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A DETAILS OF THE ALGORITHM

A.1 FORWARD-BACKWARD PROCEDURE

We compute the necessary marginalizations of the joint distribution P(D̄|D, ✓̂) using the forward-
backward algorithm. Letting xt:t0 = {xt, xt+1, . . . , xt0} for any time-indexed quantity xt, the
forward messages are defined as ↵t(s) = P(st = s,a1:t�1, z1:t�1|✓̂), which can be computed
dynamically as

↵t+1(s
0) = P(st+1 = s0,a1:t, z1:t|✓̂)

=
X

s2S

P(st = s,a1:t�1, z1:t�1|✓̂)P(st+1 = s0, at, zt|st = s,a1:t�1, z1:t�1, ✓̂)

=
X

s2S

↵t(s)⇡̂(at|bt)T̂ (s0|s, at)Ô(zt|at, s0)

/
X

s2S

↵t(s)T̂ (s
0|s, at)Ô(zt|at, s0)

with initial case ↵1(s) = P(s1 = s) = b1(s). The backward messages are defined as �t(s) =
P(at:⌧ , zt:⌧ |st = s,a1:t�1, z1:t�1, ✓̂), which can also be computed dynamically as

�t(s) = P(at:⌧ , zt:⌧ |st = s,a1:t�1, z1:t�1, ✓̂)

=
X

s02S

P(st+1 = s0, at, zt|st = s,a1:t�1, z1:t�1, ✓̂)P(at+1:⌧ , zt+1:⌧ |st+1 = s0,a1:t, z1:t, ✓̂)

=
X

s02S

⇡̂(at|bt)T̂ (s0|s, at)Ô(zt|at, s0)�t+1(s
0)

/
X

s02S

T̂ (s0|s, at)Ô(zt|at, s0)�t+1(s
0)

with initial case �⌧+1(s) = P(;|s⌧+1 = s,a1:⌧ , z1:⌧ , ✓̂) = 1.

Then, the marginal probability of being in state s at time t given the dataset D and the estimate ✓̂ can
be computed as

�t(s) = P(st = s|D, ✓̂)

= P(st = s|a1:⌧ , z1:⌧ , ✓̂)

/ P(st = s,a1:⌧ , z1:⌧ |✓̂)
= ↵t(s)�(s)

and similarly, the marginal probability of transitioning from state s to state s0 at the end of time t
given the dataset D and the estimate ✓̂ can be computed as

⇠t(s, s
0) = P(st = s, st+1 = s0|D, ✓̂)

/ P(st = s, st+1 = s0,a1:⌧ , z1:⌧ |✓̂)
= P(st = s,a1:t�1, z1:t�1|✓̂)P(st+1 = s0, at, zt|st = s,a1:t�1, z1:t�1, ✓̂)

⇥ P(at+1:⌧ , zt+1:⌧ |st+1 = s0,a1:t, z1:t, ✓̂)

= ↵t(s)⇡̂(at|bt)T̂ (s0|s, a)Ô(z|a, s0)�t+1(s
0)

/ ↵t(s)T̂ (s
0|s, a)Ô(z|a, s0)�t+1(s

0) .

A.2 GRADIENT-ASCENT PROCEDURE

Taking the gradient of the expected log-likelihood Q(✓; ✓̂) in (5) with respect to the unknown
parameters ✓ = (T,O, b1, ⌘, µa2A) first requires computing the Jacobian matrix rbtbt0 for 1 
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t < t0  ⌧ , where (rbb0)ij = @b0(i)/@b(j) for i, j 2 S. This can be achieved dynamically as
rbtbt0 = rbt+1bt0rbtbt+1 with initial case rbt0 bt0 = I , where

(rbtbt+1)ij =
@bt+1(i)

@bt(j)

=
@

@bt(j)

 P
x2S bt(x)T (i|x, at)O(zt|at, i)P

x2S

P
x02S bt(x)T (x0|x, at)O(zt|at, x0)

�

=
T (i|j, at)O(zt|at, i)P

x2S

P
x02S bt(x)T (x0|x, at)O(zt|at, x0)

�
P

x02S T (x0|j, at)O(zt|at, x0)

(
P

x2S

P
x02S bt(x)T (x0|x, at)O(zt|at, x0))2

.

A.2.1 PARTIAL DERIVATIVES

The derivative of Q(✓; ✓̂) with respect to T (s0|s, a) is

@Q(✓; ✓̂)

@T (s0|s, a) =
@

@T (s0|s, a)

nX

i=1

"
⌧X

t=1

I{at = a}
X

x2S

X

x02S

⇠t(x, x
0) log T (x0|x, a)

+
⌧X

t=2

log ⇡(at|bt)
#

=
nX

i=1

"
⌧X

t=1

I{at = a} ⇠t(s, s0)

T (s0|s, a) +
⌧X

t=2

@ log ⇡(at|bt)
@T (s0|s, a)

#

=
nX

i=1

"
⌧X

t=1

I{at = a} ⇠t(s, s0)

T (s0|s, a)

+
⌧X

t=2

t�1X

t0=1

rbt log ⇡(at|bt)rbt0+1
btrT (s0|s,a)bt0+1

#
,

where

(rbt log ⇡(at|bt))1j =
@ log(at|bt)

@bt(j)

=
@

@bt(j)

 
�⌘kbt � µatk2 � log

X

a02A

e�⌘kbt�µa0k2

!

= �2⌘(bt(j)� µat(j)) + 2⌘
X

a2A

e�⌘kbt�µak2

P
a02A e�⌘kbt�µa0k2 (bt(j)� µa(j))

= �2⌘(bt(j)� µat(j)) + 2⌘
X

a2A

⇡(a|bt)(bt(j)� µa(j))

and

(rT (s0|s,a)bt0+1)i1 =
@bt0+1(i)

@T (s0|s, a)

=
@

@T (s0|s, a)

✓ P
x2S bt0(x)T (i|x, at0)O(zt0 |at0 , i)P

x2S

P
x02S bt0(x)T (x0|x, at0)O(zt0 |at0 , x0)

◆

= I{at0 = a}
✓

I{i = s0}bt0(s)O(zt0 |a, s0)P
x2S

P
x02S bt0(x)T (x0|x, a)O(zt0 |a, x0)

� bt0(s)O(zt0 |a, s0)
(
P

x2S

P
x02S bt0(x)T (x0|x, a)O(zt0 |a, x0))2

◆
.

The derivative of Q(✓; ✓̂) with respect to O(z|a, s0) is

@Q(✓; ✓̂)

@O(z|a, s0) =
@

@O(z|a, s0)

nX

i=1

"
⌧X

t=1

I{at = a, zt = z}
X

x02S

�t+1(x
0) logO(z|a, x0)
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+
⌧X

t=2

log ⇡(at|bt)
#

=
nX

i=1

"
⌧X

t=1

I{at = a, zt = z} �t+1(s0)

O(z|a, s0) +
⌧X

t=2

@ log ⇡(at|bt)
@O(z|a, s0)

#

=
nX

i=1

"
⌧X

t=1

I{at = a, zt = z} �t+1(s0)

O(z|a, s0)

+
⌧X

t=2

t�1X

t0=1

rbt log ⇡(at|bt)rbt0+1
btrO(z|a,s0)bt0+1

#
,

where

(rO(z|a,s0)bt0+1)i1 =
@bt0+1(i)

@O(z|a, s0)

=
@

@O(z|a, s0)

✓ P
x2S bt0(x)T (i|x, at0)O(zt0 |at0 , i)P

x2S

P
x02S bt0(x)T (x0|x, at0)O(zt0 |at0 , x0)

◆

= I{at0 = a, zt0 = z}
✓ I{i = s0}

P
x2S bt0(x)T (s0|x, a)P

x2S

P
x02S bt0(x)T (x0|x, a)O(z|a, x0)

�
P

x2S bt0(x)T (s0|x, a)
(
P

x2S

P
x02S bt0(x)T (x0|x, a)O(z|a, x0))2

◆
.

The derivative of Q(✓; ✓̂) with respect to b1(s) is

@Q(✓; ✓̂)

@b1(s)
=

@

@b1(s)

nX

i=1

"
X

x2S

�1(x) log b1(x) +
⌧X

t=1

log ⇡(at|bt)
#

=
nX

i=1

"
�1(s)

b1(s)
+

⌧X

t=1

rbt log ⇡(at|bt)rb1(s)bt

#
,

where (rb1(s)bt)i1 = (rb1bt)is.

The derivative of Q(✓; ✓̂) with respect to ⌘ is

@Q(✓; ✓̂)

@⌘
=

@

@⌘

nX

i=1

⌧X

t=1

log ⇡(at|bt)

=
nX

i=1

⌧X

t=1

@

@⌘

 
�⌘kbt � µatk2 � log

X

a02A

e�⌘kbt�µa0k2

!

=
nX

i=1

⌧X

t=1

 
�kbt � µatk2 +

X

a2A

e�⌘kbt�µak2

P
a02A e�⌘kbt�µa0k2 kbt � µak2

!

=
nX

i=1

⌧X

t=1

 
�kbt � µatk2 +

X

a2A

⇡(a|bt)kbt � µak2
!

.

Finally, the derivative of Q(✓; ✓̂) with respect to µa(s) is

@Q(✓; ✓̂)

@µa(s)
=

@

@µa(s)

nX

i=1

⌧X

t=1

log ⇡(at|bt)

=
nX

i=1

⌧X

t=1

@

@µa(s)

 
�⌘kbt � µatk2 � log

X

a02A

e�⌘kbt�µa0k2

!

=
nX

i=1

⌧X

t=1

 
2⌘I{at = a}(bt(s)� µa(s))� 2⌘

e�⌘kbt�µak2

P
a02A e�⌘kbt�µa0k2 (bt(s)� µa(s))

!
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=
nX

i=1

⌧X

t=1

(2⌘I{at = a}(bt(s)� µa(s))� 2⌘⇡(a|bt)(bt(s)� µa(s))

=
nX

i=1

⌧X

t=1

2⌘(I{at = a}� ⇡(a|bt))(bt(s)� µa(s)) .

B PROOFS OF PROPOSITIONS

B.1 PROOF OF PROPOSITION 1

First, denote with q⇤R 2 R�(S)⇥A the optimal (belief-state) q-value function with respect to the
underlying (state-space) reward function R 2 RS⇥A, and denote with v⇤ 2 R�(S) the corresponding
optimal value function v⇤R(b) = softmaxa02A q⇤R(b, a

0). Now, fix some component i of parameters ✓;
we wish to compute the derivative of log ⇡(a|b) with respect to ✓i:

@

@✓i
log ⇡(a|b) = @

@✓i

�
q⇤R(b, a)� v⇤R(b)

�

=
@

@✓i

 
q⇤R(b, a)� log

X

a02A

eq
⇤
R(b,a0)

!

=
@

@✓i
q⇤R(b, a)�

X

a02A

 
eq

⇤
R(b,a0)

P
a002A eq

⇤
R(b,a00)

· @

@✓i
q⇤R(b, a

0)

!

=
@

@✓i
q⇤R(b, a)�

X

a02A

⇡(a0|b) @

@✓i
q⇤R(b, a

0)

=
@

@✓i
q⇤R(b, a)� Ea0⇠⇡(·|b)


@

@✓i
q⇤R(b, a

0)

�

where we make explicit here the dependence on R, but note that it is itself a parameter; that is, R = ✓j
for some j. We see that this in turn requires computing the partial derivative @q⇤R(b, a)/@✓i. Let � be
some appropriate discount rate, and denote with ⇢R 2 R�(S)⇥A the effective (belief-state) reward
⇢R(b, a)

.
=
P

s2S b(s)R(s, a) corresponding to R. Further, let

P(b0|b, a)

=
X

z2Z

P(z|b, a)P(b0|b, a, z)

=
X

z2Z

 
X

s2S

X

s02S

b(s)T (s0|s, a)O(z|a, s0)
!
�

✓
b0 �

P
s2S b(s)T (·|s, a)O(z|a, ·)P

s2S

P
s02S b(s)T (s0|s, a)O(z|a, s0)

◆

denote the (belief-state) transition probabilities induced by T and O, where � is the Dirac delta
function that returns one if the belief-update (Equation 1) returns b0, and returns zero otherwise. Then
the partial @q⇤R(b, a)/@✓i is given as follows:

@

@✓i
q⇤R(b, a) =

@

@✓i

 
⇢R(b, a) + �

Z

b02�(S)
P(b0|b, a)v⇤R(b0)db0

!

=
@

@✓i
⇢R(b, a) + �

Z

b02�(S)
v⇤R(b

0)
@

@✓i
P(b0|b, a)db0

| {z }
⇢R,i(b,a)

+ �

Z

b02�(S)
P(b0|b, a)Ea0⇠⇡(·|b0)


@

@✓i
q⇤R(b

0, a0)

�
db0

from which we observe that @q⇤R(b, a)/@✓i is a fixed point of a certain Bellman-like operator.
Specifically, fix any function f 2 R�(S)⇥A; then @q⇤R(b, a)/@✓i is the fixed point of the operator
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T ⇡
R,i : R�(S)⇥A ! R�(S)⇥A defined as follows:

(T ⇡
R,if)(b, a) = ⇢R,i(b, a) + �

Z

b02�(S)
P(b0|b, a)

X

a0

⇡(a0|b0)f(b0, a0)db0

which takes the form of a “generalized” Bellman operator on q-functions for POMDPs,
where for brevity here we have written ⇢R,i(b, a) to denote the expression @

@✓i
⇢R(b, a) +

�
R
b02�(S) v

⇤
R(b

0) @
@✓i

P(b0|b, a)db0. Mathematically, this means that a recursive procedure can in
theory be defined—cf. “rq-iteration”, analogous to q-iteration; see e.g. [52]—that may converge on
the gradient under appropriate conditions. Computationally, however, this also means that taking a
single gradient is at least as hard as solving POMDPs in general.

Further, note that while typical POMDP solvers operate by taking advantage of the convexity property
of ⇢R(b, a)—see e.g. [53]—here there is no such property to make use of: In general, it is not the case
that ⇢R,i(b, a) is convex. To see this, consider the following counterexample: Let S .

= {s�, s+}, A .
=

{a=}, Z .
= {z�, z+}, T (s�|s�, a=) = T (s+|s+, a=) = p = 1, O(z�|a=, s�) = O(z+|a=, s+) =

1/4, b1(s+) = 1/2, R(s�, a=) = 0, R(s+, a=) = 1/2, and � = 1/2. For simplicity, we will simply
write b instead of b(s+). Note that:

q⇤R(b, a=) = b
X

t=0

�tR(s+, a=) + (1� b)
X

t=0

�tR(s�, a=) = b

v⇤R(b) = log
X

a2{a=}

eq
⇤
R(b,a) = log eq

⇤
R(b,a=) = q⇤R(b, a=) = b

P(z+|b, a=) =
1

4
(bp+ (1� b)(1� p)) +

3

4
(b(1� p) + (1� b)p) =

1

4
b+

3

4
(1� b)

P(z�|b, a=) =
1

4
(b(1� p) + (1� b)p) +

3

4
(bp+ (1� b)(1� p)) =

1

4
(1� b) +

3

4
b

b0|b, a=, z+ =
P(s0 = s+, z+|b, a=)

P(z+|b, a=)
=

1
4bp+

3
4 (1� b)(1� p)

P(z+|b, a=)
=

1
4b

1
4b+

3
4 (1� b)

b0|b, a=, z� =
P(s0 = s+, z�|b, a=)

P(z�|b, a=)
=

1
4 (1� b)(1� p) + 3

4bp

P(z�|b, a=)
=

3
4b

1
4 (1� b) + 3

4b

P(b0|b, a=) =

8
><

>:

P(z+|b, a=) if b0 = b0|b, a=, z+
P(z�|b, a=) if b0 = b0|b, a=, z�
0 otherwise

Now, let the elements of ✓ be ordered such that p is the i-th element, and consider ⇢R,i(b, a)—
evaluated at p = 1:

⇢R,i(b, a=)
.
=

@

@p
⇢R(b, a=) + �

Z

b02�(S)
v⇤R(b

0)
@

@p
P(b0|b, a=)db0

=
1

2

✓
v⇤R(b

0|b, a=, z+)
@

@p
P(z+|b, a=) + v⇤R(b

0|b, a=, z�)
@

@p
P(z�|b, a=)

◆

=
1

2

✓ 1
4b

1
4b+

3
4 (1� b)

✓
1

4
b� 1

4
(1� b)� 3

4
b+

3

4
(1� b)

◆

+
3
4b

1
4 (1� b) + 3

4b

✓
�1

4
b+

1

4
(1� b) +

3

4
b� 3

4
(1� b)

◆◆

Clearly ⇢R,i(b, a=) cannot be convex since ⇢R,i(1/2, a=) = 0 and ⇢R,i(1, a=) = 0 but
⇢R,i(3/4, a=) > 0.

B.2 PROOF OF PROPOSITION 2

In contrast, unlike the indirect q-value parameterization above (which by itself requires approximate
solutions to optimization problems), the mean-vector parameterization of INTERPOLE maps beliefs
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directly to distributions over actions. Now, the derivatives of log ⇡(a|b) are given as closed-form
expressions in Appendices A.1 and A.2.

In particular, note that each bt is computed through a feed-forward structure, and therefore can easily
be differentiated with respect to the unknown parameters ✓ through backpropagation through time:
Each time step leading up to an action corresponds to a “hidden layer” in a neural network, and the
initial belief corresponds to the “features” that are fed into the network; the transition and observation
functions correspond to the weights between layers, the the beliefs at each time step correspond
to the activations between layers, the actions themselves correspond to class labels, and the action
likelihood corresponds to the loss function (see Appendices A.1 and A.2).

Finally, note that computing all of the forward-backward messages ↵t and �t in Appendix A.1 has
complexity O(n⌧S2), computing all of the Jacobian matricies rbtbt0 in Appendix A.2 has complexity
O(n⌧2S3), and computing all of the partial derivatives given in Appendix A.2 has complexity at
most O(n⌧2S2AZ). Hence, fully differentiating the expected log-likelihood Q(✓; ✓̂) with respect to
the unknown parameters ✓ has an overall (polynomial) complexity O(n⌧2S2 max{S,AZ}).

C EXPERIMENT PARTICULARS

C.1 DETAILS OF DECISION ENVIRONMENTS

ADNI We have filtered out visits without a CDR-SB measurement, which is almost always taken,
and visits that do not occur immediately after the six-month period following the previous visit
but instead occur after 12 months or later. This filtering leaves 1,626 patients with typically three
consecutive visits each. For MRI outcomes, average is considered to be within half a standard
deviation of the population mean. Since there are only two actions in this scenario, we have set ⌘ = 1
and relied on the distance between the two means to adjust for the stochasticity of the estimated
policy—closer means being somewhat equivalent to a smaller ⌘.

DIAG We set T true(s�|s�, ·) = T true(s+|s+, ·) = 1, meaning patients do not heal or contract
the diseases as the diagnosis progresses, Otrue(z�|a=, s+) = Otrue(z+|a=, s�) = 0.4, meaning
measurements as a test have a false-negative and false-positive rates of 40%, and btrue1 (s+) = 0.5.
Moreover, the behavior policy is given by T = T true, O = Otrue, b1 = btrue1 , ⌘ = 10, µa=(s+) =
0.5, and µa�(s�) = µa+(s+) = 1.3. Intuitively, doctors continue monitoring the patient until they
are 90% confident in declaring a final diagnosis. In this scenario, T and ⌘ are assumed to be known.
The behavior dataset is generated as 100 demonstration trajectories.

BIAS We set all parameters exactly the same way we did in DIAG with one important exception:
now O(s�|a=, z+) = 0.2 while it is still the case that Otrue(z�|a=, s+) = 0.4, meaning O 6= Otrue

anymore. In this scenario, b1 is also assumed to be known (in addition to T and ⌘) to avoid any
invariances between b1 and O that we have encountered during training. The behavioral dataset is
generated as 1000 demonstration trajectories.

C.2 DETAILS OF BENCHMARK ALGORITHMS

R-BC We train an RNN whose inputs are the observed histories ht and whose outputs are the
predicted probabilities ⇡̂(a|ht) of taking action a given the observed history ht. The network consists
of an LSTM unit of size 64 and a fully-connected hidden layer of size 64. We minimize the cross-
entropy loss L = �

Pn
i=1

P⌧
t=1

P
a2A I{at = a} log ⇡̂(a|ht) using Adam optimizer with learning

rate 0.001 until convergence, that is when the cross-enropy loss does not improve for 100 consecutive
iterations.

PO-IRL The IOHMM parameters T , O, and b1 are initialized by sampling them uniformly at
random. Then, they are estimated and fixed using conventional IOHMM methods. The reward
parameter R is initialized as R̂0(s, a) = "s,a where "s,a ⇠ N (0, 0.0012). Then, it is estimated via
Markov chain Monte Carlo (MCMC) sampling, during which new candidate samples are generated
by adding Gaussian noise with standard deviation 0.001 to the last sample. A final estimate is formed
by averaging every tenth sample among the second set of 500 samples, ignoring the first 500 samples.
In order to compute optimal q-values, we have used an off-the-shelf POMDP solver available at
https://www.pomdp.org/code/index.html.
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Off. PO-IRL All parameters are initialized exactly the same way as in PO-IRL. Then, both the
IOHMM parameters T , O, and b1, and the reward parameter R are estimated jointly via MCMC
sampling. When generating new candidate samples, with eqaul probabilities, we have either sampled
new T , O, and b1 from IOHMM posterior (without changing R) or obtained a new R the same way
we did in PO-IRL (without changing T , O, and b1). A final estimate is formed the same way as in
PO-IRL.

PO-MB-IL The IOHMM parameters T , O, and b1 are initialized by sampling them uniformly at
random. Then, they are estimated and fixed using conventional IOHMM methods. Given the IOHMM
parameters, we parameterized policies the same way we did in INTERPOLE, that is as described in (2).
The policy parameters {µa}a2A are initialized as µ̂0

a(s) = (1/|S| + "a,s)/
P

s02S(1/|S| + "a,s0)
where "a,s0 ⇠ N (0, 0.0012). Then, they are estimated according solely to the action likelihoods in
(4) using the EM algorithm. The expected log-posterior is maximized using Adam optimizer with
learning rate 0.001 until convergence, that is when the expected log-posterior does not improve for
100 consecutive iterations.

INTERPOLE All parameters are initialized exactly the same way as in PO-MB-IL. Then, the IOHMM
parameters T , O, and b1, and the policy parameters {µa}a2A are estimated jointly according to both
the action likelihoods and the observation likelihoods in (4). The expected log-posterior is again
maximized using Adam optimizer with learning rate 0.001 until convergence.

C.3 FURTHER EXAMPLE: POST-HOC ANALYSES

Policy representations learned by INTEPOLE provide users with means to derive concrete criteria
that describe observed behavior in objective terms. These criteria, in turn, enable the quantitative
analyses of the behavior using conventional statistical methods. For ADNI, we have considered two
such criteria: belatedness of individual diagnoses and informativeness of individual tests. Both of
these criteria are relevant to the discussion of early diagnosis, which is paramount for Alzheimer’s
disease [51] as we have already mentioned during the illustrative examples.

Formally, we consider the final diagnoses of a patient to be belated if (i) the patient was not ordered
an MRI in one of their visits despite the fact that an MRI being ordered was the most likely outcome
according to the policy estimated by INTERPOLE and (ii) the patient was ordered an MRI in a later
visit that led to a near-certain diagnosis with at least 90% confidence according to the underlying
beliefs estimated by INTERPOLE. We consider An MRI to be uninformative if it neither (factually)
caused nor could have (counterfactually) caused a significant change in the underlying belief-state
of the patient, where an insignificant change is half a standard deviation less than the mean factual
change in beliefs estimated by INTERPOLE.

Having defined belatedness and informativeness, one can investigate the frequency of belated diag-
noses and uninformative MRIs in different cohorts of patients to see how practice varies between
one cohort to another. In Table 5, we do so for six cohorts: all of the patients, patients who are over
75 years old, patients with apoE4 risk factor for dementia, patients with signs of MCI or dementia
since their very first visit, female patients, and male patients. Note that increasing age, apoE4 allele,
and female gender are known to be associated with increased risk of Alzheimer’s disease [54–57].
For instance, we see that uninformative MRIs are much more prevalent among patients with signs of
MCI or dementia since their first visit. This could potentially be because these patients are monitored
much more closely than usual given their condition.

Table 5: Frequency of belated diagnoses and uninformative MRIs in various patient cohorts.

Cohort Frequency of
belated diagnoses

Frequency. of
uninformative MRIs

All patients 6.52% 18.8%
Patients over 75 years old 9.29% 18.1%
Patients with apoE4 risk factor 8.75% 19.3%
Patients with signs of MCI/dementia 9.26% 26.1%
Female patients 7.19% 17.6%
Male patients 5.97% 19.8%
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Alternatively, one can divide patients into cohorts based on whether they have a belated diagnoses
or an uninformative MRI to see which features these criteria correlate with more. We do so in
Table 6. For instance, we see that a considerable percentage of belated diagnoses are seen among
male patients.

Table 6: Features of patients with belated diagnoses and uninformative MRIs.

Feature All patients Patients with
belated diagnoses

Patients with
uninformative MRIs

Mean age 73.9± 7.1 75.8± 7.5 73.0± 7.3
Freq. of apoE4 45.7% 54.2% 49.0%
Freq. of MCI/dementia signs 68.4% 95.8% 98.1%
Perc. of female patients 45.4% 39.0% 43.5%
Perc. of male patients 54.6% 61.0% 56.5%

C.4 FURTHER EXAMPLE: DECISION TREES

Clinical practice guidelines are often given in the form of decision trees, which usually have vague
elements that require the judgement of the practitioner [58, 59]. For example, the guideline could
ask the practitioner to quantify risks, side effects, or improvements in subjective terms such as being
significant, serious, or potential. Using direct policy learning, how vague elements like these are
commonly resolved in practice can be learned in objective terms.

Formulating policies in terms of IOHMMs and decision boundaries is expressive enough to model
decision trees. An IOHMM with deterministic observations, that is O(z|a, s0) = 1 for some z 2 Z
and for all a 2 A, s 2 S, essentially describes a finite-state machine, inputs of which are equivalent
to the observations. Similarly, a deterministic decision tree can be defined as a finite-state machine
with no looping sequence of transitions. The case where the observations are probabilistic rather than
deterministic correspond to the case where the decision tree is traversed in a probabilistic way so that
each path down the tree has a probability associated with it at each step of the traversal.

Patient arrives.
Test for the disease.

Is there a
significant risk

of disease?

The patient
is healthy.

Test for the sub-
type of the disease.

The patient
has Disease-A.

The patient
has Disease-B.

No Yes

(a) A Decision Tree
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(b) An Equivalent IOHMM

Figure 5: Two Different Descriptions of the Same Policy: (a) in the form of a decision tree and (b) in
terms of an equivalent IOHMM. For the IOHMM in (b), arrows denote possible transitions, where
the probability of a transition is proportional to the quantity written above the corresponding arrow.
Using direct policy learning, we can infer the risk of disease, b2(DIS), and the probability of testing
for the sub-type based on the risk, ⇡(TST-TYP|b2), which are left vague in (a).

As a concrete example of modeling decision trees in terms of IOHMMs, consider the scenario of
diagnosing a disease with two sub-types: Disease-A and Disease-B. Figure 5a depicts the policy of
the doctors in the form of a decision tree. Each newly-arriving patient is first tested for the disease in
a general sense without any distinction between the two sub-types it has. The patient is then tested
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for a specific sub-type of the disease only if the doctors deem there is a significant risk that the patient
is diseased. Note that which exact level of confidence constitutes as a significant risk is left vague in
the decision tree. By modeling this scenario using our framework, we can learn: (i) how the risk is
determined based on initial test results and (ii) what amount of risk is considered significant enough
to require a subsequent test for the sub-type.

Let S = {INI, HLT, DIS, DSA, DSB}, where INI denotes that the patient has newly arrived, HLT
denotes that the patient is healthy, DIS denotes that the patient is diseased, DSA denotes that the
patient has Disease-A, and DSB denotes that the patient has Disease-B. Figure 5b depicts the state
space S with all possible transitions. Note that the initial belief b1 is such that b1(INI) = 1. Let
A = {TST-DIS, TST-TYP, STP-HLT, STP-DSA, STP-DSB}, where TST-DIS denotes testing for the
disease, TST-TYP denotes testing for the sub-type of the disease, and the remaining actions denote
stopping and diagnosing the patient with one of the terminal states, namely states HLT, DSA, and
DSB.

After taking action a1 = TST-DIS and observing some initial test result z1 2 Z, the risk of disease,
which is the probability that the patient is diseased, can be calculated with a simple belief update:

b2(DIS) /
X

s2S

b1(s)T (DIS|s, TST-DIS)O(z1|TST-DIS, DIS)

= T (DIS|INI, TST-DIS)O(z1|TST-DIS, DIS) .

Moreover, we can say that the doctors are more likely to test for the sub-type of the disease as opposed
to stopping and diagnosing the patient as healthy, that is ⇡b(TST-TYP|b2) > ⇡b(STP-HLT|b2), when

b2(DIS) >
µTST-TYP(DIS) + µSTP-HLT(DIS)

2

assuming µTST-TYP(DIS) > µSTP-HLT(DIS). Note that there are only two possible actions at the second
time step: actions TST-TYP and STP-HLT.

D DETAILS OF THE CLINICIAN SURVEYS

Each participant was provided a short presentation explaining (1) the ADNI dataset and the decision-
making problem we consider, (2) what rewards and reward functions are, (3) what beliefs and belief
simplices are, and (4) how policies can be represented in terms of reward functions as well as
decision boundaries. Then, they were asked two multiple-choice questions, one that is strictly about
representing histories, and one that is strictly about representing policies. Importantly, the survey
was conducted blindly—i.e. they were given no context whatsoever as pertains this paper and our
proposed method. The question slides can be found in Figures 6 and 7. Essentially, each question
first states a hypothesis and shows two/three representations relevant to the hypothesis stated. Then,
the participant is asked which of the representations shown most readily expresses the hypothesis.
Here are the full response that we have received, which includes some additional feedback:

• Clinician 1
Question 1: C > B > A
Question 2: B
Additional Feedback: The triangle was initially more confusing than not, but the first example
(100% uncertainty) was helpful. It isn’t clear how the dots in the triangle are computed. Are these
probabilities based on statistics? Diagram is always better than no diagram.

• Clinician 2
Question 1: C > B > A
Question 2: B
Additional Feedback: I always prefer pictures to tables, they are much easier to understand.

• Clinician 3
Question 1: C > B > A
Question 2: B
Additional Feedback: Of course the triangle is more concise and easier to look at. But how is the
decision boundary obtained? Does the decision boundary always have to be parallel to one of the
sides of the triangle?
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• Clinician 4
Question 1: C > B > A
Question 2: B
Additional Feedback: [Regarding Question 1,] representation A and B do not show any interpreta-
tion of the diagnostic test results, whereas representation C does. I think doctors are most familiar
with representation B, as it more closely resembles the EHR. Although representation C is visually
pleasing, I’m not sure how the scale of the sides of the triangle should be interpreted. [Regarding
Question 2,] again I like the triangle, but it’s hard to interpret what the scale of the sides of the
triangle mean. I think option A is again what doctors are more familiar with.

• Clinician 5
Question 1: C > B > A
Question 2: A

• Clinician 6
Question 1: C > B > A
Question 2: A

• Clinician 7
Question 1: C
Question 2: B
Additional Feedback: I thought I’d share with you my thoughts on the medical aspects in your
scenario first (although I realise you didn’t ask me for them). [...] The Cochrane review concludes
that MRI provides low sensitivity and specificity and does not qualify it as an add on test for
the early diagnosis due to dementia (Lombardi G et. al. Cochrane database 2020). The reason
for MRI imaging is (according to the international guidelines) to exclude non-degenerative or
surgical causes of cognitive impairment. [...] In your example the condition became apparent when
the CDR-SB score at Month 24 hit 3.0 (supported by the sequence of measurements over time
showing worsening CDR-SB score). I imagine the MRI was triggered by slight worsening in the
CDR-SB score (to exclude an alternative diagnosis). To answer your specific questions: Q1. The
representation C describes your (false) hypothesis that it was the MRI that made the diagnosis
of MCI more likely/apparent the best—I really like the triangles. Q2. I really like the decision
boundary.

• Clinician 8
Question 1: C > B > A
Question 2: B

• Clinician 9
Question 1: C
Question 2: B
Additional Feedback: Q1. Representation C gives the clearest illustration of the diagnostic change
following MRI. However, the representation of beliefs on a continuous spectrum around discrete
cognitive states could be potentially confusing given that cognitive function is itself a continuum
(and ‘MCI’, ‘Dementia’ and ‘NL’ are stations on a spectrum rather than discrete states). Also, while
representation C is the clearest illustration, it is the representation that conveys the least actual data
and it isn’t clear from the visualisation exactly what each shift in 2D space represents. Also, the
triangulation in ‘C’ draws a direct connection between NL and Dementia, implying that this is a
potential alternative route for disease progression, although this is more intuitively considered as a
linear progression from NL to MCI to Dementia. Q2. For me, the decision boundary representation
best expresses the concept of the likelihood of ordering and MRI with the same caveats described
above. Option B does best convey the likelihood of ordering an MRI, but doesn’t convey the
information value provided by that investigation. However, my understanding is that this is not
what you are aiming to convey here.
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● Hypothesis: This patient’s condition (MCI) only became apparent after the first MRI 
was ordered.

● Question #1: Which of the following representations of the patient’s medical history 
most readily expresses this hypothesis? (Please rank them from most to least 
accessible.)

Most recent CDR-SB:
3.0 (very mild dementia)

Most recent hippocampal volume:
5980 mm³ (below avg.)

Most recent ADAS11:
13.00

Most recent ADAS13:
21.00

Most recent whole brain volume:
1040240 mm³

An MRI is 
not ordered.

An MRI is 
not ordered.

An MRI is ordered.
Hippocampal volume: 
6004 mm³ 

An MRI is ordered.
Hippocampal volume: 5630 mm³ 

An MRI is ordered.
Hippocampal volume: 5980 mm³ 

Representation C:
Sequence of Beliefs

Representation B:
Sequence of Measurements

Representation A:
Most Recent Measurement

Biomarker Baseline Month 6 Month 12 Month 18 Month 24
CDR-SB 1.0 1.5 2.0 1.5 3.0
CDR-SB 
Category

Question
-able im

-pairment

Question
-able im

-pairment

Question
-able im

-pairment

Question
-able im

-pairment

Question
-able im

-pairment
MRI Not 

ordered
Not 

ordered
Ordered Ordered Ordered

Hippocampal 
Volume

6004 mm³ 
(below 
avg.)

5630 mm³ 
(below 
avg.)

5980 mm³ 
(below 
avg.)

ADAS11 12.00 11.00 10.67 11.00 13.00
ADAS13 21.00 18.00 19.67 15.00 21.00

Whole Brain 
Volume

1060310 
mm³

1019500 
mm³

1040240 
mm³

Figure 6: Slide 5 out of 9, which contains the first question regarding histories.

● Hypothesis: The more “normal” a patient appears, the less likely an MRI is
ordered.

● Question #2: Which of the following representations of the doctor’s decision-making 
most readily expresses this hypothesis?

Option B:
Decision Boundary

Option A:
Rewards

State Reward of 
ordering an MRI

Reward of not 
ordering an MRI

NL -0.149 -0.128

MCI 0.475 -0.115

Dementia 0.037 -0.096

An MRI is more 
likely to be ordered.

An MRI is less 
likely to be ordered.

Figure 7: Slide 9 out of 9, which contains the second question regarding policies.
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