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1 EXPERIMENTAL DETAILS

1.1

Datasets Details

We provide the introduction and statistics of the adopted benchmark
datasets:

HAR [5]: The Human Activity Recognition database was
constructed from recordings of 30 volunteers performing
activities of daily living while carrying waist-mounted smart-
phones with embedded inertial sensors. The raw data cap-
tures 3-axis linear acceleration and 3-axis angular velocity at
a constant rate of 50Hz. There are 6 types of activities: walk-
ing, walking upstairs, walking downstairs, sitting, standing,
and lying down.

HHAR [13]: This dataset consists of 3-axis accelerometer
measurements from 30 participants. Measurements were cap-
tured at 50 Hz. Non-overlapping segments of 128 time steps
were used for classification purposes. The dataset includes
six activity labels: biking, sitting, standing, walking, going
upstairs, and going downstairs.

WISDM [9]: WISDM is an open dataset widely used for
human motion recognition and behavior analysis from 30
paticipants. The sensor measures the acceleration values of
the phone in three axes (x, y, z) and samples them at fixed
time intervals. The data is mesured at 20 Hz. The dataset
contains six activities: walking, jogging, sitting, standing,
walking upstairs, and walking downstairs.

Sleep-EDF [6]: The Sleep-EDF dataset consists of single-
channel EEG signals sampled at 100Hz. Sleep recording cov-
ers five different sleep stages, namely awake (W), non-rapid
eye movement (N1, N2, N3) and rapid eye movement (REM).
Epilepsy [2]: Epilepsy is an epileptic seizure recognition
dataset. It includes EEG signals from 500 subjects. we follow
the processing of previous letearets [4, 17] for classification,
dividing the entire dataset into two classes.

Table 1: Summary of datasets used in the experiments.

HAR HHAR WISDM Sleep-EDF  Epilepsy

# Train 7352 12716 1350 35503 9200
# Test 2947 5218 720 6805 2300
Length 128 128 128 3000 178
# Subjects 30 9 30 20 500
Channel 9 3 3 1 1
# Class 6 6 6 5 2
1.2 Baseline Details

We provide the detailed introduction and hyper-parameters for the
four groups of baselines we adopted:

e FedAvg [12]: Fedavg stands as a benchmark for all FL algo-
rithms with local update and global aggregation phases. This
typical FL algorithm does not need extra hyperparameters.
We set the learning rate as 0.01, and communication rounds
at 100 as a standard for other baselines.

e FedProx [10]: FedProx adds a local penalty constant by the
divergence between the local model and the global, to realize
personalization. The local penalty constant y is selected from
{0.001,0.1, 1}. And 0.001 is set as the proximal term.

e FedDyn [1]: In each round, this method adds a penalty term
sent by the server to the learning goal of each client, so
that the model of each device converges toward the global
optimal direction. There is a new learning weight parameter
a to control model update. We apply a = 0.01 as set in the
original literature.

e FedRoD [3]: The gap between the generalized model and
the personalized model is explored in this work. They de-
couple the feature extractor and prediction head. Feature
extractors are fused as usual, prediction heads are divided
into local heads and global heads. The output prediction is
the mixture of two heads. They also add a balanced softmax
loss to combat label non-iid. We follow this work to set the
temperature factor as y = 1.

e FedProto [15]: FedProto consider to exchange prototypes
instead of models. They add a contrastive loss to minimize
the distance between local prototypes and global prototypes.
The weight 1 of contrastive loss is set as 0.1.

e FedBN [11]: the batch normalization layers are preserved
locally trained while the other part of the model is globally
shared. We add batch normalization layers after the convo-
lutional layers for the CNN model architecture we adopted.

o AlignFed [19]: AlignFed performed as a combination with
FedProto and FedRoD for feature skew. They decouple the
feature extractors into global ones and local ones. Prototypes
are also applied to pull the features toward the global feature
centres of their corresponding classes.

e FedFA [18]: FedFA modelS feature statistics via a Gaussian
distribution. The mean of a Gaussian distribution represents
the original statistic, while the variance represents the en-
hancement range. Sampling from a Gaussian distribution to
synthesize new features. Based on the original work, we set
the momentum coefficient & = 0.5 and probability p = 1.

e FedTHE [8]: following the training architecture in FedRoD,
FedTHE adds two modules to enhance the test-time adaption
ability in pFL. They adopt entropy minimization and feature
space alignment. We adopt the default hyperparameter A =
0.5 to balance the weight of losses.

e FedICON [14]: FedICON focus on feature skew in the train-
ing phase and TTA challenge in the test phase. They propose
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contrastive learning to extract invariant information within
the same class for each client. In the test time, they consider
a consistency of augment data.

o FLAMES2Graph [16]: They extract and visualize those in-
put subsequences that are highly activated by convolutional
neural networks. Additionally, an evolution graph is created
to capture the temporal dependencies between the different
extracted subsequences. We adopted the best hyperparam-
eter described in the paper where activation threshold is
0.1, cluster size selection is (I; = 25,1y = 18, I3 = 13), graph
embedding size is 256, segment length is 15.

1.3 Model Architecture

Encoder: Following the existing work [7, 16, 17], to ensure a fair
comparison, we carefully selected an appropriate backbone model
for all methods. This consideration applies to all our comparisons.
To extract spatio-temporal features, we use a one-dimensional con-
volutional neural network (CNN) as the encoder. This configuration
was kept consistent across all methods to ensure a fair comparison,
where differences in prediction performance may be attributed to
the adaptive algorithm itself. The 1D-CNN architecture consists
of three blocks, each containing a 1D convolutional layer, a 1D
batch normalization layer, a rectified linear unit (ReLU) function
for nonlinearity, and finally a 1D max pooling layer.

2 DETAILED ALGORITHM

In this section, we provide a detailed training process as Algorithm 1:

Algorithm 1 FedST Training Procedure

Require: Clients K; local dataset Dy; communication rounds T;
Local epcoh E.
Initialization: global model 0,
1: for eachroundt=1,...,T do
2: Distribute 6 to all clients k € K.
3: for each client k € 1,...,K in parallel do
4 (0](:), {pk,c}éte)’c{T’F}) « ClientUpdate(0, Dy).
5 end for
6 Perform the global model and prototype aggregation.
7: end for
8: procedure CLIENTUPDATE(6, Dy)

9: Compute Time and Frequency feature zl.{T’F};
10: Compute local prototypes pIg’F} = ﬁ > ziZ’F}, Ve e C;
11: Project feature into orthogonal subspace hi{T’F}’{S’p };

12: Compute orthogonal loss by Eq. (11,12,13);
13: Compute the overall loss from Eq. (14);

14: Conduct local update OI(CHU — 0](:) - r]V.Ek(GI(:);Z)k);

15: Return, |Dy|, 0](:), {pksc}gte)(}{T’F}.
16: end procedure
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