAR WISDM Sleep-EDF Epilepsy

FedAvg 78.02±2.48 60.87±2.68 62.69±2.37 73.87±1.04 82.99±1.23

Ours w/o L𝑜𝑝𝑙 80.47±2.01 63.52±0.84 63.10±0.16 76.38±0.79 86.24±1.15
Ours w/o L𝑣𝑜𝑙&L𝑝𝑜𝑙 88.64±1.92 72.26±0.78 74.37±1.60 87.93±0.21 92.64±1.36
Ours w/o L𝑑𝑜𝑙 85.76±1.31 71.30±0.52 72.45±0.96 85.21±1.10 93.52±1.54
Ours w/o L𝑝𝑜𝑎 90.38±0.75 73.56±0.40 75.59±1.66 88.27±1.07 94.12±0.86
Ours w/o frequency view 91.27±0.39 74.35±0.77 76.48±1.57 87.32±1.20 93.55±0.94

Ours FedST 92.98±1.05 75.05±0.36 79.98±2.06 90.22±0.45 95.06±2.11

number of entities is shown in Table 1 as # subjects. Each
client holds a domain, whichmeans the heterogeneity among
each sensor monitoring. We also consider a more distributed
scenario as an expanded client number 𝐾 .

• Temporal feature heterogeneity: We consider two condi-
tions in the real-world application: natural and synthetic.
– Natural shifts: This shift indicates that the time series
is non-stationary, and we follow the original train-test
partition without modification.

– Synthetic shifts: In synthetic temporal feature shifts, we
formulated amore challenging condition, followed by time
series domain adaption & generalization context [3, 15, 46].
We mix the test set across clients. Each client holds a test
set from another domain.

Implementation Details. For different dataset, we set the num-
ber of clients 𝐾 based on # of subjects (entities) in Table1, along
with doubled. However, in Epilepsy, the default entity size is 500,
which is not realistic for a common federated learning scenario. So
we randomly extract 100 and 200 entities for experiments. Each
experiment is run for 100 communication rounds. Because our main
contribution is not encoder and backbone model design, for fairness,
we follow the existing work [15, 50, 69], using the CNN network
to train time series data for five epochs in each round. We set the
batch size to 128. We use the SGD optimizer with a momentum of
0.5 and a learning rate of 0.01.

5.2 Main Results
Results on spatial heterogeneity and natural temporal het-
erogeneity. We follow the previous works, using an averaged

personalized accuracy to evaluate the performance. Table 2 shows
the performance of each baseline. We find that FedST achieves
the best results compared to the federated learning approaches
in all benchmarks. Concretely, FedST outperforms at least 2.37%
accuracy improvement on the Epilepsy dataset, and obtains 14.53%
accuracy improvement on Sleep-EDF, which is the largest dataset.
It indicates the superiority of our model in dealing with large-scale
datasets. Regarding baseline performance, we find that general pFL
methods that keep personalized models locally, such as FedProx
and FedProto, will have a significant impact on their performance.
Prediction head decoupling methods like FedRoD and FedTHE, can
usually achieve better results than FedAvg, but the improvement
is limited. Flame2Graph, tailored for time series data, but does not
consider spatial-temporal feature skew, our method still obtains
the advantage.

Results on spatial heterogeneity and synthetic temporal
heterogeneity. To further evaluate the robustness under feature
distribution shifts in the test time, we craft the synthetic tempo-
ral heterogeneity of feature distributions in Table 4. Facing the
unseen domain feature at the inference face, in terms of clients’
average accuracy, FedST has much better FL adaptability than state-
of-the-art pFL methods in a test-time adaption federated learning
setting. Compared with FL methods equipped with test-time adap-
tion, FedTHE and FedICON, FedST improves prediction accuracy
by 12.05% and 11.33% on HAR with multiple clients. We can find
that our method still performs well in various baselines, as the
performance of other baselines has dropped significantly due to
unknown feature drifts during testing.

5.3 Ablation Study
To validate the effectiveness of each training strategy in FedST, we
compare it with several ablations. Mainly, our ablations include:
removing whole orthogonal training module L𝑜𝑝𝑙 , removing view-
wise orthogonal training L𝑣𝑜𝑙 and L𝑝𝑜𝑙 , removing domain-wise
orthogonal training L𝑑𝑜𝑙 , removing test-time adaption L𝑝𝑜𝑎 and
only considering one view selecting from time and frequency. The
results shown in Table 3 turn out that each part of our approach
plays an important role and they work together to achieve better
performance. Notably, we notice that orthogonal training has the
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Table 4: Results of synthetic temporal feature skew in terms of personalization accuracy (%) of local models on five datasets
under different numbers of clients (𝐾) (domains). Green/bold fonts highlight the best baseline/our method.

Dataset HAR HHAR WISDM Sleep-EDF Epilepsy

Number of Clients (𝐾 ) 30 60 9 18 30 60 20 40 100 200

FedAvg2017 78.02±2.48 74.07±1.16 60.87±2.68 58.60±1.79 62.69±2.37 57.09±3.24 70.87±1.04 63.49±2.72 82.99±1.23 68.44±3.13
FedProx2020 82.92±0.42 80.44±0.77 59.18±1.45 63.97±0.84 63.80±2.16 60.79±2.30 73.69±2.01 62.88±0.48 85.64±1.43 71.55±0.61
FedDyn2021 76.18±1.13 71.09±1.57 62.96±2.08 61.10±2.17 57.28±2.78 61.10±2.82 75.19±1.18 61.16±3.05 84.87±0.98 72.35±2.95
FedProto2022 81.79±0.27 77.37±3.25 65.88±2.06 64.27±2.37 64.10±3.11 62.11±2.98 77.16±0.40 59.30±1.45 83.31±3.28 67.38±1.18
FedRoD2022 82.11±0.01 82.55±0.62 67.06±0.48 66.32±2.68 65.90±1.04 63.77±2.51 72.04±0.21 65.02±2.89 87.01±0.78 70.24±2.01

FedBN2021 85.17±1.75 81.58±2.79 66.98±1.08 63.30±2.91 59.20±1.92 63.53±3.14 76.42±2.78 69.95±1.57 85.96±1.22 69.60±0.33
AlignFed2022 84.88±0.84 82.92±0.44 68.45±0.26 64.29±2.95 65.59±3.28 69.32±0.64 75.82±2.85 67.01±2.93 89.07±1.30 71.17±0.89
FedFA2023 88.08±0.84 85.89±2.18 70.05±1.82 67.30±1.86 65.69±2.13 69.67±2.03 79.00±1.42 69.30±1.98 90.62±1.69 81.83±1.95

FedTHE2023 86.55±0.54 79.42±0.42 70.33±0.34 61.73±1.79 65.95±2.79 63.84±1.39 78.07±0.39 68.00±1.31 91.33±1.58 75.11±2.56
FedICON2023 87.79±0.54 80.14±2.24 71.14±0.64 69.22±1.02 70.23±1.29 70.18±2.35 77.84±1.27 72.24±2.50 89.17±1.07 83.22±1.66

FLAMES2Graph2023 84.49±0.85 85.51±1.27 72.03±1.02 70.41±1.58 66.42±0.69 70.88±0.94 78.31±0.95 69.25±1.12 88.24±1.64 80.12±1.79

Our FedST 92.98±1.05 91.47±1.38 75.05±0.36 72.63±1.20 79.98±2.06 75.54±1.14 90.22±0.45 86.16±1.23 95.06±2.11 91.35±2.30
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Figure 5: Performance comparison for hyperparameters under different values in two datasets.

most significant impact on the improvement. Without orthogo-
nal projections, there is a huge drop in performance of 8.82% to
16.88%. We also find that domain-wise orthogonal constraint and
view-wise orthogonal constraint equally contribute to the over-
all performance, where a minor advantage of domain-wise loss
indicates the necessity of decoupling global and local knowledge.

5.4 Analysis of Hyperparameters
In our method, the hyperparameter 𝜆, 𝜆1, 𝜆2 are used to control
the strength of the different orthogonal regularization loss. 𝜆 con-
trols the overall orthogonality constraint, used to balance with
the model’s predicted cross-entropy loss. As shown in Figure 5,
the larger the value of 𝜆, the more the model focuses on the or-
thogonality of shared features and personalized features. Through
experiments, we find that keeping around 1 for regularization is
more appropriate. The 𝜆1, 𝜆2 are used to control the orthogonality
between views and the orthogonality between clients. We found
that the orthogonality of features between clients is more sensitive
and plays a dominant role in feature-skewed federated learning.
We also studied the contrast temperature of contrastive learning 𝜏 .
Higher temperature values will increase the output of the model
and be more diverse, and the steady-state model also requires a
temperature of around 1.

5.5 Robustness on Multi-modal Time Series
Our method leverages time and frequency domain information to
enhance training. In real applications, many time series data are
multi-modal, rather than having only one modality in the original
time domain. We extend our method to the multi-modal domain.
When we calculate features or losses in the time and frequency
domains, we add other modalities in the same way. We compare our
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Figure 6: Accuracy comparison of different baseline on mul-
timodal time series datasets

method with baselines on two commonly used multi-modal datasets
ACIDS and PAMAP2 [49]. From the results shown in Figure 6, we
find that it consistently outperforms state-of-the-art baselines with
significant advantages, ranging from 3% to 6%, and proved to be
valuable in the multi-modal time series domain.

6 Conclusion
In this paper, we introduce FedST a federated learning framework
for time series that addresses both inter-client and intra-client
feature shifts. FedST considers both time and frequency view fea-
tures. To tackle spatial feature heterogeneity, we apply an orthogo-
nal training paradigm to disentangle the features between views
and clients. For temporal feature heterogeneity caused by non-
stationarity of time series, we update the model with prototypes in
orthogonal subspace to enhance prediction confidence. Experimen-
tal results on five datasets demonstrate FedST effectiveness.
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