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1 Experiment Videos1

We perform thorough real-world analysis of our system. Indoor and outdoor experiment videos can2

be found at https://agile-locomotion.github.io.3

2 Details of Training in Simulation4

The specialize skill policy consists of a GRU followed by an MLP that outputs the target joint5

positions. We concatenate all the observations including privileged environment information as a6

flattened vector. It is passed to a one-layer GRU of 256 hidden sizes, followed by an MLP of hidden7

dimensions as [512, 256, 128]. We use ELU as an activation layer inside the policy. The final layer8

outputs a 12-dimension vector and be fed to tanh activation function. The action ranges from −1 to 1,9

which is scaled by a preset constant action scale. The detailed parameters of running PPO algorithm10

are listed in Table 1.11

The obstacles for climbing is 0.8m wide and 0.8m long (along the forward direction). The obstacles12

for leap are gaps of 0.8m wide and 0.8m depth. For crawling, the obstacle is 0.8m wide and 0.3m13

along the forward direction. For tilting obstacles, the length along the forward direction is 0.6m.14

Table 1: Training Hyper-parameters
PPO clip range 0.2

GAE λ 0.95
Learning rate 1e-4

Reward discount factor 0.99
Minimum policy std 0.2

Number of environments 4096
Number of environment steps per training batch 24

Learning epochs per training batch 5
Number of mini-batches per training batch 4

Hyparameters for training specialized policies using priviledge information. We follow the15

insights from [1, 2, 3] that use fractal noises to generate terrains, which enforces the foot contact16

clearance and simplified the reward terms as shown in Table 2. Except for the penetration penalty, we17

use these parameters to train all 4 specialized policies, in either RL pre-training with soft dynamics18

constraint or fine-tuning the oracle policies in hard dynamics constraint.19
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Table 2: Reward Scales in training each specialized policy
purpose hyperparameter value

x velocity α1 1.
y velocity α2 1.

angular velocity α3 0.1
energy α4 2e− 6

penetration depth α5 4e− 3
penetration volume α6 4e− 3

3 Details of the Parkour Policy Network20

The parkour policy is a series of CNN encoders connected with GRU and MLP neural networks. The21

visual embedding from the visual encoder is concatenated together with the rest of the observation22

and fed to the GRU and MLP module. The detailed parameters of the network structure are listed in23

Table 3.24

Table 3: Parkour Policy structure
CNN channels [16, 32, 32]

CNN kernel sizes [5, 4, 3]
CNN pooling layer MaxPool

CNN stride [2, 2, 1]
CNN embeding dims 128

RNN type GRU
RNN layers 1

RNN hidden dims 256
MLP hidden sizes 512, 256, 128

MLP activate ELU

We use binary cross-entropy loss for the parkour policy during distillation. The output of both
specialized skills and parkour policy ranges from −1 to 1.
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where aspecialized is the action from the corresponding specialized skills, aparkour is the action from the25

parkour policy.26

4 Details of Robot Setup27

Robot setup in simulation. We use IssacGym Preview 4 for simulation. We generate a static large28

terrain map before each training, during the training of specialized policies. The terrain consists of29

800 tracks with a 20 by 40 grid. We set the difficulty of each track in a linear curriculum manner.30

The tracks in the same row have the same difficulty but differ in non-essential configurations. The31

tracks in each column are connected end to end so that whenever the robot finished the current track,32

it keeps moving forward (+x direction) to the more difficult track. We train each specialized policy33

in soft dynamics using one 1 Nvidia 3090 computer for 12 hours and tune it in hard dynamics for34

6 hours. For distillation, we use 4 computers, each of which is equipped with 1 Nvidia 3090 GPU,35

that share the same NFS file system. We use 3 computers for loading the current training model and36

collecting the parkour policy’s trajectory as well as the specialized policy supervision. We use the37

other one computer to load the latest trajectories and train the parkour policy.38

Robot setup in the real world. We use the Unitree A1 equipped for our real-world experiments39

which is equipped with an onboard Nvidia Jetson NX. The robot has 12 joints. Each joint is equipped40

with a motor of 33.5Nm instant maximum torque. It also has a built-in Intel RealSense D435 camera41

in front of the robot using inferred and stereo to provide depth images. We use ROS1 on Ubuntu42

18.04 which runs on the onboard Jetson NX. We use a ROS package based on Unitree SDK to send43
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Figure 1: Comparison of our method with Oracles w/o Soft Dyn and RND. For our method, the RL finetuning
stage started at the late stages of the training.

and receive the robot states as well as the policy command at 100Hz. The ROS package is also44

equipped with a roll/pitch limit, estimated torque limit, and emergency stop mechanism using the45

remote control as the means of protection for the robot. To run the policy, we use two Python scripts46

to run the visual encoder and the rest of the network asynchronously. We use the Python wrapper47

of librealsense to capture depth images at the resolution of 240 X 424. We apply the holing filters,48

spatial filters, and temporal filters from the librealsense utilities. We crop the 60 pixels on the left49

and 46 pixels on the right before down-sampling the depth image to 48 X 64 resolution. The visual50

embedding is sent to the rnn script using ROS message at 10Hz. For the script that runs rnn-mlp, we51

fix the policy frequency to 50Hz. In each loop, we update the robot proprioception and the visual52

embedding using ROS subscriber and compute the policy output. Then we clip the action by a range53

computed using the current joint position and velocity at a maximum torque of 25Nm, and send the54

position control command to the ROS package, with Kp = 50.0,Kd = 1.0.55

5 Detailed Comparison Studies on RL Pre-Training with Soft Dynamics56

Constraints57

We compare our method with RND and the Oracles w/o Soft Dyn. Our method trained with soft58

dynamics constraints is the only method that can complete climbing and lepaing skills. As shown in59

Figure 1 of the supplementary, except for crawling, RND fail to learn successful maneuvers to achieve60

climbing, leaping, and tilting. Although the Oracles w/o Soft Dyn learned to achieve crawl and tilt61

skills, the policy trained on climb and leap failed to learn accurate timing to start the maneuver.62
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