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ABSTRACT

Policy evaluation is an important instrument for the comparison of different algo-
rithms in Reinforcement Learning (RL). Yet even a precise knowledge of the value
function V π corresponding to a policy π does not provide reliable information
on how far is the policy π from the optimal one. We present a novel model-free
upper value iteration procedure (UVIP) that allows us to estimate the suboptimality
gap V ⋆(x)− V π(x) from above and to construct confidence intervals for V ⋆. Our
approach relies on upper bounds to the solution of the Bellman optimality equa-
tion via martingale approach. We provide theoretical guarantees for UVIP under
general assumptions and illustrate its performance on a number of benchmark RL
problems.

1 INTRODUCTION

The key objective of Reinforcement Learning (RL) is to learn an optimal agent’s behaviour in an
unknown environment. A natural performance metric is given by the value function V π which is
expected total reward of the agent following π. There are efficient algorithms to evaluate this quantity,
e.g. temporal difference methods Sutton (1988), Tsitsiklis & Van Roy (1997). Unfortunately, even a
precise knowledge of V π does not provide reliable information on how far is the policy π from the
optimal one. To address this issue a popular quality measure is the regret of the algorithm that is the
difference between the total sum of rewards accumulated when following the optimal policy and the
sum of rewards obtained when following the current policy π (see e.g. Jaksch et al. (2010)). In the
setting of finite state- and action space Markov Decision Processes (MDP) there is a variety of regret
bounds for popular RL algorithms like Q-learning Jin et al. (2018), optimistic value iteration Azar
et al. (2017), and many others.

Unfortunately, regret bounds beyond the discrete setup are much less common in the literature. Even
more crucial drawback of the regret-based comparison is that regret bounds are typically pessimistic
and rely on the unknown quantities of the underlying MDP’s. A simpler, but related, quantity is
the suboptimality gap (policy error) ∆π(x)

.
= V ⋆(x) − V π(x). Since we do not know V ⋆, the

suboptimality gap can not be calculated directly. There is a vast amount of literature devoted to
theoretical guarantees for ∆π(x), see e.g. Antos et al. (2007), Szepesvári (2010), Pires & Szepesvári
(2016) and references therein. However, these bounds share the same drawbacks as the regret
bounds. Moreover, known bounds does not apply to the general policy π and depends heavily on
the particular algorithm which produced it. For instance, in Approximate Policy Iteration (API,
Bertsekas & Tsitsiklis (1996)) all existing bounds for ∆π(x) depend on the one-step error induced
by the approximation of the action-value function. This one-step error is difficult to quantify since
it depends on the unknown smoothness properties of the action-value function. Similarly, in policy
gradient methods (see e.g. Sutton & Barto (2018)), there is always an approximation error due to
the choice of family of policies that can be hardly quantified. The approach based on the policy
optimism principle (see Efroni et al. (2019)) suggests to initialise the value iteration algorithm using
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an upper bound (optimistic value) for V ⋆, yielding a sequence of upper bounds converging to V ⋆.
However this approach is tailored to finite state- and action space MDPs and is not applicable to
evaluate the quality of the general policy π. To summarise, such bounds can not be used to construct
tight model-free confidence bounds for V ⋆.

In this paper we are interested in deriving agnostic (model independent) bounds for the policy error
using the concept of upper solutions to the Bellman optimality equation. Our approach is substantially
different from the ones known in literature as it can be used to evaluate performance bounds for
arbitrary given policy π. The concept of upper solutions is closely related to martingale duality
in optimal control and information relaxation approach, see Belomestny & Schoenmakers (2018),
Rogers (2007) and references therein. This idea has been successfully used in the recent paper Shar
& Jiang (2020). This work proposes to use the duality approach to improve the performance of
Q-learning algorithm in finite horizon MDP through the use of “lookahead” upper and lower bounds.
Compared to Shar & Jiang (2020), our approach is not restricted to the Q-learning. The concept of
upper solutions has also a connection to distributional RL, as it can be formulated pathwise or using
distributional Bellman operator, see e.g. Lyle et al. (2019). A further study of this connection is a
promising future research area.

Contributions and Organization The contributions of this paper are three-fold:
• We propose a novel approach to construct model free confidence bounds for the optimal value

function V ⋆ based on a notion of upper solutions.
• Given a policy π, we propose an upper value iterative procedure (UVIP) for constructing an

(almost sure) upper bound for V π such that it coincides with V ⋆ if π = π⋆.
• We study convergence properties of the approximate UVIP in the case of general state and action

spaces. In particular, we show that the variance of the resulting upper bound is small if π is close
to π∗ leading to the tight confidence bounds for V ⋆.

The paper is organized as follows. First, in section 2, we briefly recall main concepts related with the
MDPs, and introduce some notations. Then in sections 3 and 4 we introduce the framework of UVIP
and discuss its basic properties. In section 5 we perform theoretical study of the approximate UVIP.
Numerical results are collected in section 6. Section 7 concludes the paper. Section A in appendix is
devoted to the proof of main theoretical results.

Notations and definitions For N ∈ N we define [N ]
.
= {1, . . . , N}. Let us denote the space

of bounded measurable functions with domain X by B(X) equipped with the norm ∥f∥X =
supx∈X |f(x)| for any f ∈ B(X). In what follows, whenever a norm is uniquely identifiable from its
argument, we will drop the index of the norm denoting the underlying space. We denote by Pa an
B(X) → B(X) operator defined by (PaV )(x) =

∫
V (x′)Pa(dx′|x). For an arbitrary metric space

(X , ρX ) and function f : X → R we define by LipρX (f)
.
= supx ̸=y |f(x)− f(y)|/ρX (x, y).

2 PRELIMINARY

A Markov Decision Process (MDP) is a tuple (X,A,P, r), where X is the state space, A is the action
space, P = (Pa)a∈A is the transition probability kernel and r = (ra)a∈A is the reward function. For
each state x ∈ X and action a ∈ A, Pa(·|x) stands for a distribution over the states in X, that is, the
distribution over the next states given that action a is taken in the state x. For each action a ∈ A and
state x ∈ X, ra(x) gives a reward received when action a is taken in state x. An MDP describes the
interaction of an agent and its environment. When an action At ∈ A at time t is chosen by the agent,
the state Xt transitioned to Xt+1 ∼ PAt(·|Xt). The agent’s goal is to maximize the expected total
discounted reward, E[

∑∞
t=0 γ

trAt(Xt)], where 0 < γ < 1 is the discount factor. A rule describing
the way an agent acts given its past actions and observations is called a policy. The value function of
a policy π in a state x ∈ X, denoted by V π(x), is V π(x) = E[

∑∞
t=0 γ

trAt(Xt)|X0 = x], that is, the
expected total discounted reward when the initial state (X0 = x) assuming the agent follows the policy
π. Similarly, we define the action-value function Qπ(x, a) = E[

∑∞
t=0 γ

trAt(Xt)|X0 = x,A0 = a].
An optimal policy is one that achieves the maximum possible value amongst all policies in each state
x ∈ X. The optimal value for state x is denoted by V ⋆(x). A deterministic Markov policy can be
identified with a map π : X → A, and the space of measurable deterministic Markov policies will
be denoted by Π. When, in addition, the reward function is bounded, which we assume from now
on, all the value functions are bounded and one can always find a deterministic Markov policy that
is optimal Puterman (2014). We also define a greedy policy w.r.t. action-value function Q(x, a),
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which is a deterministic policy π(x) ∈ argmaxa∈AQ(x, a). The Bellman return operator w.r.t. P,
TP : B(X) → B(X×A), is defined by (TPV )(x, a) = ra(x)+γPaV (x) and the maximum selection
operator M : B(X× A) → B(X) is defined by (MV ·)(x) = maxa V

a(x). Then MTP corresponds
to the Bellman optimality operator, see Puterman (2014). The optimal value function V ⋆ satisfies a
non-linear fixed-point equation

V ⋆(x) = MTPV
⋆(x). (1)

which is known as the Bellman optimality equation. We write Y x,a, x ∈ X, a ∈ A for a random
variable generated according to Pa(·|x), and define a random Bellman operator (T̃PV )(x) 7→
ra(x) + γV (Y x,a). We say that a (deterministic) policy π is greedy w.r.t. a function V ∈ B(X) if,
for all x ∈ X

π(x) ∈ argmaxa∈A {ra(x) + γPaV (x)} .

3 UPPER SOLUTIONS AND THE MAIN CONCEPT OF UVIP

A straightforward approach to bound the policy error ∆π(x) requires the estimation of the optimal
value function V ⋆(x). Recall that V ⋆ is a solution of the Bellman optimality equation (1). If
the transition kernel (Pa)a∈A is known, the standard solution is the value iteration algorithm, see
Bertsekas & Shreve (1978). In this algorithm, the estimates are recursively constructed via Vk+1 =
MTPVk. Due to the Banach’s fixed point theorem, ∥Vk − V ⋆∥X ≤ γk∥V0 − V ⋆∥X, provided that
V0 ∈ B(X). Moreover, Vk(x) ≥ V ⋆(x) for any x ∈ X and k ∈ N, provided that V0(x) ≥ V ⋆(x).
For example, if ∥ra∥X ≤ Rmax for all a ∈ A, we can take V0(x) = Rmax/(1− γ).

Unfortunately, (1) does not allow to represent V ⋆ as an expectation and to reduce the problem
of estimating V ⋆ to a stochastic approximation problem. Moreover, if (Pa)a∈A is replaced by its
empirical estimate P̂a the desired upper biasness property Vk(x) ≥ V ⋆(x) is lost. Some recent works
(e.g. Efroni et al. (2019)) suggested a modification of the optimism-based approach applicable in
case of unknown (Pa)a∈A. Yet this modification contains an additional optimization step, which is
unfeasible beyond the tabular state- and action space problems. Therefore the problem of constructing
upper bounds for the optimal value function V ⋆ and policy error remains open and highly relevant.
Below we describe our approach, which is based on the following key assumptions:

• we consider infinite-horizon MDPs with discount factor γ < 1;
• we can sample from the conditional distribution Pa(·|x) for any x ∈ X and a ∈ A.

The key concept of our algorithm is an upper solution, introduced below.
Definition 3.1. We call a function V up an upper solution to the Bellman optimality equation (1) if

V up(x) ≥ MTPV
up(x) ,∀x ∈ X .

Upper solutions can be used to build tight upper bounds for the optimal value function V ⋆. Let
Φ ∈ B(X) be a martingale function w.r.t. the operator Pa, that is, PaΦ(x) = 0 for all a ∈ A, x ∈ X.
Define V up as a solution to the following fixed point equation:

V up(x) = E[max
a

{ra(x) + γ(V up(Y x,a)− Φ(Y x,a))}], Y x,a ∼ Pa(·|x). (2)

In terms of the random Bellman operator T̃P, we can rewrite (2) as V up = E[MT̃P(V
up − Φ)]. It is

easy to see that (2) defines an upper solution. Indeed, for any x ∈ X,

V up(x) ≥ max
a

E[ra(x) + γ(V up(Y x,a)− Φ(Y x,a))]

= max
a

{ra(x) + γPaV up(x)} = MTPV
up(x) .

Note that unlike the optimal state value function V ⋆, the upper solution V up is represented as an
expectation, which allows us to use various stochastic approximation methods to compute V up. The
Banach’s fixed-point theorem implies that for iterates

V up
k+1 = E[MT̃P(V

up
k − Φ)], k ∈ N,

we have convergence V up
k → V up as k → ∞. Moreover, V up does not depend on V up

0 and
V up
k (x) ≥ V ⋆(x) for any k ∈ N, x ∈ X, provided that V up

0 (x) ≥ V ⋆(x). Given a policy π and the
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corresponding value function V π, we set Φx,aπ (y)
.
= V π(y)− (PaV π)(x). It is easy to check that

PaΦx,aπ (x) = 0. This leads to the upper value iterative procedure (UVIP):

V up
k+1(x) = E[MT̃P(V

up
k − Φx,·π )(x)] = E

[
max
a

{ra(x) + γ(V up
k (Y x,a)− Φx,aπ (Y x,a))}

]
(3)

with V up
0 ∈ B(X). Algorithm 1 contains the pseudocode of the UVIP for MDPs with finite state and

action spaces. Several generalizations are discussed in the next section. Further note that by taking

Algorithm 1: UVIP
Input: V π ,V up

0 , γ, ε
Result: V up

for x ∈ X, a ∈ A do
for y ∈ X do

Φx,aπ (y) = V π(y)− (PaV π)(x);
end

end
k = 1; while ∥V up

k − V up
k−1∥X > ε do

for x ∈ X do
V up
k+1(x) = E[maxa{ra(x) + γ(V up

k (Y x,a)− Φx,aπ (Y x,a))}], Y x,a ∼ Pa(·|x);
end
k = k + 1;

end
V up = V up

k .

Φx,a(y)
.
= V ⋆(y)− (PaV ⋆)(x), we get with probability 1 :

V ⋆(x) = (MT̃P(V
⋆ − Φx,·))(x) = max

a
{ra(x) + γ(V ⋆(Y x,a)− Φx,a(Y x,a))}, (4)

that is, (4) can be viewed as an almost sure version of the Bellman equation V ⋆ = MTPV
⋆.

The upper solutions can be used to evaluate the quality of the policies and to construct confidence
intervals for V ⋆. It is clear that

V π(x) ≤ V ⋆(x) ≤ V up
k (x)

for any k ∈ N and x ∈ X, thus a policy π can be evaluated by computing the difference ∆up
π,k(x)

.
=

V up
k (x)− V π(x) ≥ ∆π(x). Representations (3) and (4) imply∥∥V up

k+1 − V ⋆
∥∥
X
≤ γ ∥V up

k − V ⋆∥X + 2γ ∥V π − V ⋆∥X , k ∈ N .

Hence, we derive that ∆up
π

.
= limk→∞ ∆up

π,k satisfies

∥∆π∥X ≤ ∥∆up
π ∥X ≤

(
1 + 2γ(1− γ)−1

)
∥V ⋆ − V π∥X. (5)

As a result ∆up
π = 0 if π = π⋆ and the corresponding confidence intervals collapses into one point.

Moreover, for a policy π which is greedy w.r.t. an action-value function Qπ(x, a), it holds that
V π(x) ≥ V ⋆(x) − 2(1 − γ)−1∥Qπ − Q⋆∥X×A (see Szepesvári (2010)). Thus we can rewrite the
bound (5) in terms of action-value functions

∥∆up
π ∥X ≤ 2

(
1 + 2γ(1− γ)−1

)
(1− γ)−1∥Qπ −Q⋆∥X×A.

The quantity ∆up
π,k can be used to measure the quality of policies π obtained by many well-known

algorithms like Reinforce (Williams (1992)), API (Bertsekas & Tsitsiklis (1996)), A2C (Mnih et al.
(2016)) and DQN (Mnih et al. (2013), Mnih et al. (2015)).

4 APPROXIMATE UVIP

In order to implement the approach described in the previous section, we need to construct empirical
estimates for the outer expectation and the one-step transition operator Pa in (3). While in tabular
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case this boils down to a straightforward Monte Carlo, in case of infinitely many states we need an
additional approximation step. Algorithm 2 contains the pseudocode of Approximate UVIP algorithm.
Our main assumption is that sampling from Pa(·|x) is available for any a ∈ A and x ∈ X. For
simplicity we assume that the value function V π is known, but it can be replaced by its (lower biased)
estimate both in Algorithm 2 and subsequent theoretical results. The proposed algorithm proceeds as
follows. At the (k + 1)th iteration, given a previously constructed approximation V̂ up

k , we compute

Algorithm 2: Approximate UVIP

Input: Sample (x1, . . . , xN ); V π, Ṽ up
0 , M1, M2, γ, ε

Result: V̂ up

Generate ra(Xi), Y
xi,a
j ∼ Pa(·|xi) for all i ∈ [N ], j ∈ [M1 +M2], a ∈ A;

k = 1; while ∥Ṽ up
k − Ṽ up

k−1∥XN
> ε do

for a ∈ A do
for i ∈ [N ] do

for j ∈ [M1 +M2] do
V̂ up
k (Y xi,a

j ) = I[Ṽ up
k ](Y xi,a

j ) with I[·](·) defined in (6);
end

V
(i,a)

=M−1
1

M1∑
j=1

V π(Y xi,a
j );

end
end
for i ∈ [N ] do

Ṽ up
k+1(xi) =M−1

2

M1+M2∑
j=M1+1

max
a∈A

{
ra(xi) + γ

(
V̂ up
k (Y xi,a

j )− V π(Y xi,a
j ) + V

(i,a))}
;

end
k = k + 1;

end
V̂ up = V̂ up

k .

Ṽ up
k+1(xi) =M−1

2

M1+M2∑
j=M1+1

max
a

{
ra(xi) + γ

(
V̂ up
k (Y xi,a

j )− V π(Y xi,a
j ) +M−1

1

M1∑
l=1

V π(Y xi,a
l )

)}
,

where XN = {x1, . . . , xN} are design points, either deterministic or sampled from some distribution
on X. Then the next iterate V̂ up

k+1 is obtained via an interpolation scheme based on the points
Ṽ up
k+1(x1), . . . , Ṽ

up
k+1(xN ) such that V̂ up

k+1(xi) = Ṽ up
k+1(xi), i = 1, . . . , N. Note that interpolation is

needed, since V̂ up
k+1 has to be calculated at the (random) points Y xi,a

j , which may not belong to the
set XN . In tabular case when |X| <∞ is not large one can omit the interpolation and take XN = X.
In a more general setting when (X, ρX) is an arbitrary compact metric space we suggest using an
appropriate interpolation procedure. The one described below is particularly useful for our situation
where the function to be interpolated is only Lipschitz continuous (due to the presence of the
maximum). The optimal central interpolant for a function f ∈ LipρX(L) is defined as

I[f ](x)
.
= (H low

f (x) +Hup
f (x))/2, (6)

where

H low
f (x) = max

ℓ∈[N ]
(f(xℓ)− LρX(x, xℓ)), H

up
f (x) = min

ℓ∈[N ]
(f(xℓ) + LρX(x, xℓ)).

Note that H low
f (x) ≤ f(x) ≤ Hup

f (x), H low
f , Hup

f ∈ LipρX(L) and hence I[f ] ∈ LipρX(L). An
efficient algorithm is proposed in Beliakov (2006) to compute the values of the interpolant I[f ]
without knowing L in advance. The so-constructed interpolant achieves the bound

∥f − I[f ]∥X ≤ Lmaxx∈X minℓ∈[N ] ρX(x, xℓ). (7)
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The quantity
ρ(XN ,X)

.
= maxx∈X minℓ∈[N ] ρX(x, xℓ) (8)

in the r.h.s. of (7) is usually called covering radius (also known as the mesh norm or fill radius) of
XN with respect to X.

5 THEORETICAL RESULTS

In this section, we analyze the distance between (V̂ up
k )k∈N and V ⋆, where V̂ up

k (x) is the k-th iterate
of Algorithm 2. Recall that XN = {x1, . . . , xN} is a set of design points (random or deterministic)
used in the iterations of Algorithm 2. First, note that with V

up

k (x)
.
= E

[
V̂ up
k (x)

]
we have

V
up

k (x) ≥ max
a

{
ra(x) + γPaV

up

k−1(x)
}
, x ∈ XN , k ∈ N. (9)

Furthermore, if V̂ up
0 (x) ≥ V ⋆(x) for x ∈ XN , then V

up

k (x) ≥ V ⋆(x) for any x ∈ XN and k ∈ N.
Hence V̂ up

k is an upper-biased estimate of V ⋆ for any k ≥ 0.

Before stating our convergence results, we first state a number of technical assumptions.
A1. We suppose that (X, ρX) and (A, ρA) are compact metric spaces. Moreover, X× A is equipped
with some metric ρ, such that ρ

(
(x, a), (x′, a)

)
= ρX(x, x

′) for any x, x′ ∈ X and a ∈ A.

We put special emphasis on the cases when X (resp. A) is either finite or X ⊆ [0, 1]dX with dX ∈ N.
A2. There exists a measurable mapping ψ : X×A×Rm → X such that Y x,a = ψ(x, a, ξ), where ξ
is a random variable with values in Ξ ⊆ Rm and distribution Pξ on Ξ, that is, ψ(x, a, ξ) ∼ Pa(·|x).

A2 is a reparametrization assumption which is popular in RL, see e.g. Ciosek & Whiteson (2020),
Heess et al. (2015), Liu et al. (2018) and the related discussions. This assumption is rather mild,
since a large class of controlled Markov chains can be represented in the form of random iterative
functions, see Douc et al. (2018).
A3. For some positive constant Rmax and all a ∈ A, ∥ra∥X ≤ Rmax .

A4. For some positive constants Lψ ≤ 1, Lmax, Lπ and all a ∈ A, ξ ∈ Ξ,

LipρX(r
a(·)) ≤ Lmax, Lipρ(ψ(·, ·, ξ)) ≤ Lψ, Lipρ((V

π ◦ ψ)(·, ·, ξ)) ≤ Lπ .

Remark 5.1. If |X| < ∞ and |A| < ∞, the assumption A4 holds with ρX(x, x
′) = 1{x̸=x′},

ρ((x, a), (x′, a′)) = 1{(x,a)̸=(x′,a′)} and constants Lψ = 1, Lmax = Rmax, Lπ = Rmax/(1− γ).

The condition Lψ ≤ 1 implies a non-explosive behaviour of the Markov chain (Xi)i≥0. This
assumption is common in theoretical RL studies, see e.g. Pires & Szepesvári (2016). If Lψ < 1, the
corresponding Markov kernel contracts and there exists a unique invariant probability measure, see
e.g. Jarner & Tweedie (2001).

Suppose that for each k ∈ [K] we use an i.i.d. sample ξk = (ξk,1 . . . , ξk,M1+M2
) ∼ P

⊗(M1+M2)
ξ to

generate Y x,aj = ψ(x, a, ξk,j), j ∈ [M1 +M2] and these samples are independent for different k.
For ε > 0, we denote by N (X× A, ρ, ε) the covering number of the set X× A w.r.t. metric ρ, that is,
the smallest cardinality of an ε-net of X× A w.r.t. ρ. Then logN (X× A, ρ, ε) is the metric entropy
of X× A and

ID
.
=

∫ D

0

√
logN

(
X× A, ρ, u

)
du

is the Dudley’s integral. Here D
.
= diam(X× A)

.
= max(x,a),(x′,a′)∈X×A ρ((x, a), (x

′, a′)). Recall
that ρ(XN ,X) defined in (8) is the covering radius of the set XN w.r.t. X. We now state one of our
main theoretical results.
Theorem 5.1. Let A1 – A4 hold and suppose that LipρX(V̂

up
0 ) ≤ L0 with some constant L0 > 0.

Then for any k ∈ N and δ ∈ (0, 1), it holds with probability at least 1− δ that

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+ ∥V π − V ∗∥X +

ID + D
√
log(1/δ)√
M1

+ ρ(XN ,X) . (10)

In the above bound ≲ stands for inequality up to a constant depending on γ, Lmax, Lψ, Lπ, L0 and
Rmax. A precise dependence on the aforementioned constants can be found in (21) in Appendix.
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Proof. The proof is given in Section A.1.

Below we specify the result of Theorem 5.1 for two particular cases of MDPs, which are common in
applications. The first one is an MDP with finite state and action spaces, and the second one is an
MDP with the state space X ⊆ [0, 1]dX .
Corollary 5.1. Let |X|, |A| < ∞ and assume A2, A3. Then for any k ∈ N and δ ∈ (0, 1) it holds
with probability at least 1− δ that

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+ ∥V π − V ∗∥X +

√
log(|X||A|/δ)

M1
.

The precise expression for the constants can be found in (22) in Appendix.

Proof. The proof is given in Section A.2.
Corollary 5.2. Let X ⊆ [0, 1]dX , |A| <∞, and consider ρX(x, x′) = ∥x− x′∥, ρ

(
(x, a), (x′, a′)

)
=

∥x − x′∥ + 1{a̸=a′}. Assume that A2 – A4 hold and let XN = {x1, . . . , xN} be a set of N points
independently and uniformly distributed over X. If additionally LipρX(V̂

up
0 ) ≤ L0 for some L0 > 0,

then for any k ∈ N and δ ∈ (0, 1/2) it holds with probability at least 1− δ that

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+ ∥V π − V ∗∥X +

√
dX log(dX|A|/δ)

M1

+
√
dX

(
N−1 log(1/δ) logN

)1/dX
.

Precise expression for the constants can be found in (23) in Appendix.

Proof. The proof is given in Section A.2.

Variance of the estimator and confidence bounds. Our next step is to bound the variance of the
estimator V̂ up

k (x). We additionally assume that X× A is a parametric class with the metric entropy
satisfying the following assumption:
A5. There exist a constant CX,A > 1 such that for any ε ∈ (0,D),

logN (X× A, ρ, ε) ≤ CX,A log(1 + 1/ε).

Denote the r.h.s. of (10) by σk, that is,

σk
.
= γk

∥∥V̂ up
0 − V ∗∥∥

X
+ ∥V π − V ∗∥X +

ID + D√
M1

+ ρ(XN ,X) . (11)

The next theorem implies that Var
[
V̂ up
k (x)

]
can be much smaller than the standard rate 1/M2,

provided that V π is close to V ∗ and M1, N,K are large enough.

Theorem 5.2. Let A1 – A5 hold and assume additionally LipρX(V̂
up
0 ) ≤ L0 for some L0 > 0. Then

max
x∈X

Var
[
V̂ up
k (x)

]
≤ Cσ2

k log(e ∨ σ−1
k )M−1

2 , (12)

where the constant C depends on CX,A, γ, Lmax, Lψ, Lπ, L0 and Rmax. A precise expression for C
can be found in (30) in appendix.

Proof. The proof is given in Section A.3.

Corollary 5.3. Recall that V̂ up
k is an upper biased estimate of V ⋆ in a sense that V

up

k (x) ≥ V ⋆(x)

provided V̂ up
0 (x) ≥ V ⋆(x) for x ∈ XN . Together with Theorem 5.2, it implies that for any δ ∈ (0, 1),

with probability at least 1− δ,

V π(x) ≤ V ⋆(x) ≤ V̂ up
k (x)

+ σk

√
C log(e ∨ σ−1

k )δ−1M−1
2 + LV ρ(XN ,X)1{x ̸∈XN}, x ∈ X, (13)

where the constant LV is given by (18) in appendix.
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Note that bounds of type (13) are known in the literature only in the case of specific policies π. For
example, Wainwright (2019) proves bounds of this type for greedy policies in tabular Q-learning. At
the same time, (13) holds for arbitrary policy π and general state space.

Now we aim to track the dependence of the r.h.s. of (13) on the quantity ∥V π − V ⋆∥X for MDPs
with finite state and action spaces. The following proposition implies that σk scales (almost) linearly
with ∥V π − V ⋆∥X.

Proposition 5.1. Let |X|, |A| <∞, assume A2, A3, and
∥∥V̂ up

0

∥∥
X
≤ Rmax(1− γ)−1. Then for k and

M1 large enough, it holds that
σk ≲ ∥V π − V ⋆∥X . (14)

The precise bounds for k and M1 can be found in (32).

Proof. The proof is given in Section A.4.

6 NUMERICAL RESULTS

In this section we demonstrate the performance of Algorithm 2 on several tabular and continuous
state space RL problems. Recall that the closer policy π is to the optimal one π⋆, the smaller is the
difference between V π(x) and V up,π(x).
Discrete state-space MDPs We consider 3 popular tabular environments: Garnet (Archibald et al.
(1995)), Chain (Rowland et al. (2020)) and NRoom (Domingues et al. (2021)). Detailed descriptions
of these environments are provided in Appendix B. For each environment we perform K updates
of the Value iteration (see Appendix B for details) with known transition kernel Pa. We denote the
k-th step estimate of the action-value function as Q̂k(x, a) and denote by πk the greedy policy w.r.t.
Q̂k(x, a). Then we evaluate the policies πk with the Algorithm 2 for certain iteration numbers k. We
omit the approximation step because the state space is small. Experimental details are provided in
Table 1 in the appendix. Figure 1 displays the gap between V πk(x) and V up,πk(x), which converges
to zero as πk approaches the optimal policy π⋆.

In the NRoom environment, we first learn a sub-optimal policy π using the Value Iteration (VI)
algorithm. In the third room, we then replace this policy with a uniformly random policy πc with
probability 1/2. As expected, this modification results in a less efficient policy within that specific
room, which, in turn, should increase the upper bounds of our estimation. To demonstrate this effect,
we compute precise upper bounds using the UVIP algorithm. As shown in Figure 1(bottom), UVIP
effectively captures the sub-optimality of the policy in the third room, while displaying only slight
changes in value estimates for the other rooms.

Figure 1: The difference between V up,πi(x) and V πi(x). X-axis represents states in a discrete
environment for all pictures. Each group of three pictures of the same color demonstrates the process
of learning the policy from the first iteration to the last. First row: Evaluation of the policies during
the process of Value iteration for Garnet (left) and Chain environments (right). The policies are
the greedy ones corresponding to Qi(x, a) function at the i-th step. Second row: Comparison of
the gap between V π and V up,π for the learned policy π and the corrupted policy πc in the NRoom
environment. The color in this plot represents the value of V up,π − V π .

Continuous state-space MDPs In all subsequent experiments, we obtain sample points
(x1, . . . , xN ) in Algorithm 2 from trajectories of the evaluation policy. These points are sufficiently
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representative (see Kveton & Theocharous (2012),Barreto et al. (2016)) and explore key areas of
the state space. We consider the AI Gym CartPole and Acrobot environments (see Brockman et al.
(2016)), with their descriptions provided in Appendix B. For CartPole we evaluate the A2C algorithm
policy π1 (Mnih et al. (2016)), linear deterministic policy (LD) π2 described in Appendix B, and ran-
dom uniform policy π3. Figure 2 (left) indicates superior quality of π2, sort of instability introduced
by A2C training in π1 and low quality of π3. We also evaluated a policy for Acrobot given by A2C
as well as a policy from Dueling DQN (Wang et al. (2016)) (Fig. 2 (right)). From the plots we can
conclude that the both policies are good, but far from optimal.

Figure 2: Upper and lower bounds of the three different policies. Left: For CartPole π1, π2, π3
policies, respectively. For horizontal axis we sample single trajectory according to the policy. Right:
For Acrobot Dueling DQN and A2C policies, respectively. We evaluated the bounds for 50 first states
of the trajectory for each algorithm.

Additionally, we compare policies in TwinRooms environment from rlberry (Domingues et al. (2021)).
We obtain two policies π1 and π2 after running Kernel- UCBVI(Domingues et al. (2022)) algorithm
on 2500 and 5000 iteration steps. The result on Figure 3 shows that the policy π2 have tighter upper
bounds after more learning steps, and thus, we can conclude that it has better performance. Also, our
upper bounds highlight the regions of the state space which are less studied with our policy.

Figure 3: We illustrate the gap between V up,π and V π in TwinRooms environment. Color on this
plot represents the value of V up,π−V π . On the left and right hand sides we show this quantity for π1
and π2 corresponding. We obtain π1 and π2 after 2500 and 5000 learning steps of the Kernel-UCBVI
algorithm.

7 CONCLUSION AND FUTURE WORK

In this work we propose a new approach towards model-free evaluation of the agent’s policies in RL,
based on upper solutions to the Bellman optimality equation (1). To the best of our knowledge, the
UVIP is the first procedure which allows to construct the non-asymptotic confidence intervals for
the optimal value function V ⋆ based on the value function corresponding to an arbitrary policy π. In
our analysis we consider only infinite-horizon MDPs and assume that sampling from the conditional
distribution Pa(·|x) is feasible for any x ∈ X and a ∈ A. A promising future research direction
is to generalize UVIP to the case of finite-horizon MDPs combining it with the idea of Real-time
dynamic programming (see Efroni et al. (2019)). Moreover, the plain Monte Carlo estimates are not
necessarily the most efficient way to estimate the outer expectation in Algorithm 1. Other stochastic
approximation techniques could also be applied to approximate the solution of (2).
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A PROOF OF THE MAIN RESULTS

Throughout this section we will use additional notations. Let ψ2(x) = ex
2 − 1, x ∈ R. For r.v.

η we denote ∥η∥ψ2

.
= inf{t > 0 : E

[
exp{η2/t2}

]
≤ 2} the Orlicz 2-norm. We say that η is a

sub-Gaussian random variable if ∥η∥ψ2 < ∞. In particular, this implies that for some constants
C, c > 0, P(|η| ≥ t) ≤ 2 exp{−ct2/∥η∥2ψ2

} and E1/p[|η|p] ≤ C
√
p∥η∥ψ2

for all p ≥ 1. Consider
a random process (Xt)t∈T on a metric space (T, d). We say that the process has sub-Gaussian
increments if there exists K ≥ 0 such that

∥Xt −Xs∥ψ2
≤ Kd(t, s), ∀t, s ∈ T.

We start from the following proposition.
Proposition A.1. Under A1 – A4 for any M ∈ N and p ≥ 1

E1/p
[∥∥∥ 1

M

M∑
l=1

[V π(ψ(·, ·, ξl))− EV π(ψ(·, ·, ξl))]
∥∥∥p
X×A

]
≲
LπID + {LπD+Rmax/(1− γ)}√p

√
M

.

Proof. We apply the empirical process methods. To simplify notations we denote

Z(x, a) =
1√
M

M∑
ℓ=1

[V π(ψ(x, a, ξℓ))− EV π(ψ(x, a, ξℓ))], (x, a) ∈ X× A,

that is, Z(x, a) is a random process on the metric space (X× A, ρ). Below we show that the process
Z(x, a) has sub-Gaussian increments. In order to show it, let us introduce for ℓ ∈ [M ]

Zℓ
.
= [V π(ψ(x, a, ξl))− EV π(ψ(x, a, ξl))]− [V π(ψ(x′, a′, ξl))− EV π(ψ(x′, a′, ξl))] .

Clearly, by A4,
∥Zℓ∥ψ2

≲ Lπρ((x, a), (x
′, a′)) ,

that is, Zℓ is a sub-Gaussian r.v. for any ℓ ∈ [M ]. Since Z(x, a) − Z(x′, a′) = M−1/2
∑M
ℓ=1 Zℓ

is a sum of independent sub-Gaussian r.v, we may apply (Vershynin, 2018, Proposition 2.6.1 and
Eq. (2.16))) to obtain that Z(x, a) has sub-Gaussian increments with parameter K ≍ Lπ . Fix some
(x0, a0) ∈ X× A. By the triangular inequality,

sup
(x,a)∈X×A

|Z(x, a)| ≤ sup
(x,a),(x′,a′)∈X×A

|Z(x, a)− Z(x′, a′)|+ Z(x0, a0). (15)

By the Dudley integral inequality, e.g. (Vershynin, 2018, Theorem 8.1.6), for any δ ∈ (0, 1),

sup
(x,a),(x′,a′)∈X×A

|Z(x, a)− Z(x′, a′)| ≲ Lπ
[
ID + D

√
log(2/δ)

]
.

holds with probability at least 1− δ. Again, under A3, Z(x0, a0) is a sum of i.i.d. bounded centered
random variables with ψ2-norm bounded by Rmax/(1− γ). Hence, applying Hoeffding’s inequality,
e.g. (Vershynin, 2018, Theorem 2.6.2.), for any δ ∈ (0, 1),

|Z(x0, a0)| ≲ Rmax

√
log(1/δ)/(1− γ)

holds with probability 1− δ. The last two inequalities and (15) imply the statement.

A.1 PROOF OF THEOREM 5.1

Fix p ≥ 2 and denote for any k ∈ N, Mk
.
= E1/p[∥V̂ up

k − V ∗∥pX]. For any x ∈ X, we introduce

Ṽ up,π
k+1 (x) =

1

M2

M1+M2∑
j=M1+1

max
a

{
ra(x) + γ

(
V̂ up
k (Y x,aj )− V π(Y x,aj ) +

1

M1

M1∑
ℓ=1

V π(Y x,aℓ )
)}

Recall that Y x,aj = ψ(x, a, ξk,j), j ∈ [M1 +M2] for independent random variables (ξk,j), thus we
can write

Ṽ up,π
k+1 (x) =

1

M2

M1+M2∑
j=M1+1

Rxk(ξk,j ; ξk,1, . . . , ξk,M1
) . (16)
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We first calculate Lk+1
.
= Lipρ(Ṽ

up,π
k+1 ) for any k ∈ N. Since under A4, Lipρ((V

π◦ψ)(·, ·, ξ)) ≤ Lπ ,
and using (16),

Lk+1 ≤ Lmax + γ(LkLψ + 2Lπ) . (17)

Expanding (17) and using the assumptions of Theorem 5.1, we obtain

Lk+1 ≤ Lmax + 2γLπ
1− γLψ

+ (γLψ)
kL0 , k ∈ N .

Using that γLψ < 1, the maximal Lipshitz constant of Ṽ up,π
k (x), k ∈ N is uniformly bounded by

LV =
Lmax + 2γLπ

1− γLψ
+ L0 . (18)

Using (16) and (4), for any x ∈ X and j =M1 + 1, . . . ,M1 +M2.

E1/p[|Rxk(ξk,j ; ξk,1, . . . , ξk,M1
)− V ∗(x)|p] ≤

E1/p

[∣∣∣∣max
a

{
ra(x) + γ

(
V̂ up
k (Y x,aj )− V π(Y x,aj ) +M−1

1

∑M1

ℓ=1
V π(Y x,aℓ )

)}
−

max
a

{ra(x) + γ(V ⋆(Y x,a)− V ⋆(Y x,a) + PaV ⋆(x)}
∣∣∣p]

Hence, with the Minkowski inequality and |PaV ⋆(x)− EV π(ψ(x, a, ·))| ≤ ∥V π − V ∗∥X, we get

E1/p[|Rxk(ξk,j ; ξk,1, . . . , ξk,M1)− V ∗(x)|p] ≤ γMk + 2γ ∥V π − V ∗∥X

+ γE1/p
[∥∥∥M−1

1

∑M1

ℓ=1
[V π(ψ(·, ·, ξk,ℓ))− EV π(ψ(·, ·, ξk,ℓ))]

∥∥∥p
X×A

] (19)

To analyze the last term we use the empirical process methods. By Proposition A.1, we get

E1/p
[∥∥∥ 1

M1

M1∑
ℓ=1

[V π(ψ(·, ·, ξk,ℓ))−EV π(ψ(·, ·, ξk,ℓ))]
∥∥∥p
X×A

]
≲
LπID + {LπD+Rmax/(1− γ)}√p

√
M1

.

Furthermore, with (7) we construct Lipshitz interpolant V̂ up
k+1, such that

|V̂ up
k+1(x)− Ṽ up,π

k+1 (x)| ≲ Lk+1ρ(XN ,X) .

Combining the above estimates, we get

Mk+1 ≲ γMk + γ ∥V π − V ∗∥X + γ
LπID + {LπD+Rmax/(1− γ)}√p

√
M1

+ Lk+1ρ(XN ,X) .

Iterating this inequality,

E1/p[∥V̂ up
k − V ∗∥pX] ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+

γ

1− γ
∥V π − V ∗∥X +

γLπID + γ{LπD+Rmax/(1− γ)}√p
√
M1(1− γ)

+
LV
1− γ

ρ(XN ,X) . (20)

Applying Markov’s inequality with p ≍ log (1/δ), we get that for any k ∈ N and δ ∈ (0, 1),

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+

γ

1− γ
∥V π − V ∗∥X +

γLπID + γ{LπD+Rmax/(1− γ)}
√

log(1/δ)√
M1(1− γ)

+
LV
1− γ

ρ(XN ,X) .

(21)

holds with probability at least 1− δ, where the constant LV is given in (18). This yields the statement
of the theorem.
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A.2 PROOF OF COROLLARY 5.1 AND COROLLARY 5.2

Proof of Corollary 5.1. Consider ρ((x, a), (x′, a′)) = 1{(x,a)̸=(x′,a′)} and XN = X, that is, we
bypass the approximation step. Then D = 1, ID ≲

√
log(|X||A|), ρ(XN ,X) = 0, and ra(·) is

Lipshitz w.r.t. ρX with Lmax ≤ Rmax. Moreover, one can take Lψ = 1 and Lπ = Rmax/(1− γ) in
Assumption A4. Hence, A1 – A4 are valid and one may apply Theorem 5.1. Bound (21) in this case
writes as

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+

γ

1− γ
∥V π − V ∗∥X +

γRmax(
√
log(|X||A|) + 2)

√
log (1/δ)√

M1(1− γ)2
. (22)

Proof of Corollary 5.2. It is easy to see that D ≤
√
dX +1, ID ≲

√
dX log |A|+

√
dX log dX. Propo-

sition A.3 implies that for any δ ∈ (0, 1), ρ(XN ,X) ≲
√
dX

(
N−1 log(1/δ) logN

)1/dX . Substituting
into (21), we obtain

∥V̂ up
k − V ∗∥X ≲ γk

∥∥V̂ up
0 − V ∗∥∥

X
+

γ

1− γ
∥V π − V ∗∥X +

LV
√
dX

(
N−1 log(1/δ) logN

)1/dX
1− γ

+
γLπ(

√
dX log |A|+

√
dX log dX) + γ{Lπ

√
dX +Rmax/(1− γ)}

√
log(1/δ)√

M1(1− γ)
, (23)

where LV is given in (18).

A.3 PROOF OF THEOREM 5.2

We use definition of Ṽ up,π
k+1 (x) andRxk(ξk,j ; ξk,1, . . . , ξk,M1

) from Theorem 5.1. To simplify notations
we denote ξk,M1

= (ξk,1, . . . , ξk,M1
) and ξk,M2

= (ξk,M1+1, . . . , ξk,M1+M2
). In these notations

ξk = (ξk,M1
, ξk,M2

). Recall that, by the construction, Ṽ up,π
k+1 (x) can be evaluated only at the points

x ∈ {x1, . . . , xN}. By the definition,

V̂ up
k+1(x) = min

ℓ∈[N ]

{
Ṽ up,π
k+1 (xℓ) + LV ρX(xℓ, x)

}
, (24)

where the constant LV is given in (18). We rewrite Ṽ up,π
k+1 (x) as follows

Ṽ up,π
k+1 (x) =

1

M2

M1+M2∑
j=M1+1

{Rxk(ξk,j ; ξk,M1
)− E[Rxk(ξk,j ; ξk,M1

)]}

+ E[Rxk(ξ; ξk,M1
)] =: T xk (ξk) + E[Rxk(ξ; ξk,M1

)],

where ξ is an i.i.d. copy of ξk,j . Conditioned on Gk
.
= Gk−1 ∪ σ{ξk,M1

}, T xk (ξk,M1
, ξk,M2

) is the
sum of i.i.d. centered random variables. In what follows we will often omit the arguments ξk,M1

and/or ξk,M2
from the notations of functions T xk . Using representation (24),

Var[V̂ up
k+1(x)] = Var

[
min
ℓ∈[N ]

{
Ṽ up,π
k+1 (xℓ) + LV ρX(xℓ, x)

}]
≤ E

[(
min
ℓ∈[N ]

{
Ṽ up,π
k+1 (xℓ) + LV ρX(xℓ, x)

}
− min
ℓ∈[N ]

{
E[Rxk(ξ; ξk,M1

)] + LV ρX(xℓ, x)
})2

]
.

Hence, from the previous inequality and the definition of Ṽ up,π
k+1 (x),

Var[V̂ up
k+1(x)] ≤ E[ sup

ℓ∈[N ]

|T xℓ
k (ξk,M1

, ξk,M2
)|2] ≤ E[sup

x∈X
|T xk (ξk,M1

, ξk,M2
)|2].

15



To estimate the r.h.s. of the previous inequality we again apply the empirical process method. We
first note that for any x, x′ ∈ X,

sup
ξ∈ΞM1+M2

|T xk (ξ)− T x
′

k (ξ)| ≤ LT ρX(x, x
′), (25)

where
LT = Lmax + γ(LV + 2Lπ) . (26)

Now we freeze the coordinates ξM1
and consider T xk (ξM1

, ·) as a function on ΞM2 , parametrized by
x ∈ X. Introduce a parametric class of functions

Tk,ξM1

.
=

{
T xk (ξM1

, ·) : ΞM2 → R, x ∈ X
}
.

For notational simplicity we will omit dependencies on k and ξM1
, and simply write T x(·) =

T xk (ξM1
, ·). Note that the functions in Tk,ξM1

are Lipshitz w.r.t. the uniform metric

ρTk,ξM1
(T x(·), T x

′
(·)) = sup

ξM2
∈ΞM2

|T x(ξM2
)− T x

′
(ξM2

)|, T x(·), T x
′
(·) ∈ Tk,ξM1

.

To estimate diam(Tk,ξM1
) we proceed as follows. Denote R̃xk(ξ; ξk,M1

) = Rxk(ξ; ξk,M1
) −

E
[
Rxk(ξ; ξk,M1

)
]
. Using (19), we get an upper bound∣∣∣R̃xk(ξ; ξk,M1

)
∣∣∣ ≲ γ∥V̂ up

k − V ∗∥X + 2γ ∥V π − V ∗∥X +

γ
∥∥∥M−1

1

M1∑
l=1

[V π(ψ(·, ·, ξk,l))− EV π(ψ(·, ·, ξk,l))]
∥∥∥
X×A

.
(27)

We denote the r.h.s. of this inequality by R⋆k. Clearly, R⋆k is Gk – measurable function (recall that
Gk = Gk−1 ∪ σ{ξk,M1

}). We may conclude that diam(Tk,ξM1
) ≤ 2R⋆k. Furthermore, by (25) its

covering number can be bounded as

N (Tk,ξM1
, ρT , ε) ≤ N (X× A, ρ, ε/LT ).

It is also easy to check that
(
T x(ξk,M2

)
)
, T x ∈ Tk,ξM1

is a sub-Gaussian process on (Tk,ξM1
, ρT )

with
∥T x − T x

′
∥ψ2 ≲ ρT (T

x, T x
′
).

Applying the tower property we get

E[sup
x∈X

|T xk (ξk,M2
)|2] ≤ E[E[sup

x∈X
|T xk (ξk,M2

)|2|Gk]]

Using the Dudley integral inequality, e.g. (Vershynin, 2018, Theorem 8.1.6) and assumption A5,

E[sup
x∈X

|T xk (ξk,M1
, ξk,M2

)|2|Gk] = E[ sup
Tx∈Tk,ξM1

|T x(ξk,M2
)|2|Gk]

≲ E[|T x0(ξk,M2
)|2|Gk]

+
1

M2

{
LT

√
CX,A

∫ 2R⋆
k/LT

0

√
log(1 + 1/ε)dε+R⋆k

}2

,

where x0 ∈ X is some fixed point. To estimate the first term in the r.h.s. of the previous inequality we
apply Hoeffding’s inequality. We obtain

E[|T x0(ξk,M2
)|2|Gk] ≲

(R⋆k)
2

M2
.

Applying Proposition A.4 we get∫ 2R⋆
k/LT

0

√
log(1 + 1/ε)dε ≲ (R⋆k

√
log(1 + 1/R⋆k) +R⋆k)/LT .

The last two inequalities imply

E[sup
x∈X

|T xk (ξk,M2
)|2|Gk] ≲ CX,A

(R⋆k)
2 + (R⋆k)

2 log(1 + 1/R⋆k)

M2
.
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Since for x > 0 and ε ∈ (0, 1]

log(1 + x) ≤ ε−1xε,

we obtain

E[sup
x∈X

|T xk |2] ≲ CX,A
E[(R⋆k)

2] + E[(R⋆k)
2−ε]/ε

M2
.

Using (27), we get for any p ≥ 1

E1/p
[
(R⋆k)

p
]
≤ γE1/p

[
∥V̂ up

k − V ∗∥pX
]
+ 2γ ∥V π − V ∗∥X +

γE1/p

[∥∥∥M−1
1

M1∑
l=1

[V π(ψ(·, ·, ξk,l))− EV π(ψ(·, ·, ξk,l))]
∥∥∥p
X×A

]
.

Thus, applying (20) and Proposition A.1, for any p ≥ 1,

E1/p
[
(R⋆k)

p
]
≤ 3C0 σk ,

where the quantity σk is defined as

σk = γk
∥∥V̂ up

0 − V ∗∥∥
X
+ ∥V π − V ∗∥X +

ID + D√
M1

+ ρ(XN ,X) , (28)

and the constant C0 is given by

C0 = max

{
γLπ
1− γ

+
Rmax

(1− γ)2
,
(Lmax + 2γLπ)

√
2

(1− γLψ)(1− γ)
+

L0

1− γ
,

γ

1− γ

}
. (29)

This yields the final bound

Var[V̂ up
k+1(x)] ≤ E[sup

x∈X
|T xk |2] ≤ 9CX,A C2

0

σ2
k + σ2−ε

k /ε

M2

.
= C

σ2
k + σ2−ε

k /ε

M2
. (30)

Now the statement follows by the choice ε = log−1(e ∨ σ−1
k ).

A.4 PROOF OF PROPOSITION 5.1

The corrected statement of Proposition 5.1 is given below:

Proposition A.2. Let |X|, |A| < ∞, assume A2, A3, and
∥∥V̂ up

0

∥∥
X
≤ Rmax(1 − γ)−1. Then for k

and M1 large enough, it holds that

σk ≲ ∥V π − V ⋆∥X . (31)

The precise bounds for k and M1 are given in (32).

Proof. Applying (28) with ID ≲
√
log |X||A|, D = 1, we obtain that

σk ≲ γk
∥∥V̂ up

0 − V ∗∥∥
X
+ ∥V π − V ∗∥X +

γRmax(
√

log(|X||A|) + 1)√
M1(1− γ)2

.

Note that, under assumption A3,
∥∥V ⋆∥∥

X
≤ Rmax(1 − γ)−1. Hence, the previous bound implies

σk ≲ ∥V π − V ⋆∥X, provided that k and M1 are large enough to guarantee

γk−1Rmax ≤ ∥V π − V ⋆∥X , Rmax(
√
log(|X||A|) + 1)M

−1/2
1 (1− γ)−2 ≤ ∥V π − V ⋆∥X .

Thus, it is enough to choose

k ≥ log ∥V π − V ⋆∥X(log (1/γ))
−1 ,

M1 ≥ R2
max(

√
log(|X||A|) + 1)2((1− γ)2 ∥V π − V ⋆∥X)

−2 .
(32)
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A.5 THE COVERING RADIUS OF RANDOMLY DISTRIBUTED POINTS OVER A CUBE

The following proposition is a particular case of the result (Reznikov & Saff, 2016, Theorem 2.1).
We repeat the arguments from that paper and give explicit expressions for the constants.
Proposition A.3. Let X = [0, 1]dX and µ be a uniform distribution on X. Suppose that XN =
{X1, . . . , XN} is a set of N points independently distributed over X w.r.t. µ. Denote by ρ(XN ,X)

.
=

maxx∈X mink∈[N ] |x−Xk| the covering radius of the set XN w.r.t. X. Then for any p ≥ 1,

E [ρp(XN ,X)]
1/p ≲

√
dX

(
p logN

N

)1/dX

. (33)

Moreover, for any δ ∈ (0, 1)

ρ(XN ,X) ≲
√
dX

(
log(1/δ) logN

N

)1/dX

(34)

holds with probability at least 1− δ.

Proof. Let En = En(X) be a maximal set of points such that for any y, z ∈ En we have |y−z| ≥ 1/n.
Then for any x ∈ X there exists a point y ∈ En such that |x− y| ≤ 1/n. Denote by B(x, r) a ball
centred at x ∈ X of radius r (w.r.t. | · |) and

Φ(r) =
rdXπdX/2

2dXΓ(dX/2 + 1)
, r ∈ [0,∞)

Since for any x ∈ X, µ(B(x, r)) ≥ Φ(r),

1 = µ(X) ≥
∑
x∈En

µ(B(x, (1/(3n)))) ≥ |En|Φ(1/(3n)).

Hence,

|En| ≤ {Φ(1/(3n))}−1. (35)

Suppose that ρ(XN ,X) > 2/n. Then there exists a point y ∈ X such that XN ∩ B(y, 2/n) = ∅.
Choose a point x ∈ En such that |x − y| < 1/n. Then B(x, 1/n) ⊂ B(y, 2/n), and so the ball
B(x, 1/n) doesn’t intersect XN . Hence, XN ∩B(x, 1/(3n)) = ∅. Therefore,

P(ρ(XN ,X) > 2/n) ≤ P(∃x ∈ En : XN ∩B(x, 1/(3n)) = ∅) ≤
≤ |En|(1− Φ(1/(3n))N ≤ |En|e−NΦ(1/(3n). (36)

Let 1/(3n) = Φ−1(α logN/N) for some α > 0 to be chosen later. Then Φ(1/(3n)) = α logN/N .
Inequalities (35) and (36) imply

P(ρ(XN ,X) > 2/n) ≤ N1−α

α logN
. (37)

Let us fix any p ≥ 1. Then

E [ρp(XN ,X)]
1/p ≤ 2

n
+
√
dX

(
N1−α

α logN

)1/p

= 6Φ−1(α logN/N) +
√
dX

(
N1−α

α logN

)1/p

. (38)

Since
Φ−1(r) =

2√
π
Γ1/dX(dX/2 + 1)r1/dX ≤ 2

√
edX/π(er)

1/dX

we get

E [ρp(XN ,X)]
1/p ≤ 12

√
edX/π

(
αe logN

N

)1/dX

+
√
dX

(
N1−α

α logN

)1/p

.

It remains to take α = 1 + p/dX to obtain bound

E [ρp(XN ,X)]
1/p ≤ 48

√
dX

(
p logN

N

)1/dX

.

Hence, (33) follows. To prove (34) it remains to apply Markov’s inequality.
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A.6 AUXILIARY RESULTS

Proposition A.4. For any ∆ > 0,∫ ∆

0

√
log(1 + 1/x)dx ≲ ∆

√
log(1 + 1/∆) +∆.

Proof. Consider the case ∆ < 1. In this case∫ ∆

0

√
log(1 + 1/x)dx =

∫ ∆100/2

0

√
log(1 + 1/x)dx+

∫ ∆

∆100/2

√
log(1 + 1/x)dx

≲
∫ ∆100/2

0

x−1/2dx+

∫ ∆

∆100/2

√
log(1 + 1/x)dx

≲ ∆50 + (∆−∆100/2)
√

log(1 + 2/∆100)

≲ ∆
√
log(1 + 1/∆).

If ∆ > 1,∫ ∆

0

√
log(1 + 1/x)dx =

∫ 1

0

√
log(1 + 1/x)dx+

∫ ∆

1

√
log(1 + 1/x)dx

≲ 2 + (∆− 1)
√
log 2 ≲ ∆.

B EXPERIMENT SETUP

B.1 ENVIRONMENTS DESCRIPTION

Garnet Garnet example is an MDP with randomly generated transition probability kernel Pa with
finite X - state space and A - action space. This example is described with a tuple ⟨NS , NA, NB⟩.
The first two parameters specify the number of states and actions respectively. The last parameter is
responsible for the number of states an agent can go to from state x ∈ X by performing action a ∈ A.
In our case we used NS = 20, NA = 5, NB = 2, γ = 0.9. The reward matrix ra(x) is set according
to the following principle: first, for all state-action pairs, the reward is set uniformly distributed on [0,
1]. Then the pairs are randomly chosen, for which the reward will be increased several times.

Frozen Lake The agent moves in a grid world, where some squares of the lake are walkable, but
others lead to the agent falling into the water, so the game restarts. Additionally, the ice is slippery, so
the movement direction of the agent is uncertain and only partially depends on the chosen direction.
The agent receives 10 points only for finding a path to a goal square, for falling into the hole it doesn’t
receive anything. We used the built-in 4 × 4 map and 4 actions for the agent to perform on each
state if available (right, left, up and down). For this experiment we assume that the reward
matrix ra(x) is known, γ-factor is set to be 0.9.

Chain Chain is a finite MDP where agent can move only to 2 adjacent states performing 2 actions
from each state (right and left). Every chain has two terminal states at the ends. For transition
to the terminal states agent receives 10 points and episode ends, otherwise the reward is equal to +1.
Also, there is p% noise in the system, that is the agent performs a uniformly-random action with
probability p. For experiments with chains we set γ-factor to 0.8, to be sure that Pichard iterations
converge.

NRoom NRoom is a discrete Grid-World environment with connected rooms and with one large
reward in a single room and small rewards elsewhere. Also, there are traps which lead to the terminal
states. The example of this environment is illustrated by Figure 4. At each state there are four
actions to turn on left, right, up and down. With a small probability the chosen action is ignored and
uniformly random action is chosen.

19



Figure 4: Discrete Grid-World environment with connected rooms. The red squares are traps which
are terminal states.

CartPole CartPole is an example of the environment with a finite action space and infinitely large
state space. In this environment agent can push cart with pole on it to the left or right direction and
the target is to hold the pole up as long as possible. Reward equals to 1 is gain every time until failing
or the end of episode. In fact, CartPole hasn’t any specific stochastic dynamic, because transitions
are deterministic according to actions, so for non degenerate case we should add some noise and we
apply normally distributed random variable to the angle. LD(Linear Deterministic) policy can be
expressed as I{3 · θ + θ̇ > 0}, where θ is an angle between pole and normal to cart.

Acrobot The environment consists of two joints, or two links. The torque is applied to the binding
between the joints. The action space is discrete and consists of three kinds of torques: left,
right and none. The state space is 6 dimensional, representing two angles (sine and cosine)
characterizing the links position and the angles’ velocities. Each episode starts with the small
perturbations of the parameters near the resting state having both of the joints in a downward position.
The agents’ goal is to reach a given boundary from above in a minimum amount of time with its lower
point of the link. At each timestep a robot has a reward equal to -1, and it gets 0 in a terminal state,
when the boundary has been reached. Also to make the environment stochastic, a random uniform
torque from −1 to 1 is added to the force at each step.

TwinRooms TwinRooms is Grid-World environment with continuous state space. It is composed
of two rooms separated by a wall, such that X = ([0, 1−∆]∪ [1 +∆, 2])× [0, 1] where 2∆ = 0.1 is
the width of the wall, as illustrated by Figure 5. There are four actions: left, right, up, and down, each
one resulting to a displacement of 0.1 in the corresponding direction. A two-dimensional Gaussian
noise is added to the transitions, and, in each room, there is a single region with non-zero reward. The
agent has 0.5 probability of starting in each of the rooms, and the starting position is at the room’s
bottom left corner.

Figure 5: Continuous grid-world environment with two rooms separated by a wall. The circles
represent the regions with non-zero rewards.

B.2 EXPERIMENTAL SETUP

Code is available at https://github.com/levensons/UVIP. For the sake of completeness,
we provide below hyperparameters for the experiments run in Section 6.
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Table 1: Experimental hyperparameters

Environment M1 M2 discount γ N

Garnet 3000 3000 0.9 −
Frozen Lake 1000 1000 0.9 −
Chain 1000 1000 0.8 −
Cart Pole 150 150 0.9 1500
Acrobot 150 100 0.9 4000

B.3 AUXILIARY ALGORITHMS

For the sake of completeness we provide here the Value iteration algorithm (Szepesvári (2010),
Chapter 1), used in Section 6 for tabular environments.

Algorithm 3: Value Iteration algorithm
Input: Pa, r, ε
Result: V ⋆
Initialize: ∀x ∈ X, V ⋆0 (x) = 0
k = 1
while

∥∥V ⋆k − V ⋆k−1

∥∥ > ε do
for x ∈ X, a ∈ A do

Q(x, a) = ra(x) + γ
∑
y∈X

Pa(y|x)V ⋆k−1(y)

V ⋆k (x) = max
a∈A

Q(x, a)

end
k = k + 1

end
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