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A Results and Visualizations1

Website with Video Results: Video results are provided in the supplementary zip file. To make it2

easier to review the result videos, we have also hosted them at the following anonymized website:3

https://sites.google.com/view/neurips2021raps.4
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RAPS Raw Actions

Figure 1: Final performance results for single task RL on the Metaworld domain after 3 days of
training using the Dreamer base algorithm. RAPS is able to successfully learn most tasks, solving 43
out of 50 tasks while Raw Actions is only able to solve 21 tasks. See full results plots in Figure 7.

Cross Robot Transfer We train a higher level policy over RAPS from visual input to solve the5

door opening task in Robosuite using the xARM 7. We then directly transfer this policy (zero-shot) to6

an xARM 6 robot. The transferred policy is able to achieve 100% success rate on the door opening7

task with the 6DOF robot while trained on a 7DOF robot. This is possible due to the robot agnostic8

property of RAPS.9

Comparison against Dynamic Motion Primitive Methods As noted in the related works section,10

Dynamic Motion Primitives (DMP) are an alternative skill formulation that is common robotics11

literature. We compared RAPS with the latest state-of-the-art work that incorporates DMPs with12

deep RL: Neural Dynamic Policies [1]. As seen in Figure 5, across nearly every task in the Kitchen13

suite, RAPS outperforms NDP just as it outperforms all prior skill learning methods as well.14

B Environments15

We provide detailed descriptions of each environment suite and the specific tasks each suite contains.16

All environments use the MuJoCo simulator [7].17
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Figure 2: Visual depiction of the Kitchen environment; all tasks are contained within the same
setup. Each image depicts the solution of one of the tasks, we omit the bottom burner task as it
is the goal is the same as the top burner task, just with a different dial to turn. For the top row
from the left: top-left-burner, microwave, light-switch. For the bottom row from the left:
hinge-cabinet, kettle, slide cabinet.

B.1 Kitchen18

The Kitchen suite, introduced in [2], involves a set of different tasks in a kitchen setup with a single19

Franka Panda arm as visualized in Figure 2. This domain contains 7 subtasks: slide-cabinet20

(shift right-side cabinet to the right), microwave (open the microwave door), kettle (place the21

kettle on the back burner), hinge-cabinet (open the hinge cabinet), top-left-burner (rotate the22

top stove dial), bottom-left-burner (rotate the bottom stove dial), and light-switch (flick the23

light switch to the left). The tasks are all defined in terms of a sparse reward, in which +1 reward is24

received when the norm of the joint position (qpos in MuJoCo) of the object is within .3 of the desired25

goal location and 0 otherwise. See the appendix of the RPL [2] paper for the exact definition of the26

sparse and the dense reward functions in the kitchen environment. Since the rewards are defined27

simply in terms of distance of object to goal, the agent does not have to execute interpretable behavior28

in order to solve the task. For example, to solve the burner task, it is possible to push it to the right29

setting without grasping and turning it.30

For the sequential multi-task version of the environment, in a single episode, the goal is to com-31

plete four different subtasks. The agent receives reward once per sub-task completed with a32

maximum episode return (sum of rewards) of 4. In our case, we split the 7 tasks in the en-33

vironment into two multi-task environments which are roughly split on difficulty. We define34

the two multi-task environments in the kitchen setup: Kitchen Multitask 1 which contains35

microwave, kettle, light-switch and top-left-burner while Kitchen Multitask 2 con-36

tains the hinge-cabinet, slide-cabinet, bottom-left-burner and light-switch. As men-37

tioned in the experiments section, RL trained on joint velocity control is unable to solve almost any38

of the single task environments using image input from sparse rewards. Instead, we modify the39

environment to use 6DOF delta position control by adding a mocap constraint as implemented in40

Metaworld [8].41

B.2 Metaworld42

Metaworld [8] consists of 50 different manipulation environments in which a simulated Sawyer43

Rethink robot is charged with solving tasks such as faucet opening/closing, pick and place, assem-44
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Figure 3: Visual depiction of the Metaworld environment suite. For the top row from the left:
assembly-v2, drawer-close-v2, peg-unplug-side-v2. For the bottom row from the left:
sweep-into-v2, soccer-v2, disassemble-v2.

bly/disassembly and many others. Due to computational considerations, we selected 6 tasks which45

range from easy to difficult: drawer-close-v2 (push the drawer closed), hand-insert-v2 (place46

the hand inside the hole), soccer-v2 (hit the soccer ball to a specific location in the goal box),47

sweep-into-v2 (push the block into the hole), assembly-v2 (grasp the nut and place over the thin48

block), and disassembly-v2 (grasp the nut and remove from the thin block).49

In Metaworld, the raw actions are delta positions, while the end-effector orientation remains fixed.50

For fairness, we disabled the use of any rotation primitives for this suite. Metaworld has a hand51

designed dense reward per task which enables efficient learning, but is unrealistic for the real world52

in which it can be challenging to design dense rewards without access to the true state of the world.53

Instead, for more realistic evaluation, we run all methods with a sparse reward which uses the success54

metric emitted by the environment itself.55

We run the environments in single task mode, meaning the target positions remain the same across56

experiments, in order to evaluate the basic effectiveness of RL across action spaces. This functionality57

is provided in the latest release of Metaworld. Additionally, we use the V2 versions of the tasks58

after correspondence with the current maintainers of the benchmark. The V2 environments have a59

more realistic visual appearance, improved reward functions and are now the primarily supported60

environments in Metaworld. See Figure 3 for a visualization of the Metaworld tasks.61

B.3 Robosuite62

Robosuite is a benchmark of robotic manipulation tasks which emphasizes realistic simulation and63

control while containing several tasks existing RL algorithms struggle to solve, even when provided64

state based information and dense rewards. This suite contains a torque based end-effector position65

control implementation, Operational Space Control [4]. We select the lift and door tasks for66

evaluation, which we visualize in Figure 4. The lifting task involves accurately grasping a small red67

block and lifting it to a set height. The door task involves grasping the door handle, pushing it down68

to unlock it and pulling it open to a set position. These tasks contain initial state randomization; at69

each reset the position of the block or door is randomized within a small range. This property makes70

the Robosuite tasks more challenging than Kitchen and Metaworld, both of which are deterministic71

environments. For this environment, sparse rewards were already defined so we directly use them in72
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Figure 4: Visual depiction of the Robosuite environments. On the left we have the door opening task,
and on the right we have the block lifting task.

our experiments. We made several changes to these environments to improve learning performance of73

the baselines as well as RAPS. Specifically, we included a workspace limit in a large area around the74

object, which improves exploration in the case of sparse rewards. For the lifting task, we increased75

the frequency of the default OSC controller to 40Hz from 20Hz, while for the door opening task we76

changed the max action magnitude to .1 from .05.77

C Primitive Implementation Details78

In this section, we provide specific implementation details regarding the primitives we use in our79

experiments. In particular, we use an end-effector pose controller as Ck for all k. We compute the80

target state s∗ using the components of the robot state which correspond to the input arguments of the81

primitive, sargs. We compute s∗ using the formula s∗ = sargs + args. The error metric is computed82

in a similar manner ek = s∗ − sargs across primitives. Returning to the lifting primitive example in83

the main text, sargs would be the z position of the end-effector, s∗ would be the target z position after84

lifting, and ek would be the difference between the target z position and the current z position of the85

end-effector. In Table 4 we provide additional details regarding each primitive including the search86

spaces, number of low-level actions and which environment it was used in. One primitive of note is87

go to pose (delta) which performs delta position control. Using this primitive alongside the grasp88

and release primitives corresponds closely to the raw action space for Metaworld and Robosuite,89

environment suites in which we do not use orientation control.90

We tuned the low-level actions per environment suite, but one could alternatively design a tolerance91

threshold and loop until it is achieved to avoid any tuning. We chose a fixed horizon which runs92

significantly faster and any inaccuracies in the primitives are accounted for by the learned policy.93

Finally, we do not use every primitive in every domain, yet across all tasks within a domain we use94

the same library. In Metaworld, the raw action space does not allow for orientation control so we do95

not either. Enabling orientation control with primitives can, in certain cases, make the task easier, but96

we do not include the x-axis and y-axis rotation primitives for fair comparison. In Robosuite, the97

default action space has orientation control. We found orientation control was unnecessary in order98

to solve the lifting and door opening tasks when we disabled orientation control for raw actions and99

for primitives. As a result, in this work we report results without orientation control in Robosuite.100

D RL Implementation Details101

Whenever possible, we use the original implementations of any method we compare against. We102

use standard implementations for each base RL algorithm except Dreamer, which we implement in103

PyTorch. We use the actor and model hyper-parameters from Dreamer-V2 [3] as we found it slightly104

improved the performance of Dreamer. For primitives, we made several hyper-parameter changes to105

better tailor Dreamer to hybrid discrete-continuous control. Specifically, instead of backpropagating106

the return through the dynamics, we use REINFORCE to train the actor in imagination. We addition-107

ally reduce the imagination trajectory length from 15 to 5 for the single task primitive experiments108

since the trajectory length is limited to 5 in any case. With the short trajectory lengths in RAPS,109
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Hyper Parameter Value
Actor output distribution Truncated Normal

Discount factor 0.99
λGAE 0.95

actor and value function learning rates 8e-5
world model learning rate 3e-4

Imagination horizon 15
Entropy coefficient 1e-4

Predict discount No
Target value function update period 100

reward loss scale 2
Model hidden size 400

Stochastic state size 50
Deterministic state size 200

Embedding size 1024
RSSM hidden size 200

Use GRU layer norm Yes
Actor hidden layers 4
Value hidden layers 3

batch size 50
batch length 50

Table 1: Dreamer hyper-parameters

imagination often goes beyond the end of the episode, so we use a discount predictor to downweight110

imagined states beyond the end of the episode. Finally since we cannot sample batch lengths of 50111

from trajectories of length 5 or 15, we instead sample the full primitive trajectory and change the112

batch size to be 2500
H , the primitive horizon. This results in an effective batch size of 2500, which is113

equal to the Dreamer batch size of 50 with a batch length of 50.114

In the case of SAC, we use the implementation of SAC [6] but without data augmentation, which115

amounts to using their specific pixel encoder which we found to perform well. Finally for PPO, we116

use the following implementation: Kostrikov [5]. See Tables 1, 2, 3 for the hyper-parameters used for117

each algorithm respectively. We use the same algorithm hyper-parameters across all the baselines.118

For primitives, we modify the discount factor in all experiments to 1− 1
H , in which H is the primitive119

horizon. This encourages the agent to highly value near term rewards with short horizons. For single120

task experiments, we use a horizon of 5, taking 5 primitive actions in one episode, with a discount of121

0.8. For the hierarchical control experiments we use a horizon of 15 and a corresponding discount of122

.93. In practice, this method of computing the discount factor improves the performance and stability123

of RAPS.124

For each baseline we use the original implementation when possible as an underlying action space125

for each RL algorithm. For VICES, we take the impedance controller from the iros_19_vices branch126

and modify the environment action space to output the parameters for the controller. For PARROT,127

we use an unreleased version of the code provided by the original authors. For SPIRL, we use an128

improved version of the method which was released to the SPIRL code base recently. This version,129

SPIRL-CL, uses a closed loop decoder to map latents back to action trajectories which they find130

significantly improves performance on the Kitchen environment from state input. We use the authors’131

code for vision-based SPIRL-CL and still find that RAPS performs better.132
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Hyper Parameter Value
Discount factor 0.99

actor, critic, encoder learning rates 2e-4
alpha learning rate 1e-4

Target network update frequency 2
Polyak averaging constant .01

Frame stack 4
Image size 64

Random policy warm up steps 2500
batch size 512

Table 2: SAC hyper-parameters

Hyper Parameter Value
Entropy coefficient .01

Value loss coefficient 0.5
Actor-value network learning rate 3e-4
Number of mini-batches per epoch 10

PPO clip parameter 0.2
Max gradient norm 0.5

λGAE 0.95
Discount factor 0.99

Number of parallel environments 12
Frame stack 4
Image size 84

Table 3: PPO hyper-parameters

Primitive Skill Parameters Action Space # low-level actions Environments
grasp d [0,1] 150-200 Kitchen, Metaworld, Robosuite

release d [-1,0] 200-300 Kitchen, Metaworld, Robosuite
lift z [0, 1] 40-300 Kitchen, Metaworld, Robosuite

drop z [-1, 0] 40-300 Kitchen, Metaworld, Robosuite
push y [0, 1] 40-300 Kitchen, Metaworld, Robosuite
pull y [-1, 0] 40-300 Kitchen, Metaworld, Robosuite

shift right x [0, 1] 40-300 Kitchen, Metaworld, Robosuite
shift left x [-1, 0] 40-300 Kitchen, Metaworld, Robosuite

go to pose (delta) x,y,z [-1, 0]3 40-300 Kitchen, Metaworld, Robosuite
x-axis twist θ [−π, π] 300 Kitchen
y-axis twist θ [−π, π] 300 Kitchen

angled forward grasp θ, x, y, d [−π, π], [-1, 0]3 1100 Kitchen
top z grasp z,d [-1, 0]2 140-250 Robosuite
top grasp x,y,z,d [-1, 0]4 1500 Metaworld

Table 4: Description of skill parameters, search spaces, low-level actions and environment usage.

7



0 1 2 3 4 5 6
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 1 2 3 4 5 6
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Kettle

0K 20K 40K 60K 80K 100K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0K 20K 40K 60K 80K 100K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Kettle

0 1 2 3 4 5 6
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Slide Cabinet

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0K 20K 40K 60K 80K 100K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Slide Cabinet

0K 50K 100K 150K 200K 250K 300K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wall Clock Time (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Light Switch

0K 50K 100K 150K 200K 250K 300K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Hinge Cabinet

0K 50K 100K 150K 200K 250K 300K
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate
Kitchen Light Switch

RAPS (Ours) NDP (Deep DMP)

Figure 5: Comparison of RAPS against NDP, a deep DMP method for RL. RAPS dramatically outperforms
NDP on nearly every task from visual input, both in terms of wall-clock time and number of training steps. This
result demonstrates the increased capability of RAPS over DMP-based methods.
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Figure 6: Full version of Figure 3 with excluded environments (slide-cabinet and soccer-v2) and plots
against number of updates (right two columns). RAPS outperforms all baselines against number of updates as
well.
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Figure 7: Full version of Figure 4 with plots against number of updates (right column) and excluded environ-
ments (light-switch). While SPIRL is competitive with RAPS on the easier tasks, it fails to make progress
on the more challenging tasks.
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Figure 7: Comparison of RAPS against raw actions across all 50 Metaworld tasks from sparse
rewards. RAPS is able to outright solve or make progress on up to 43 tasks while Raw Actions
struggles to make progress on most environments.

14



References133

[1] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end134

sensorimotor learning, 2020. 2135

[2] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving136

long-horizon tasks via imitation and reinforcement learning, 2019. 3137

[3] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. arXiv138

preprint arXiv:2010.02193, 2020. 5139

[4] O. Khatib. A unified approach for motion and force control of robot manipulators: The operational140

space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987. 4141

[5] I. Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.142

com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 6143

[6] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning with144

augmented data, 2020. 6145

[7] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In The146

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. 2147

[8] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A148

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on149

Robot Learning, pages 1094–1100. PMLR, 2020. 3150

15

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

