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1 EXPERIMENTAL DETAILS
1.1 Datasets Details
Weprovide the introduction and statistics of the adopted benchmark

datasets:

• HAR [5]: The Human Activity Recognition database was

constructed from recordings of 30 volunteers performing

activities of daily living while carrying waist-mounted smart-

phones with embedded inertial sensors. The raw data cap-

tures 3-axis linear acceleration and 3-axis angular velocity at

a constant rate of 50Hz. There are 6 types of activities: walk-

ing, walking upstairs, walking downstairs, sitting, standing,

and lying down.

• HHAR [13]: This dataset consists of 3-axis accelerometer

measurements from 30 participants. Measurements were cap-

tured at 50 Hz. Non-overlapping segments of 128 time steps

were used for classification purposes. The dataset includes

six activity labels: biking, sitting, standing, walking, going

upstairs, and going downstairs.

• WISDM [9]: WISDM is an open dataset widely used for

human motion recognition and behavior analysis from 30

paticipants. The sensor measures the acceleration values of

the phone in three axes (x, y, z) and samples them at fixed

time intervals. The data is mesured at 20 Hz. The dataset

contains six activities: walking, jogging, sitting, standing,

walking upstairs, and walking downstairs.

• Sleep-EDF [6]: The Sleep-EDF dataset consists of single-

channel EEG signals sampled at 100Hz. Sleep recording cov-

ers five different sleep stages, namely awake (W), non-rapid

eye movement (N1, N2, N3) and rapid eye movement (REM).

• Epilepsy [2]: Epilepsy is an epileptic seizure recognition

dataset. It includes EEG signals from 500 subjects. we follow

the processing of previous letearets [4, 17] for classification,

dividing the entire dataset into two classes.

Table 1: Summary of datasets used in the experiments.

HAR HHAR WISDM Sleep-EDF Epilepsy

# Train 7352 12716 1350 35503 9200

# Test 2947 5218 720 6805 2300

Length 128 128 128 3000 178

# Subjects 30 9 30 20 500

Channel 9 3 3 1 1

# Class 6 6 6 5 2

1.2 Baseline Details
We provide the detailed introduction and hyper-parameters for the

four groups of baselines we adopted:

• FedAvg [12]: Fedavg stands as a benchmark for all FL algo-

rithms with local update and global aggregation phases. This

typical FL algorithm does not need extra hyperparameters.

We set the learning rate as 0.01, and communication rounds

at 100 as a standard for other baselines.

• FedProx [10]: FedProx adds a local penalty constant by the

divergence between the local model and the global, to realize

personalization. The local penalty constant 𝜇 is selected from

{0.001, 0.1, 1}. And 0.001 is set as the proximal term.

• FedDyn [1]: In each round, this method adds a penalty term

sent by the server to the learning goal of each client, so

that the model of each device converges toward the global

optimal direction. There is a new learning weight parameter

𝛼 to control model update. We apply 𝛼 = 0.01 as set in the

original literature.

• FedRoD [3]: The gap between the generalized model and

the personalized model is explored in this work. They de-

couple the feature extractor and prediction head. Feature

extractors are fused as usual, prediction heads are divided

into local heads and global heads. The output prediction is

the mixture of two heads. They also add a balanced softmax

loss to combat label non-iid. We follow this work to set the

temperature factor as 𝛾 = 1.

• FedProto [15]: FedProto consider to exchange prototypes

instead of models. They add a contrastive loss to minimize

the distance between local prototypes and global prototypes.

The weight 𝜆 of contrastive loss is set as 0.1.

• FedBN [11]: the batch normalization layers are preserved

locally trained while the other part of the model is globally

shared. We add batch normalization layers after the convo-

lutional layers for the CNN model architecture we adopted.

• AlignFed [19]: AlignFed performed as a combination with

FedProto and FedRoD for feature skew. They decouple the

feature extractors into global ones and local ones. Prototypes

are also applied to pull the features toward the global feature

centres of their corresponding classes.

• FedFA [18]: FedFA modelS feature statistics via a Gaussian

distribution. The mean of a Gaussian distribution represents

the original statistic, while the variance represents the en-

hancement range. Sampling from a Gaussian distribution to

synthesize new features. Based on the original work, we set

the momentum coefficient 𝛼 = 0.5 and probability 𝑝 = 1.

• FedTHE [8]: following the training architecture in FedRoD,

FedTHE adds two modules to enhance the test-time adaption

ability in pFL. They adopt entropy minimization and feature

space alignment. We adopt the default hyperparameter 𝜆𝑠 =

0.5 to balance the weight of losses.

• FedICON [14]: FedICON focus on feature skew in the train-

ing phase and TTA challenge in the test phase. They propose
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contrastive learning to extract invariant information within

the same class for each client. In the test time, they consider

a consistency of augment data.

• FLAMES2Graph [16]: They extract and visualize those in-

put subsequences that are highly activated by convolutional

neural networks. Additionally, an evolution graph is created

to capture the temporal dependencies between the different

extracted subsequences. We adopted the best hyperparam-

eter described in the paper where activation threshold is

0.1, cluster size selection is (𝑙1 = 25, 𝑙2 = 18, 𝑙3 = 13), graph
embedding size is 256, segment length is 15.

1.3 Model Architecture
Encoder: Following the existing work [7, 16, 17], to ensure a fair

comparison, we carefully selected an appropriate backbone model

for all methods. This consideration applies to all our comparisons.

To extract spatio-temporal features, we use a one-dimensional con-

volutional neural network (CNN) as the encoder. This configuration

was kept consistent across all methods to ensure a fair comparison,

where differences in prediction performance may be attributed to

the adaptive algorithm itself. The 1D-CNN architecture consists

of three blocks, each containing a 1D convolutional layer, a 1D

batch normalization layer, a rectified linear unit (ReLU) function

for nonlinearity, and finally a 1D max pooling layer.

2 DETAILED ALGORITHM
In this section, we provide a detailed training process as Algorithm 1:

Algorithm 1 FedST Training Procedure

Require: Clients 𝐾 ; local dataset D𝑘 ; communication rounds 𝑇 ;

Local epcoh 𝐸.

Initialization: global model 𝜽 ,
1: for each round 𝑡 = 1, . . . ,𝑇 do
2: Distribute 𝜽 to all clients 𝑘 ∈ 𝐾 .
3: for each client 𝑘 ∈ 1, . . . , 𝐾 in parallel do
4:

(
𝜽 (𝑡 )
𝑘
, {𝑝𝑘,𝑐 }

(𝑡 ),{𝑇,𝐹 }
𝑐∈C

)
← ClientUpdate(𝜽 , D𝑘 ).

5: end for
6: Perform the global model and prototype aggregation.

7: end for
8: procedure ClientUpdate(𝜽 , D𝑘 )

9: Compute Time and Frequency feature 𝑧
{𝑇,𝐹 }
𝑖

;

10: Compute local prototypes 𝑝
{𝑇,𝐹 }
𝑘,𝑐

= 1

|𝐷𝑘 |
∑
𝑧
{𝑇,𝐹 }
𝑖,𝑐

, ∀𝑐 ∈ C;

11: Project feature into orthogonal subspace 𝒉
{𝑇,𝐹 },{𝑠,𝑝 }
𝑖

;

12: Compute orthogonal loss by Eq. (11,12,13);

13: Compute the overall loss from Eq. (14);

14: Conduct local update 𝜽 (𝑡+1)
𝑘

← 𝜽 (𝑡 )
𝑘
− 𝜂∇L𝑘 (𝜽

(𝑡 )
𝑘

;D𝑘 );
15: Return , |D𝑘 |, 𝜽

(𝑡 )
𝑘
, {𝑝𝑘,𝑐 }

(𝑡 ),{𝑇,𝐹 }
𝑐∈C .

16: end procedure
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