
Fast and Sample Efficient Multi-Task Representation Learning
in Stochastic Contextual Bandits

Jiabin Lin 1 Shana Moothedath 1 Namrata Vaswani 1

Abstract

We study how representation learning can im-
prove the learning efficiency of contextual bandit
problems. We study the setting where we play
T contextual linear bandits with dimension d si-
multaneously, and these T bandit tasks collec-
tively share a common linear representation with
a dimensionality of r ≪ d. We present a new
algorithm based on alternating projected gradi-
ent descent (GD) and minimization estimator to
recover a low-rank feature matrix. Using the pro-
posed estimator, we present a multi-task learning
algorithm for linear contextual bandits and prove
the regret bound of our algorithm. We presented
experiments and compared the performance of
our algorithm against benchmark algorithms.

1. Introduction
Contextual Bandits (CB) represent an online learning prob-
lem wherein sequential decisions are made based on ob-
served contexts, aiming to optimize rewards in a dynamic
environment with immediate feedback. In CBs, the environ-
ment presents a context in each round, and in response, the
agent selects an action that yields a reward. The agent’s ob-
jective is to choose actions to maximize cumulative reward
over N rounds. This introduces the exploration-exploitation
dilemma, as the agent must balance exploratory actions to
estimate the environment’s reward function and exploitative
actions that maximize the overall return (Bubeck & Cesa-
Bianchi, 2012; Lattimore & Szepesvári, 2020). CB algo-
rithms find applications in various fields, including robotics
(Srivastava et al., 2014), clinical trials (Aziz et al., 2021),
communications (Anandkumar et al., 2011), and recom-
mender systems (Li et al., 2010).
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Multi-task representation learning is the problem of learning
a common low-dimensional representation among multiple
related tasks (Caruana, 1997). Multi-task learning enables
models to tackle multiple related tasks simultaneously, lever-
aging common patterns and improving overall performance
(Zhang & Yang, 2018; Wang et al., 2016; Thekumparampil
et al., 2021). By sharing knowledge across tasks, multi-
task learning can lead to more efficient and effective models,
especially when data is limited or expensive. Multi-task ban-
dit learning has gained interest recently (Deshmukh et al.,
2017; Fang & Tao, 2015; Cella et al., 2023; Hu et al., 2021;
Yang et al., 2020; Lin & Moothedath, 2024). Many applica-
tions of CBs, such as recommending movies or TV shows
to users and suggesting personalized treatment plans for
patients with various medical conditions, involve related
tasks. These applications can significantly benefit from
this approach, as demonstrated in our empirical analysis in
Section 6. This paper investigates the benefit of using repre-
sentation learning in CBs theoretically and experimentally.

While representation learning has demonstrated remarkable
success across various applications (Bengio et al., 2013),
its theoretical understanding still remains underexplored. A
prevalent assumption in the literature is the presence of a
shared common representation among different tasks. (Mau-
rer et al., 2016) introduced a general approach to learning
data representation in both multi-task supervised learning
and learning-to-learn scenarios. (Du et al., 2020) delved
into few-shot learning through representation learning, mak-
ing assumptions about a common representation shared be-
tween source and target tasks. (Tripuraneni et al., 2021)
specifically addressed the challenge of multi-task linear
regression with low-rank representation, presenting algo-
rithms with robust statistical rates. Related parallel works
address the same mathematical problem (referred to as low-
rank column-wise compressive sensing) or its generalization
(called low-rank phase retrieval) and provide better - sample-
efficient and faster - solutions (Nayer et al., 2019; Nayer &
Vaswani, 2021; 2023; Collins et al., 2021; Vaswani, 2024).

Motivated by the outcomes of multi-task learning in su-
pervised learning, numerous recent works have explored
the advantages of representation learning in the context of
sequential decision-making problems, including reinforce-
ment learning (RL) and bandit learning. Our paper studies

1



Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits

the multi-task bandit problem similar to the setting in (Hu
et al., 2021; Yang et al., 2020; Cella et al., 2023). We con-
sider T tasks of d-dimensional (infinte-arm) linear bandits
are concurrently learned for N rounds. The expected re-
ward for choosing an arm x for a context c and task t is
ϕt(x, c)

⊤θ⋆t , where θ⋆t is an unknown linear parameter and
ϕt(x, c) ∈ Rd is the feature vector. To take advantage of the
multi-task representation learning framework, we assume
that θ⋆t ’s lie in an unknown r-dimensional subspace of Rd,
where r is much smaller compared to d and T (Hu et al.,
2021; Yang et al., 2020). The dependence on the tasks makes
it possible to achieve a regret bound better than solving each
task independently. A naive adaptation of the optimism
in the face of uncertainty principle (OFUL) algorithm in
(Abbasi-Yadkori et al., 2011) will lead to an Õ(Td

√
N)

regret for solving the T tasks individually. By leveraging
the common representation structure of these tasks, we pro-
pose an alternating projected GD and minimization-based
estimator to solve the multi-task CB problem. We provide
the convergence guarantee for our estimator and the regret
bound of the multi-task learning algorithm and, through ex-
tensive simulations, validate the advantage of the proposed
approach over the state-of-the-art approaches.

2. Problem Setting
Notations: For any positive integer n, the set [n]
represents {1, 2, · · · , n}. For any vector x, we use
∥x∥ to denote its ℓ2 norm. For a matrix A, we use
∥A∥ to denote the 2-norm of A, ∥A∥F to denote the
Frobenius norm, and ∥A∥max = maxi,j |Ai,j | to denote
the max-norm. ⊤ denotes the transpose of a matrix or
vector, while |x| represents the element-wise absolute
value of a vector x. The symbol In (or sometimes just
I) represents the n × n identity matrix. We use ek to
denote the k−th canonical basis vector, i.e., the k−th
column of I . For any matrixA, ak denotes its k−th column.

2.1. Problem Formulation

This section introduces the standard linear bandit problem
and extends it to our specific setting: representation learning
in linear bandits with a low-rank structure. We denote the
action set as A and the context set as C. The environment
interacts through a fixed but unknown reward function y :
X × C → R. In standard linear bandits, at each round n ∈
[N ], the agent observes a context cn ∈ C and chooses an
action xn ∈ X . For every combination of context and action
(x, c), there is a corresponding feature vector ϕ(x, c) ∈ Rd.
When the agent chooses an action xn for a given context cn,
it receives a reward yn ∈ R, defined as

yn := ⟨ϕ(xn, cn), θ⋆⟩+ ηn,

where θ⋆ ∈ Rd represents the unknown but fixed reward
parameter, and ηn denotes a zero-mean σ-Gaussian additive
noise. The term ⟨ϕ(xn, cn), θ⋆⟩ represents the expected
reward for selecting action xn in context cn at round n,
i.e., rn = E[yn] = ⟨ϕ(xn, cn), θ⋆⟩. The goal of the agent
is to choose the best action x⋆n at each round n ∈ [N ]

to maximize the cumulative reward
∑N
n=1 yn, or in other

words, to minimize the cumulative regret:

RN =

N∑
n=1

⟨ϕ(x⋆n, cn), θ⋆⟩ −
N∑
n=1

⟨ϕ(xn, cn), θ⋆⟩,

where x⋆n represents the best action at round n for context
cn, and xn denotes the action chosen by the agent.

This paper explores representation learning in linear ban-
dits with a low-rank structure. We consider a scenario
where t ∈ [T ] tasks deal with related sequential decision-
making problems. For every round n ∈ [N ], each task
t observes a context cn,t ∈ Cn,t and chooses an action
xn,t ∈ An,t. After an action is chosen for each task t at
round n, the environment provides a reward yn,t, where
yn,t := ⟨ϕ(xn,t, cn,t), θ⋆t ⟩ + ηn,t and θ⋆t ∈ Rd is the
unknown reward parameter for task t. The goal is to
choose the best action xn,t for each task t ∈ [T ] and
each round n ∈ [N ] to maximize the cumulative reward∑N
n=1

∑T
t=1 yn,t, which is equivalent to minimizing the

cumulative (pseudo) regret

RN,T=
N∑
n=1

T∑
t=1

⟨ϕ(x⋆n,t, cn,t), θ⋆t ⟩ −
N∑
n=1

T∑
t=1

⟨ϕ(xn,t, cn,t), θ⋆t ⟩,

where x⋆n,t denotes the best action for task t at round n given
context cn,t. We assume that Θ⋆ = [θ⋆1 · · · θ⋆T ] is a rank-
r matrix where r ≪ min{d, T}. This low-rank structure
improves collaborative learning among the agents, which
enhances the overall learning efficiency.

2.2. Preliminaries

Let Θ⋆ SVD
= B⋆ΣV ⋆ := B⋆W ⋆ denote its reduced (rank

r) SVD, i.e., B⋆ and V ⋆⊤ are matrices with orthonormal
columns (basis matrices), B⋆ is d×r, V ⋆ is r×T , and Σ is
an r× r diagonal matrix with non-negative entries (singular
values). We let W ⋆ := ΣV ⋆. We use σ⋆max and σ⋆min to
denote the maximum and minimum singular values of Σ
and we define its condition number as κ := σ⋆max/σ

⋆
min. We

now detail the assumptions we use in our analysis.

Assumption 2.1. (Gaussian design and noise) We assume
ϕ(xn,t, cn,t) follows an i.i.d. standard Gaussian distribu-
tion. Moreover, the additive noise variables ηn,t follow i.i.d.
Gaussian distribution with a zero mean and variance σ2

η .

Throughout, we work in the setting of random design linear
regression, and in this context, Assumption 2.1 is standard
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(Cella et al., 2023; Cella & Pontil, 2021). We note that while
the assumption on ϕ(xn,t, cn,t) holds for the first epoch in
our algorithm, i.e., during random exploration, it is restric-
tive for future epochs. Let the feature vector ϕ(xn,t, cn,t)
has a mean value of µxn,t,cn,t

. The reward yn,t is given by
the equation yn,t = (ϕ(xn,t, cn,t)−µxn,t,cn,t

)⊤θ⋆t +ηn,t+
µxn,t,cn,t

θ⋆t , where the noise term is ηn,t + µxn,t,cn,t
θ⋆t .

Such a (re)formulation allows us to relax Assumption 2.1
into a scenario where ϕ(xn,t, cn,t) follows an independent
Gaussian distribution with a mean of µxn,t,cn,t

.

Assumption 2.2 (Incoherence of right singular vectors). We
assume that ∥w⋆t ∥2 ⩽ µ2 r

T σ
⋆
max

2 for a constant µ ⩾ 1.

Recovering the feature matrix is impossible without any
structural assumption. Notice that yts are not global func-
tions of Θ⋆: no yn,t is a function of the entire matrix Θ⋆. We
thus need an assumption that enables correct interpolation
across the different columns. The following incoherence
(w.r.t. the canonical basis) assumption on the right singu-
lar vectors suffices for this purpose. Such an assumption
on both left and right singular vectors was first introduced
in (Candes & Recht, 2008) and used in recent works on
representation learning (Tripuraneni et al., 2021).

Assumption 2.3. (Common Feature Extractor). There ex-
ists a linear feature extractor denoted as B⋆ ∈ Rd×r, along
with a set of linear coefficients {wt}Tt=1 such that the ex-
pected reward of the t-th task at the n-th round is given by
E[yn,t] = ⟨ϕ(xn,t, cn,t), B⋆w⋆t ⟩, where Θ⋆ = B⋆W ⋆.

Assumption 2.3 is our main assumption, which assumes
the existence of a common feature extractor for the reward
parameter Θ⋆. Because of this we can write Θ⋆ = B⋆W ⋆,
where W ⋆ = [w⋆1 , w

⋆
2 , . . . , w

⋆
T ]. This assumption is used

in many earlier works on representation learning, including
(Yang et al., 2020; Du et al., 2020; Hu et al., 2021).

2.3. Contributions

In this paper, we proposed a novel alternating GD and mini-
mization estimator for representation learning in linear ban-
dits in the presence of a common feature extractor. Our
algorithm builds upon the recently introduced technique
known as alternating gradient descent and minimization (alt-
GDmin) for low-rank matrix learning (Nayer & Vaswani,
2023; Vaswani, 2024). Our work introduces two key ex-
tensions: (i) We adapt the AltGDMin approach to address
sequential learning problems, specifically bandit learning,
departing from static learning scenarios. Hence our focus is
on optimizing the selection of actions in addition to learning
unknown parameters from observed data. (ii) We account
for noisy observed data, a common model in learning mod-
els, rather than non-noisy observations.

While there have been many recent works on multi-task
learning for linear bandits (Hu et al., 2021; Yang et al.,

2020; Cella et al., 2023; Tripuraneni et al., 2021), those
works either assume an optimal estimator that can solve the
non-convex cost function in Eq. (1) or considers a convex re-
laxation of the original cost function (Du et al., 2020; Cella
et al., 2023). We propose a sample and time-efficient estima-
tor to learn the feature matrix. Our approach is GD-based,
which is known to be much faster than convex relaxation
methods (Cella et al., 2023; Du et al., 2020) and provides
a sample-efficient estimation with guarantees. We prove
that the alternating GD and minimization estimator achieves
ϵ−optimal convergence with the number of samples of the
order of (d+T )r3 log(1/ϵ) and order NTdr log(1/ϵ) time,
provided the noise-to-signal ratio is bounded. Using the
proposed estimator, we propose a multitask bandit learning
algorithm. We provide the regret bound for our algorithm.
We validated the advantage of our algorithm through nu-
merical simulations on synthetic and real-world MNIST
datasets and illustrated the advantage of our algorithm over
existing state-of-the-art benchmarks.

3. Related Work
Multi-task supervised learning. Multi-task representation
learning is a well-studied problem that dates back to at least
(Caruana, 1997; Thrun & Pratt, 1998; Baxter, 2000). Em-
pirically, representation learning has shown its great power
in various domains (Bengio et al., 2013). The linear setting
(multi-task linear regression or multi-task linear represen-
tation learning with a low rank model on the regression
coefficients) was introduced in (Maurer et al., 2016; Tripu-
raneni et al., 2021; Du et al., 2020)

The above works required more samples per task than the
feature vector length, even while assuming a low-rank model
on the regression coefficients’ matrix. In interesting paral-
lel works (Nayer & Vaswani, 2023; Collins et al., 2021), a
fast and communication-efficient GD-based algorithm that
was referred to as AltGDmin and FedRep, respectively, was
introduced for solving the same mathematical problem that
multi-task linear regression or multi-task linear represen-
tation learning solves. Follow-up work (Vaswani, 2024)
improved the guarantees for AltGDmin while also simpli-
fying the proof. AltGDmin and FedRep algorithms are
identical except for the initialization step. AltGDmin uses
a better initialization and hence also has a better sample
complexity by a factor of r. A phaseless measurements
generalization of this problem, referred to as low-rank phase
retrieval, was studied in (Nayer et al., 2019; 2020; Nayer &
Vaswani, 2021; 2023). These works were motivated by ap-
plications in dynamic MRI (Babu et al., 2023) and dynamic
Fourier ptychography (Jagatap et al., 2020).

The primary emphasis of all the above works is on the
statistical rate for multi-task supervised learning and does
not address the exploration problem in online sequential
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decision-making problems such as bandits and RL.

Multi-task RL learning. Multi-task learning in RL do-
mains is studied in many works, including (Taylor & Stone,
2009; Parisotto et al., 2015; D’Eramo et al., 2024; Arora
et al., 2020). (D’Eramo et al., 2024) demonstrated that rep-
resentation learning has the potential to enhance the rate
of the approximate value iteration algorithm. (Arora et al.,
2020) proved that representation learning can reduce the
sample complexity of imitation learning. Both works re-
quire a probabilistic assumption similar to that in (Maurer
et al., 2016) and the statistical rates are of similar forms as
those in (Maurer et al., 2016).

Multi-task bandit learning. The most closely related
works to ours are the recent papers on multitask bandit
learning (Hu et al., 2021; Yang et al., 2020; Cella et al.,
2023). (Hu et al., 2021) considered a concurrent learn-
ing setting with T linear bandits with dimension d that
share a common r-dimensional linear representation. They
proposed an optimism in the face of uncertainty principle
(OFUL) algorithm that leverages the shared representation
to achieve a Õ(T

√
drN + d

√
rNT ) regret bound, where

N is the number of rounds per task. The algorithm in (Hu
et al., 2021) requires solving a least-squares problem; how-
ever, the problem is nonconvex due to the rank condition
(r ≪ min{d, T}). (Yang et al., 2020) considered the finite
and infinite action case and proposed explore-then-commit
algorithms. For the finite case, they utilize the estimator
from (Du et al., 2020), and in the infinite case, they proposed
a MoM-based estimator with Õ(Tr

√
N + d1.5r

√
NT ) re-

gret bound. However, these works assumed that the repre-
sentation learning problem can be solved. (Du et al., 2020)
mentions that it should be possible to solve the original non-
convex problem (Eq. (1)) by solving a trace norm-based
convex relaxation of it. (Cella et al., 2023) proposed a low-
rank matrix estimation-based algorithm using trace-norm
regularization and achieved Õ(T

√
rN +

√
rNTd) regret

bound under a restricted strong convexity condition when
the rank is unknown. However, there are no known guaran-
tees to ensure that the trace norm-based relaxation solution
is indeed also a solution to the original low-rank representa-
tion learning problem. The regret analysis in these works
assumed solvability and optimality of the nonconvex prob-
lem. We focus on GD-based solutions since these are known
to be much faster than convex relaxation methods (Cella
et al., 2023; Du et al., 2020) and provide a sample-efficient
estimator with guarantees.

Low rank and sparse bandits. Some previous works also
studied low rank and sparse bandits (Kveton et al., 2017).
(Lale et al., 2019) considered a setting where the context
vectors share a low-rank structure. Specifically, in their
setting, the context vectors consist of two parts, i.e. ϕ̂ =
ϕ+ ψ, so that ϕ is from a hidden low-rank subspace and is

Algorithm 1 LRRL-AltGDMin Algorithm

1: Let M = ⌈log2 log2N⌉, G0 = 0, GM = N , Gm =

N1−2−m

for 1 ⩽ m ⩽M − 1, let θ̂(0)
t ← 0

2: for m← 1, · · · ,M do
3: for n← Gm−1 + 1, · · · ,Gm do
4: For each task t ∈ [T ]: choose action

x′n,t = argmaxϕ(x,cn,t)∈Ψt
ϕ(xn,t, cn,t)

⊤θ̂(m-1)
t ,

obtain yn,t, where Ψt = {ϕ(x, cn,t) : x ∈ X},
where ϕ(x, cn,t) ∼ N (µx,c, I).

5: end for
6: Compute Y (m)

t = [yGm−1+1,t, · · · , yGm,t]⊤, Φ(m)
t =

[ϕ(x′Gm−1+1,t, cGm−1+1), · · · , ϕ(x′Gm,t, cGm)]⊤ for
t ∈ [T ]

7: if m = 1 then
8: Sample-split: Partition the measurements and

measure matrices into 2L + 1 equal-sized dis-
joint sets: one for initialization and 2L sets for
the iterations. Denote these by Y (m)

t,τ , Φ(m)
t,τ , τ =

00, 01, · · · 2L.
9: Initialize B̂(0) using Algorithm 2

10: Compute B̂(m) and Ŵ (m) using Algorithm 3
11: end if
12: if m ⩾ 2 then
13: Sample-split: Partition the measurements and

measure matrices into 2L equal-sized disjoint sets.
Denote these by Y (m)

t,τ , Φ(m)
t,τ , τ = 01, · · · 2L.

14: Compute B̂(m) and Ŵ (m) using Algorithm 3
15: end if
16: For each task t ∈ [T ]: let θ̂(m)

t = B̂(m)ŵ(m)
t

17: end for

i.i.d. drawn from an isotropic distribution. Works (Lu et al.,
2021; Jun et al., 2019) studied bilinear bandits with low
rank structure. They focus on estimating a low rank matrix
Θ⋆ when the reward function is given by x⊤Θ⋆y, where
x, y denote the two actions chosen at each round. Sparse
interactive learning settings (e.g., bandits and reinforcement
learning) are also studied in the literature (Cella & Pontil,
2021; Calandriello et al., 2014; Hao et al., 2020; 2021).

4. The Proposed Algorithm: LRRL-AltGDMin
This section presents our proposed algorithm (see Algo-
rithm 1). We refer to it as the Alternating Gradient Descent
(GD) and Minimization algorithm for Low-Rank Represen-
tation Learning in linear bandits (LRRL-AltGDMin). This
builds on the AltGDmin algorithm of (Nayer & Vaswani,
2023) mentioned earlier. Our algorithm uses a doubling
schedule rule (Gao et al., 2019; Han et al., 2020; Simchi-
Levi & Xu, 2019). We update our estimation of Θ⋆ only
after completing an epoch, utilizing solely the samples col-
lected within that epoch. Our algorithm consists of three
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Algorithm 2 Spectral Initialization for LRRL-AltGDMin

1: Input: Y (1)
t,00, Φ(1)

t,00, for t ∈ [T ]

2: Parameters: Multiplier in specifying α for init step, C̃
3: Using Y (1)

t ≡ Y (1)
t,00, Φ(1)

t ≡ Φ(1)
t,00, set α =

C̃
G1T

∑G1,T
n=1,t=1 y

2
n,t

4: yt,trunc(α) := Y (1)
t ◦ 1{|Y (1)

t |⩽
√
α}

5: Θ̂0 := 1
G1
∑T
t=1 Φ

(1)
t

⊤
yt,trunc(α)e

⊤
t

6: Set B̂(0) ← top-r-singular-vectors of Θ̂0

Algorithm 3 GD-Minimization for LRRL-AltGDMin

1: Input: Y (m)
t,τ , Φ(m)

t,τ for t ∈ [T ], τ = 01, · · · 2L, B̂(m-1)

(from Algorithm 1)
2: Parameters: GD step size, γ; Number of iterations, L
3: Set B0 ← B̂(m-1)

4: for ℓ = 1 to L do
5: Let B ← Bℓ−1

6: Update wt,ℓ, θt,ℓ: For each t ∈ [T ], set wt,ℓ ←
(Φ(m)

t,lB)†Y (m)
t,l and set θt,ℓ ← Bwt,ℓ

7: Gradient w.r.t B: With Y (m)
t ≡ Y (m)

t,L+ℓ,
Φ(m)
t ≡ Φ(m)

t,L+ℓ, compute ∇Bf(B,Wℓ) =∑T
t=1 Φ

(m)
t

⊤
(Φ(m)

t Bwt,ℓ − Y
(m)
t )w⊤

t,ℓ

8: GD step: Set B̂+ ← B − γ
Gm−Gm−1

∇Bf(B,Wℓ)

9: Projection step: Compute B̂+ QR
= B+R+

10: Set Bℓ ← B+

11: end for
12: Set B̂(m) ← BL and set Ŵ (m) ←WL

main components: an exploration phase (data collection),
initialization, and alternating GD and minimization steps.
The pseudocode of our algorithm is presented in Algo-
rithm 1.

We partition the learning horizon N into M + 1 epochs,
G0,G1, . . . ,GM , where G0 = 0 and GM = N . Our al-
gorithm is based on a greedy strategy. At each round
n, each task t ∈ [T ] independently chooses an action
x′n,t = argmaxϕ(x,cn,t)∈Ψt

ϕ(xn,t, cn,t)
⊤θ̂(m-1)

t , which ef-
fectively aiming to maximize the expected reward. After
choosing these actions, each task receives a correspond-
ing reward yn,t. After completing (Gm − Gm−1) rounds
to collect data, the algorithm then proceeds to update the
estimated parameters, which is achieved by finding a matrix
Θ̂ = B̂Ŵ that minimizes the cost function, defined as

fm(B̂, Ŵ )=

Gm∑
n=Gm−1+1

T∑
t=1

∥∥∥yn,t − ϕ(xn,t, cn)B̂ŵt∥∥∥2 . (1)

Here B̂ ∈ Rd×r and Ŵ = [ŵ1, . . . , ŵT ] ∈ Rr×T , and
Θ̂ = B̂Ŵ is the estimate of the parameter Θ⋆ in the m-the

epoch. This process effectively enhances the accuracy of
future action selections.

Because of the non-convexity of the cost function
fm(B̂, Ŵ ), our approach needs careful initialization. We
draw inspiration from the spectral initialization idea. The
process begins by calculating the top r singular vectors of

Θ̂0,full =
1

G1
[(Φ(1)

1

⊤
Y (1)
1 ), · · · , (Φ(1)

T

⊤
Y (1)
T )]

=
1

G1

T∑
t=1

G1∑
n=1

ϕ(xn,t, cn)yn,te
⊤
t

Here, Φ(m)
t , for t ∈ [T ], is the feature matrix

obtained by stacking the feature vectors correspond-
ing to task t in the m-the epoch, i.e., Φ(m)

t =
[ϕ(xGm−1+1,t, cGm−1+1), · · · , ϕ(xGm,t, cGm)]⊤. Upon care-
ful analysis of this matrix, it can be observed that the ex-
pected value of its t−th task equals θ⋆t and E[Θ̂0,full] = Θ⋆.
However, the large magnitude of the sum of independent
sub-exponential random variables, which is defined by a
maximum sub-exponential norm maxt ∥θ⋆t ∥ ⩽ µ

√
r
T σ

⋆
max,

causes a challenge. This magnitude limits the ability to
bound

∥∥∥Θ̂0,full −Θ⋆
∥∥∥ within the desired sample complex-

ity. In order to solve this issue, we apply a truncation strat-
egy borrowed from (Nayer & Vaswani, 2023). This involves
initializing B̂(0) as the top r left singular vectors of

Θ̂0 =
1

G1

T∑
t=1

G1∑
n=1

ϕ(xn,t, cn)yn,te
⊤
t 1{y2t,n⩽α}

=
1

G1

T∑
t=1

ϕ(xn,t, cn)yt,trunc(α)e
⊤
t

where α = C̃
G1T

∑G1,T
n=1,t=1 y

2
n,t, C̃ = 9κ2µ2, and

yt,trunc(α) := Y (1)
t ◦ 1{|Y (1)

t |⩽
√
α}. Using Singular Value

Decomposition (SVD), we extract the top r left singular
vectors from Θ̂0 to obtain our initial estimate B̂(0). This
method efficiently filters large values while preserving oth-
ers and provides a good starting point that ensures a robust
guarantee in parameter estimation.

After finding a good initial point, the algorithm performs
the Alternating Gradient Descent optimization method
to update the estimated parameter. The goal is to
minimize the squared-loss cost function f(B,W ) =∑Gm
n=Gm−1+1

∑T
t=1 ∥yn,t − ϕ(xn,t, cn)Bwt∥

2 by optimiz-
ing the estimated reward parameter matrix for all tasks. The
process proceeds in the following manner. At each new
iteration ℓ,

• Min-W : Given that wt appears only in the t−th
term of f(B,W ), optimizing each wt for the function
wt ← argminw̃t

∥∥Y (m)
t − Φ(m)

t Bw̃t
∥∥2 individually is
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much simpler than optimizing W for the function
W ← argmin

W̃

∥∥∥f(B, W̃ )
∥∥∥. Consequently, we up-

date the estimatewt by calculatingwt = (Φ(m)
t B)†Y (m)

t

for every task t ∈ [T ].

• ProjGD-B: a single step of the Gradient Descent
(GD) is performed to update B, which is given by
B̂+ ← B − γ∇Bf(B,W ). The updated matrix B+

is obtained using QR decomposition, represented as

B̂+ QR
= B+R+.

Through this iterative process, the algorithm efficiently up-
dates the estimated parameters, guaranteeing an optimized
solution.

5. Analysis of LRRL-AltGDMin
We have the following guarantee for our initialization algo-
rithm presented in Algorithm 2.

Theorem 5.1. Assume that Assumptions 2.1 and 2.2 hold.
Assume that σ2

η ⩽ c
δ20

r2κ4G1 ∥θ
⋆
t ∥2. Then with probability at

least 1− exp(log T − cG1)− exp(d− cδ20G1T
r2µ2κ4 ), we have

SD(B̂(0), B⋆) ⩽ δ0.

Observe that Theorem 5.1 needs the noise-to-signal (NSR)

ratio
σ2
η

∥θ⋆t ∥2
⩽ c

r2 , where c < 1. This is necessary to

demonstrate that the spectral initialization in Algorithm 2
produces a sufficiently good initialization.

In order to show that B̂(0) is a good enough initialization,
we need to show that SD(B̂(0), B⋆) ⩽ δ0 for a constant
δ0 < 1 that is small enough. This is typically done using
a sinΘ theorem, e.g., Davis-Kahan or Wedin (Chen et al.,
2020), which uses a bound on the error between Θ̂0 and a
matrix whose span of top r singular vectors equals that of
B⋆. Such a matrix may be E[Θ̂0] or something else that
can be shown to be close to Θ̂0. For our approach, it is not
easy to compute E[Θ̂0] because the threshold, α, used in
the indicator function depends on all the y2n,t. Our approach
to solving this by using the sample-splitting idea: use a
different independent set of measurements to compute α
than those used for the rest of Θ̂0. Since this is a one-time
step, it does not change the sample complexity order. We
present the proof of Theorem 5.1 in Appendix B.2.

Theorem 5.2. Assume that Assumptions 2.1 and 2.2 hold,
SD(B,B⋆) ⩽ δℓ, and σ2

η ⩽ r
T δ

2
ℓσ

⋆
min

2. If δℓ ⩽ 0.02√
rκ2 ,

γ =
cγ

σ⋆
max

2 with cγ ⩽ 0.5, and if

(Gm − Gm−1)T ⩾ Cκ4µ2dr and

(Gm − Gm−1) ≳ max(log d, log T, r),

then with probability at least O(1− d−10),

SD(B+, B⋆) ⩽ δℓ+1 := (1− 0.4µcγ
κ2

)δℓ.

The above result proves that the error decays exponentially.
We present the proof in Appendix B.1. Using Theorems 5.1
and 5.2, we have the guarantee below on estimation error.

Theorem 5.3. Assume that Assumptions 2.1 and 2.2
hold and σ2

η ⩽ c∥θ⋆t ∥
2

r3κ6G1 . Set γ = 0.4
σ⋆
max

2 and L =

Cκ2 log( 1
max(ϵ,ϵnoise)

). If

(Gm − Gm−1)T ⩾ Cκ6µ2(d+ T )r(κ2r2 + log(
1

max(ϵ, ϵnoise)
))

and

Gm−Gm−1 ⩾ Cmax(log d, log T, r) log(
1

max(ϵ, ϵnoise)
),

then with probability at least O(1− d−10),

SD(B,B⋆) ⩽ max(ϵ, ϵnoise) and

∥θ̂t − θ⋆t ∥ ⩽ max(ϵ, ϵnoise)∥θ⋆t ∥ for all t ∈ [T ],

where ϵnoise = Cκ2
√
NSR, NSR :=

σ2
η

mint ∥θ⋆t ∥2 . The
time complexity is (Gm − Gm−1)Tdr · L = Cκ2(Gm −
Gm−1)Tdr log(

1
max(ϵ,ϵnoise)

). The communication com-
plexity is dr per node per iteration.

This result shows that the error decays exponentially until
it reaches the (normalized) “noise-level” ση2/∥θ⋆t ∥2, but
saturates after that. We present the proof in Appendix B.3.

Sample complexity. To understand the necessary lower
bound on (Gm − Gm−1)T , it is crucial to consider it in
terms of the sample complexity. This can be performed by
assuming that d ≈ T approximately. When logarithmic fac-
tors are ignored and considering κ and µ as constant values,
our results indicate that an order value of r3 samples per
epoch is sufficient. Without making the low-rank assump-
tion and without using our algorithm, if we were to perform
matrix inversion for Φ(m)

t in order to extract each vector θ⋆t
from Y (m)

t , we would need at least Gm−Gm−1 ≥ d samples
per epoch, instead of just r3. If the low-rank assumption
holds and r ≪ d (e.g., r = log d), our approach signifi-
cantly lowers the amount of sample complexity needed in
comparison to the requirement for inverting Φ(m)

t .

Time and communication complexity. When analyzing
the time complexity of a given m-th epoch, we start by
calculating the computation time needed for the initializa-
tion step. To calculate Θ0, it is necessary to give a time
of order (Gm − Gm−1)Td. Furthermore, the time com-
plexity of the r-SVD step dTr times the number of itera-
tions required. An important observation is that to obtain

6
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an initial estimate of the span of B∗ that is δ0-accurate,
where δ0 = c

κ2 , it is sufficient to use an order log(κ)
number of iterations. Therefore, the total complexity of
this initialization phase can be expressed as O(dT ((Gm −
Gm−1) + r) log(κ)) = O((Gm − Gm−1)Td log κ), given
that (Gm−Gm−1) ⩾ r. The time required for each gradient
computation is (Gm − Gm−1)Tdr. The QR decomposition
process requires a time complexity of order dr2. Addition-
ally, the time required to update the columns of matrix W
using the least squares method is O((Gm − Gm−1)Tdr).
The number of iterations of these steps for each epoch
can be expressed as L = O(κ2 log( 1

max(ϵ,ϵnoise)
)).

In summary, the overall time complexity for the pro-
cess can be determined as O((Gm − Gm−1)Td log(κ) +
max((Gm−Gm−1)Tdr, dr

2, (Gm−Gm−1)Tdr)·M ·L) =
O(κ2M(Gm − Gm−1)Tdr log(

1
max(ϵ,ϵnoise)

) log(κ)).

The communication complexity for each task in each it-
eration is of the order of dr. Hence, the total is O(dr ·
κ log( 1

max(ϵ,ϵnoise)
)).

We now present the regret bound for our algorithm.
Theorem 5.4. Assume that Assumptions 2.1 and 2.2
hold and σ2

η ⩽ c∥θ⋆t ∥
2

r3κ6G1 . Set γ = 0.4
σ⋆
max

2 and L =

Cκ2 log( 1
max(ϵ,ϵnoise)

). If

(Gm − Gm−1)T ⩾ Cκ6µ2(d+ T )r(κ2r2 + log(
1

max(ϵ, ϵnoise)
))

and

Gm−Gm−1 ⩾ Cmax(log d, log T, r) log(
1

max(ϵ, ϵnoise)
),

then with probability at least O(1− δ − d−10), the upper
bound of cumulative regret for Algorithm 1 is

RN,T ⩽ 2µσ⋆max max(ϵ, ϵnoise)

√
rNT log

1

δ
(1 + log logN).

Proof of Theorem 5.4 and supporting results are presented in
Appendix C. Our sample complexity on source task scales
sublinearly with T and improves the linear dependence in
(Yang et al., 2020), while the target sample complexity
scales with k same as in (Yang et al., 2020).

6. Simulations
In this section, we present the experimental results of our
LRRL-AltGDMin algorithm on both synthetic and real-
world MNIST datasets. We performed a comparative analy-
sis of our algorithm with the Method-of-Moments (MoM)
algorithm proposed in (Yang et al., 2020; Tripuraneni et al.,
2021), the trace-norm convex relaxation-based approach in
(Cella et al., 2023), along with a baseline naive approach.
The naive approach utilizes the Thompson Sampling (TS)
algorithm to solve T tasks independently. All experiments
were conducted using Python.

6.1. Datasets

Synthetic data: We set the parameters as d = 100, and
K = 5. We generate the entries of B⋆ by orthonormal-
izing an i.i.d standard Gaussian matrix. The entries of
W ⋆ ∈ Rr×T are generated from an i.i.d. Gaussian distribu-
tion. The matrices Φts were i.i.d. standard Gaussian. We
considered a noise model with a mean of 0 and a variance of
10−6 for the bandit feedback noise. The experiments were
averaged over 100 independent trials. The plots also include
the variance over the trials. In the synthetic experiment,
we also considered another dataset with a smaller problem
dimension d = 20 and K = 5.

MNIST data: We used the MNIST dataset to validate the
performance of our algorithm when implemented with real-
world data. We set the number of actionsK = 2 and created
a total of T =

(
10
2

)
tasks similar to (Yang et al., 2020). Each

task is characterized by a distinct pair (i, j), where 0 ⩽ i <
j ⩽ 9. The set of MNIST images that represent the digit
i is denoted as Di. For each round n ∈ [N ], we randomly
choose one image from the set Di and another image from
the set Dj for every task (i, j). The algorithm is presented
with two images, and it assigns a reward of 1 to the image
with the larger digit value and a reward of 0 to the other
image. The feature matrix of each image is transformed into
a feature vector ϕ ∈ R784 through vectorization. In order
to calculate the estimated reward, we add random Gaussian
noise with a mean of 0 and a variance of 10−6.

6.2. Results and Discussions

Estimation error. We compared the estimation perfor-
mance of our proposed LRRL-AltGDMin estimator with
three existing approaches: (i) an alternating GD (LRRL-
AltGD) estimator, (ii) Method-of-Moments (MoM) based
estimator, and (iii) trace-norm convex relaxation-based
estimator. The LRRL-AltGD is based on the alternat-
ing gradient descent algorithm proposed in (Yi et al.,
2016) for solving the low-rank matrix completion prob-
lem. LRRL-AltGD alternatively solves for B̂ and Ŵ in
Eq. (1). The MoM estimator estimates the matrix B̂ us-
ing the top-r Singular Value Decomposition (SVD) of
Θ̂ = 1

NT

∑
n,t y

2
n,tϕ(xn,t, cn)ϕ(xn,t, cn)

⊤. Then, it pro-

ceeds to calculate the estimated matrix Ŵ through the
method of least squares estimator in order to determine the
values of Θ̂. The trace-norm technique relaxes the rank con-
straint to a trace-norm convex constraint and then iteratively
solves for the estimate Θ̂ and the regularizing parameter λ.
We initialized the LRRL-AltGD algorithm using our pro-
posed spectral initialization approach (Algorithm 2). This
is because spectral initialization guarantees a good initial-
ization for solving the nonconvex problem.

We plot the empirical average of ∥Θ − Θ⋆∥F /∥Θ⋆∥F at

7
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(a) Synthetic data: rank r = 2
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(b) Synthetic data: rank r = 4
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(c) Synthetic data: rank r = 8
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(d) MNIST data: rank r = 2
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(e) MNIST data: rank r = 4
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(f) MNIST data: rank r = 8
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(g) Synthetic data: rank r = 2
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(h) Synthetic data: rank r = 3
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(i) Synthetic data: rank r = 4

Figure 1: Synthetic data 1: We set the parameters as d = 100, K = 5, N = 200, and noise variance = 10−6. We considered M = 4
epochs each with 50 data samples each. We varied the number of tasks as T = 10, 25, 50, 75, 100. We also varied the rank of the feature
matrix as r = 2, 4, 8. As shown in the plots (Figures 1a, 1b, and 1c), our proposed approach outperforms the existing benchmarks.
MNIST data: Parameters are d = 784, K = 2, N = 5000, and noise variance = 10−6. We considered M = 5 epochs each with 1000
data samples each. We varied the number of tasks as T = 10, 45. We also varied the rank of the feature matrix as r = 2, 4, 8. The plots
for MNIST data are presented in Figures 1d, 1e, and 1f. Synthetic data 2: We consider a smaller problem dimension here and also
compare with the trace-norm relaxation method. In Figures 1g, 1h, and 1i, we set d = 20, K = 5, N = 40. We considered M = 4
epochs each with 10 data samples each, thus N = 40.

each iteration ℓ (Err-Θ in the plots) on the y-axis and the
iteration by the algorithm until GD iteration ℓ on the x-
axis. Averaging is over a 100 trials. We note that while
LRRL-AltGD, trace-norm, and LRRL-AltGDMin are iter-
ative algorithms, the MoM estimator is non-iterative. To
showcase the baselines in our plots, we also show the er-
ror achieved by the MoM estimator. Figure 2 presents the
error plot. Figure 2a presents the Err-Θ vs. GD iteration
for the first epoch. In Figure 2b, we present the Err-Θ vs.
epoch. We set a total of 5 epochs, including the zeroth epoch,
which is the initialization step. From the plots, we notice
that the proposed LRRL-AltGDMin estimator outperforms
both the benchmark approaches. Further, the estimation

error saturates close to 10−6. This can be explained using
our result, Theorem 5.3, which shows that the error decays
exponentially until it reaches the (normalized) “noise-level”
ση

2/∥θ⋆t ∥2, but saturates after that. Although the error in the
trace-norm approach improves as the iteration progresses,
the improvement is very minimal.

Cumulative regret. We compared the performance of our
proposed algorithm against three benchmarks: the Method-
of-Moments (MoM)-based representation learning algo-
rithm for bandits in (Yang et al., 2020; Tripuraneni et al.,
2021), a Thompson Sampling (TS) algorithm that solves
the T tasks separately, and the trace-norm relaxation-based

8
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(c) Error vs. Number of tasks
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(d) Error vs. GD iteration for epoch-1
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(e) Error vs. Epoch

Figure 2: Synthetic data 1: In Figures 2a and 2b, we set the parameters as d = 100, T = 100, K = 5, N = 200, and noise variance
= 10−6. We ran for L = 2000 GD iterations. We considered M = 4 epochs each with 50 data samples each. In Figure 2c, we
separately present the per-task regret vs. number of task plot for d = 100, K = 5, N = 100 (also shown in figure 1i) to showcase the
sublinear decay. Synthetic data 2: We consider a smaller problem dimension and also compare with the trace-norm relaxation method.
In Figures 2e and 2d, we set the parameters as d = 20, T = 30, K = 5, N = 40, and noise variance = 10−6. We ran for L = 2000
GD iterations. We considered M = 4 epochs each with 10 data samples each, thus N = 40. As expected, the estimation error for our
proposed algorithm saturates close to the noise.

approach in (Cella et al., 2023). As noted, the MoM-based
algorithm only estimates the unknown feature matrix Θ̂ in
the first epoch. In subsequent epochs, this Θ̂ is consistently
used to choose actions. On the other hand, the naive ap-
proach implements the TS method separately to determine
the estimate of θ⋆t for each task t ∈ [T ]. The approach
in (Cella et al., 2023) considered a trace-norm convex re-
laxation of the original non-convex cost function (Eqs. (4)
and (11) in (Cella et al., 2023)). Figure 1 presents the cumu-
lative regret plots for the different algorithms. We varied the
number of tasks and the rank of the feature matrix and com-
pared the results of our proposed algorithm with the MoM-
based, trace-norm relaxation, and TS-based algorithms. Our
plot demonstrates that as the number of tasks increases, the
advantage of the proposed LRRL-AltGDMin algorithm in-
creases compared to the naive approach, the MoM, and the
trace-norm relaxation approaches. We varied the rank r
and compared the performances. The performance of the
TS algorithm is unaltered by varying the rank. This is ex-
pected since the regret of the TS algorithm does not depend
on the rank. In all experiments, our algorithm consistently
outperforms the benchmarks, validating its effectiveness.

7. Conclusion and Future Work
In this work, we introduced an alternating gradient descent
and minimization algorithm for multi-task representation
learning in linear contextual bandits. Leveraging this esti-
mator, we developed a bandit algorithm and established its
regret bound for low dimensional contextual bandits. Our
approach consistently outperformed existing methods in
numerical experiments. Inspired by (Hu et al., 2021), as
part of our future work, we plan to extend our algorithm to
an upper confidence bound-based approach by computing
the confidence interval. Further, one of the very interest-
ing future directions is to relax the i.i.d standard Gaussian
assumption on the feature vectors. While this assumption
holds for the initial epoch during the random exploration, it
becomes restrictive when we perform greedy exploration in
subsequent epochs. As part of our future work, we intend to
explore methods for relaxing the i.i.d assumption for epochs
after the first one. One potential direction is to fix the B
estimate and solve only for W after epoch one, similar to
few-shot learning and online subspace tracking (Babu et al.,
2023).
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A. Preliminaries
Proposition A.1 (Theorem 2.8.1, (Vershynin, 2018)). Let X1, · · · , XN be independent, mean zero, sub-exponential random
variables. Then, for every g ⩾ 0, we have

P
{
|
N∑
i=1

Xi ⩾ g|
}
⩽ 2 exp

[
−cmin

(
g2∑N

i=1 ∥Xi∥2ψ1

,
g

maxi ∥Xi∥ψ1

)]
,

where c > 0 is an absolute constant.

Proposition A.2 (Chernoff bound for Gaussian). Let X ∼ N (µx, σ
2
x), then

P
{
X − µx ⩾ g

}
⩽ exp(− g2

2σ2
x

).

B. Guarantees for LRRL-AltGDMin Estimator
Define

G := B⊤Θ⋆

P := I −B⋆B⋆⊤

GradB := ∇Bf(B,W ) =

T∑
t=1

Φ(m)
t (Φ(m)

t Bwk − Y
(m)
t )w⊤

k

=

T∑
t=1

Gm∑
n=Gm−1

(yn,t − ϕ(xn,t, cn)⊤Bwt)ϕ(xn,t, cn)w⊤
t

=

T∑
t=1

Gm∑
n=Gm−1

ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤(θt − θ⋆t )w⊤

t + ηn,tϕ(xn,t, cn)w
⊤
t

GradB′ =

T∑
t=1

Gm∑
n=Gm−1

ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤(θ⋆t − θt)w⊤

t .

and gt = B⊤θ⋆t for all t ∈ [T ], SD(B1, B2) = ∥(I − B1B
⊤
1 )B2∥F as the Subspace Distance (SD) measure for basis

matrices B1, B2. Here, GradB represents the gradient that includes noise, while GradB′ represents the gradient without
noise.

Proposition B.1. Assume SD(B,B⋆) ⩽ δℓ. Then, with probability at least O(1− T exp(r − cϵ23(Gm − Gm−1))), it holds
that

∥M−1∥ ⩽ 1

0.9(Gm − Gm−1)
and ∥M−1B⊤Φ(m)

t
⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥ ⩽ 1.2ϵ3δℓ∥w⋆t ∥,

where M = B⊤Φ(m)
t

⊤
Φ(m)
t B.

Proof. To demonstrate the upper bound of ∥M−1∥, let’s consider a fixed z ∈ Sr. We then have

z⊤B⊤Φ(m)
t

⊤
Φ(m)
t Bz =

Gm∑
n=Gm−1

z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz.

Furthermore, we find that

E[⟨B⊤ϕ(xn,t, cn), z⟩2] = E[z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz] = z⊤B⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]Bz = 1,

12
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and also

E[z⊤B⊤ϕ(xn,t, cn)] = 0

Var[z⊤B⊤ϕ(xn,t, cn)] = E[z⊤B⊤ϕ(xn,t, cn)]
2

= E[z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz]

= z⊤B⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]Bz
= 1.

The summands are independent sub-exponential random variables with norm Kn ⩽ 1. We apply the sub-exponential
Bernstein inequality stated in Proposition A.1 by setting g = ϵ2(Gm − Gm−1). In order to implement this, we show that

g2∑Gm
n=Gm−1

K2
n

⩾
ϵ22(Gm − Gm−1)

2

(Gm − Gm−1)
= ϵ22(Gm − Gm−1)

g

maxnKn
⩾
ϵ2(Gm − Gm−1)

maxn 1
= ϵ2(Gm − Gm−1)

Therefore, for a fixed z ∈ Sr, with probability at least 1− exp(−cϵ22(Gm − Gm−1)),

z⊤B⊤Φ(m)
t

⊤
Φ(m)
t Bz − (Gm − Gm−1)I ⩾ −ϵ2(Gm − Gm−1).

Using epsilon-net over all z ∈ Sr adds a factor of exp(r). Thus, with probability at least 1− exp(r − cϵ22(Gm − Gm−1)),
we have minz∈Sr

∑Gm
n=Gm−1

z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz ⩾ (1− ϵ2)(Gm − Gm−1). Setting ϵ2 = 0.1, we obtain

∥M−1∥ = ∥(B⊤Φ(m)
t

⊤
Φ(m)
t B)−1∥

=
1

σmin(B⊤Φ(m)
t

⊤
Φ(m)
t B)

=
1

minz∈Sr
∑Gm
n=Gm−1

⟨B⊤ϕ(xn,t, cn), z⟩2

⩽
1

0.9(Gm − Gm−1)
.

To demonstrate the upper bound of ∥M−1B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥, it is necessary to first determine the upper bound of

∥B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥. Consider a fixed z ∈ Sr, we have

z⊤B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t =

Gm∑
n=Gm−1

(ϕ(xn,t, cn)
⊤Bz)⊤(ϕ(xn,t, cn)

⊤(I −BB⊤)θ⋆t ).

Furthermore, we find that

E[(ϕ(xn,t, cn)⊤Bz)⊤(ϕ(xn,t, cn)⊤(I −BB⊤)θ⋆t )] = z⊤B⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤](I −BB⊤)θ⋆t

= z⊤B⊤(I −BB⊤)θ⋆t

= 0,

and also we have

E[(ϕ(xn,t, cn)⊤Bz)⊤] = 0

Var((ϕ(xn,t, cn)
⊤Bz)⊤) = E[(ϕ(xn,t, cn)⊤Bz)⊤]2

= E[z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz]

= z⊤B⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]Bz
= 1

13
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and

E[ϕ(xn,t, cn)⊤(I −BB⊤)θ⋆t ] = 0

Var(ϕ(xn,t, cn)
⊤(I −BB⊤)θ⋆t ) = E[ϕ(xn,t, cn)⊤(I −BB⊤)θ⋆t ]

2

= E[θ⋆t
⊤(I −BB⊤)⊤ϕ(xn,t, cn)ϕ(xn,t, cn)

⊤(I −BB⊤)θ⋆t ]

= θ⋆t
⊤(I −BB⊤)⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤](I −BB⊤)θ⋆t

= ∥(I −BB⊤)θ⋆t ∥2

The summands are independent sub-exponential random variables with norm Kn ⩽ ∥(I − BB⊤)θ⋆t ∥. We apply the
sub-exponential Bernstein inequality stated in Proposition A.1 by setting g = ϵ3(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥. In order to
implement this, we show that

g2∑Gm
n=Gm−1

K2
n

⩾
ϵ23(Gm − Gm−1)

2∥(I −BB⊤)θ⋆t ∥2

(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥2
= ϵ23(Gm − Gm−1)

g

maxnKn
⩾
ϵ3(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥

maxn ∥(I −BB⊤)θ⋆t ∥
= ϵ3(Gm − Gm−1)

Therefore, for a fixed z ∈ Sr, with probability at least 1− exp(−cϵ23(Gm − Gm−1)),

z⊤B⊤Φ(m)
t

⊤
Φ(m)
t Bz ⩽ ϵ3(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥.

Using epsilon-net over all z ∈ Sr adds a factor of exp(r). Thus, with probability at least 1− exp(r− cϵ23(Gm−Gm−1)), we
have maxz∈Sr

∑Gm
n=Gm−1

(ϕ(xn,t, cn)
⊤Bz)⊤(ϕ(xn,t, cn)

⊤(I −BB⊤)θ⋆t ) ⩽ ϵ3(Gm− Gm−1)∥(I −BB⊤)θ⋆t ∥. Therefore,
we have

∥B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥ = max

z∈Sr
z⊤B⊤ϕ(xn,t, cn)

⊤ϕ(xn,t, cn)(I −BB⊤)θ⋆t

= max
z∈Sr

Gm∑
n=Gm−1

(ϕ(xn,t, cn)
⊤Bz)⊤(ϕ(xn,t, cn)

⊤(I −BB⊤)θ⋆t )

⩽ ϵ3(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥

By combining these results and using a union bound over all T vectors, we conclude that with probability at least
O(1− T exp(r − cϵ23(Gm − Gm−1))),

∥M−1B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥ ⩽ ∥M−1∥ × ∥B⊤Φ(m)

t
⊤
Φ(m)
t (I −BB⊤)θ⋆t ∥

⩽
1

0.9(Gm − Gm−1)
ϵ3(Gm − Gm−1)∥(I −BB⊤)θ⋆t ∥

⩽ 1.2ϵ3∥(I −BB⊤)θ⋆t ∥
⩽ 1.2ϵ3δℓ∥w⋆t ∥.

Lemma B.2. Assume σ2
η ⩽ r

T δ
2
ℓσ

⋆
max

2, and SD(B,B⋆) ⩽ δℓ, if δℓ ⩽ 0.02√
rκ

, and if m ⩾ Cmax(log T, log d, r), then with
probability at least O(1− exp(log T + r − cϵ23(Gm − Gm−1))), the following bounds hold:

1. ∥wt − gt∥ ⩽ 0.4δℓ
√

r
T σ

⋆
max

2. ∥wt∥ ⩽ 1.1µ
√

r
T σ

⋆
max

3. ∥W −G∥F ⩽ 0.4δℓ
√
rσ⋆max

4. ∥θt − θ⋆t ∥ ⩽ 1.4µδℓ
√

r
T σ

⋆
max
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5. ∥Θl −Θ⋆∥F ⩽ 1.4µδℓ
√
rσ⋆max

6. σmin(W ) ⩾ 0.9σ⋆min

7. σmax(W ) ⩽ 1.1σ⋆max

Proof. Consider the expression for wt, we obtain that

wt = (Φ(m)
t B)†Y (m)

t

= ((Φ(m)
t B)⊤(Φ(m)

t B))−1(Φ(m)
t B)⊤Y (m)

t

= (B⊤Φ(m)
t

⊤
Φ(m)
t B)−1B⊤Φ(m)

t
⊤
Y (m)
t

= (B⊤Φ(m)
t

⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
)Φ(m)

t BB
⊤θ⋆t + (B⊤Φ(m)

t
⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
)Φ(m)

t (I −BB⊤)θ⋆t

+ (B⊤Φ(m)
t

⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
)η(m)
t

= (B⊤Φ(m)
t

⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
Φ(m)
t B)B⊤θ⋆t + (B⊤Φ(m)

t
⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
)Φ(m)

t (I −BB⊤)θ⋆t

+ (B⊤Φ(m)
t

⊤
Φ(m)
t B)−1(B⊤Φ(m)

t
⊤
)η(m)
t

= gt +M−1B⊤Φ(m)
t

⊤
Φ(m)
t (I −BB⊤)θ⋆t +M−1B⊤Φ(m)

t
⊤
η(m)
t ,

where M = B⊤Φ(m)
t

⊤
Φ(m)
t B. Consequently, wt − gt = M−1B⊤Φ(m)

t
⊤
Φ(m)
t (I − BB⊤)θ⋆t +M−1B⊤Φ(m)

t
⊤
η(m)
t . The first

term is bounded in Proposition B.1. To bound the second term, let’s consider a fixed z ∈ Sr. We analyze z⊤B⊤Φ(m)
t

⊤
η(m)
t =∑Gm

n=Gm−1+1(Bz)
⊤ϕ(xn,t, cn)ηn,t, leading to E[(Bz)⊤ϕ(xn,t, cn)ηn,t] = 0 and

Var((Bz)⊤ϕ(xn,t, cn)) = E[(Bz)⊤ϕ(xn,t, cn)]2 − (E[(Bz)⊤ϕ(xn,t, cn)])2

= E[(Bz)⊤ϕ(xn,t, cn)]2

= E[z⊤B⊤ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤Bz]

= z⊤B⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]Bz
= z⊤B⊤Bz

= I.

Given ηn,t
iid∼ N (0, σ2

η), we have Var(ηn,t) = σ2
η . Thus, z⊤B⊤Φ(m)

t
⊤
η(m)
t is a sum of (Gm−Gm−1) subexponential random

variables with parameter Kn = ση . We apply the sub-exponential Bernstein inequality stated in Proposition A.1 by setting
g = ϵ3(Gm − Gm−1)ση . In order to implement this, we show that

g2∑Gm
n=Gm−1+1K

2
n

⩾
ϵ23(Gm − Gm−1)

2σ2
η

(Gm − Gm−1)σ2
η

= ϵ23(Gm − Gm−1)

g

maxnKn
⩾
ϵ3(Gm − Gm−1)ση

ση
= ϵ3(Gm − Gm−1)

Therefore, for a fixed z ∈ Sr, with probability at least 1− exp(−cϵ23(Gm−Gm−1)), z⊤B⊤Φ(m)
t

⊤
η(m)
t ⩽ ϵ3(Gm−Gm−1)ση .

Using epsilon-net over all z adds a factor of exp(r). Thus, with probability at least 1− exp(r − cϵ23(Gm − Gm−1)ση), we
have B⊤Φ(m)

t
⊤
η(m)
t ⩽ ϵ3(Gm−Gm−1)ση . Then, the above holds for all t ∈ [T ] with probability at least 1− exp(log T + r−

cϵ23(Gm − Gm−1)). According to Proposition B.1, with probability at least O(1− T exp(r − cϵ23(Gm − Gm−1))), we have
∥M−1∥ ⩽ 1

0.9(Gm−Gm−1)
. Combining these results, it follows that with probability at least O(1 − T exp(r − cϵ23(Gm −

Gm−1))), ∥M−1B⊤Φ(m)
t

⊤
η(m)
t ∥ ⩽

ϵ3ση

0.9 . Combining with bound on the first term, we then determine that with probability at
least O(1− exp(log T + r − cϵ23(Gm − Gm−1))),

∥wt − gt∥ ⩽ 1.2ϵ3δℓ∥w⋆t ∥+
ϵ3ση
0.9

.
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Given that ση ⩽
√

r
T δℓσ

⋆
max, we then have

∥wt − gt∥ ⩽ 2.4ϵ3δℓmax(∥w⋆t ∥,
√
r

T
σ⋆max).

Applying the Incoherence of right singular vectors in Assumption 2.2 and set ϵ3 = 0.4
2.4µ , we have

∥wt − gt∥ ⩽ 2.4ϵ3δℓmax(µ

√
r

T
σ⋆max,

√
r

T
σ⋆max) ⩽ 2.4µϵ3δℓ

√
r

T
σ⋆max ⩽ 0.4δℓ

√
r

T
σ⋆max. (2)

This proves 1).

Eq. (2) implies
∥W −G∥F ⩽ 0.4δℓ

√
rσ⋆max.

This completes the proof of 3).

To bound ∥wt∥, we use ∥gt∥ ⩽ ∥w⋆t ∥, and then find

∥wt∥ = ∥wt − gt + gt∥
⩽ ∥wt − gt∥+ ∥w⋆t ∥

⩽ 0.4δℓ

√
r

T
σ⋆max + µ

√
r

T
σ⋆max

⩽ 1.1µ

√
r

T
σ⋆max.

This completes the proof of 2).

For ∥θt − θ⋆t ∥, we derive

∥θt − θ⋆t ∥ = ∥Bgt + (I −BB⊤)θ⋆t −Bwt∥
= ∥B(gt − wt) + (I −BB⊤)θ⋆t ∥
⩽ ∥gt − wt∥+ ∥(I −BB⊤)B⋆w⋆t ∥

⩽ 0.4δℓ

√
r

T
σ⋆max + µδℓ

√
r

T
σ⋆max

⩽ 1.4µδℓ

√
r

T
σ⋆max.

This implies that
∥Θl −Θ⋆∥F ⩽ 1.4µδℓ

√
rσ⋆max.

This proves 4) and 5).

Furthermore,

σmin(W ) = σmin(G− (G−W ))

⩾ σmin(G)− ∥W −G∥
⩾ σmin(G)− ∥W −G∥F

we have

σmin(G) = σmin(G
⊤)

= σmin(W
⋆⊤B⋆⊤B)

⩾ σ⋆minσmin(B
⋆⊤B),

16
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and

σmin(B
⋆⊤B) =

√
λmin(B⊤B⋆B⋆⊤B))

=
√
λmin(B⊤(I − P )B)

=
√
λmin(I −B⊤PB)

=
√
λmin(I −B⊤P 2B)

=
√
1− λmax(B⊤P 2B)

=
√
1− ∥PB∥2

⩾
√

1− δ2ℓ .

Combining the above three bounds, if δℓ < 0.02√
rκ

, we then have

σmin(W ) ⩾
√
1− δ2ℓσ

⋆
min − 0.4δℓ

√
rσ⋆max ⩾ 0.9σ⋆min

and

σmax(W ) = σmax(G− (G−W ))

⩽ σmax(G) + σmax(G−W )

= σmax(B
⊤B⋆W ⋆) + σmax(G−W )

⩽ σmax(B
⊤B⋆)σmax(W

⋆) + ∥G−W∥F
⩽ σ⋆max + 0.4δℓ

√
rσ⋆max

= 1.1σ⋆max

Thus, the proof is complete.

Proposition B.3. Assume SD(B,B⋆) ⩽ δℓ. The following statements are true:

• E[GradB′] = (Gm − Gm−1)(Θ
⋆ −Θ)W⊤

• ∥E[GradB′]∥ ⩽ 1.6(Gm − Gm−1)µδℓ
√
rσ⋆max

2

• If δℓ < c√
rκ

, then, with probability at leastO(1−exp(C(d+r)−c ϵ
2
1(Gm−Gm−1)T

2.4µ2rκ4 )−exp(log T+r−c(Gm−Gm−1))),

the inequality ∥GradB′ − E[GradB′]∥ ⩽ ϵ1δℓ(Gm − Gm−1)σ
⋆
min

2 holds

where GradB′ =
∑T,Gm
t=1,n=Gm−1+1 ϕ(xn,t, cn)ϕ(xn,t, cn)

⊤(θ⋆t − θt)w⊤
t .

Proof. By using independence of Φ(m)
t and {B,wt}, we can derive

E[GradB′] = E

 T,Gm∑
t=1,n=Gm−1+1

ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤(θ⋆t − θt)w⊤

t


=

T,Gm∑
t=1,n=Gm−1+1

E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤](θ⋆t − θt)w⊤
t

=

T∑
t=1

(Gm − Gm−1)(θ
⋆
t − θt)w⊤

t

= (Gm − Gm−1)(Θ
⋆ −Θ)W⊤.

17
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Utilizing the upper bound from Lemma B.2, if δℓ < c√
rκ

, with probability at leastO(1−exp(log T+r−cϵ23(Gm−Gm−1))),

∥E[GradB′]∥ = ∥
T∑
t=1

(Gm − Gm−1)(θ
⋆
t − θt)w⊤

t ∥

= (Gm − Gm−1)∥(Θ⋆ −Θ)W⊤∥
⩽ (Gm − Gm−1)∥Θ⋆ −Θ∥ · ∥W∥
⩽ (Gm − Gm−1)∥Θ⋆ −Θ∥F · ∥W∥
⩽ 1.6(Gm − Gm−1)µδℓ

√
rσ⋆max

2

To bound ∥GradB′ − E[GradB′]∥ = max∥z∥=1,∥v∥=1 z
⊤(
∑T
t=1

∑Gm
n=Gm−1+1 ϕ(xn,t, cn)ϕ(xn,t, cn)

⊤(θ⋆t − θt)w
⊤
t −

E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤(θ⋆t − θt)w⊤
t ])v, we consider fixed unit norm vectors z, v, applying the sub-exponential Berstein

inequality as stated in Proposition A.1 and extend the bound to all unit norm vectors z, v using a standard epsilon-net
argument. For fixed unit norm z, v, we consider

T∑
t=1

Gm∑
n=Gm−1+1

(
(z⊤ϕ(xn,t, cn))(w

⊤
t v)ϕ(xn,t, cn)

⊤(θ⋆t − θt)− E[z⊤ϕ(xn,t, cn))(w⊤
t v)ϕ(xn,t, cn)

⊤(θ⋆t − θt)]
)

The analysis shows that

E
[
(z⊤ϕ(xn,t, cn))(w

⊤
t v)ϕ(xn,t, cn)

⊤(θ⋆t − θt)− E[z⊤ϕ(xn,t, cn))(w⊤
t v)ϕ(xn,t, cn)

⊤(θ⋆t − θt)]
]

=
(
E[z⊤ϕ(xn,t, cn))(w⊤

t v)ϕ(xn,t, cn)
⊤(θ⋆t − θt)]− E[z⊤ϕ(xn,t, cn))(w⊤

t v)ϕ(xn,t, cn)
⊤(θ⋆t − θt)]

)
= 0,

and also we have that

E[(z⊤ϕ(xn,t, cn))(w⊤
t v)] = 0,

Var((z⊤ϕ(xn,t, cn))(w
⊤
t v)) = E[(z⊤ϕ(xn,t, cn))(w⊤

t v)(w
⊤
t v)ϕ(xn,t, cn)

⊤z]

= (w⊤
t v)

2z⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]z
= (w⊤

t v)
2,

and

E[ϕ(xn,t, cn)⊤(θ⋆t − θt)] = 0,

Var(ϕ(xn,t, cn)
⊤(θ⋆t − θt)) = E[(θ⋆t − θt)⊤ϕ(xn,t, cn)ϕ(xn,t, cn)⊤(θ⋆t − θt)]

= (θ⋆t − θt)⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤](θ⋆t − θt)
= ∥θ⋆t − θt∥2

Based on the analysis provided, we determine that the summands are independent, zero mean, sub-exponential random
variables with sub-exponential norm Kn,t ⩽ |w⊤

t v|∥θ⋆t − θt∥. We apply the sub-exponential Bernstein inequality stated in

18
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Proposition A.1, with g = ϵ1δℓ(Gm − Gm−1)σ
⋆
min

2. We have

g2∑T,Gm
t=1,n=Gm−1+1K

2
n,t

⩾
ϵ21δ

2
ℓ (Gm − Gm−1)

2σ⋆min
4

(Gm − Gm−1)
∑T
t=1 |w⊤

t v|2∥θ⋆t − θt∥2

⩾
ϵ21δ

2
ℓ (Gm − Gm−1)

2σ⋆min
4

(Gm − Gm−1)maxt ∥θ⋆t − θt∥2
∑T
t=1 |w⊤

t v|2

=
ϵ21δ

2
ℓ (Gm − Gm−1)

2σ⋆min
4

(Gm − Gm−1)maxt ∥θ⋆t − θt∥2∥v⊤W∥2

⩾
ϵ21δ

2
ℓ (Gm − Gm−1)

2σ⋆min
4T

1.42(Gm − Gm−1)µ2δ2ℓ rσ
⋆
max

2∥W∥2
(3)

⩾
ϵ21δ

2
ℓ (Gm − Gm−1)

2σ⋆min
4T

2.4(Gm − Gm−1)µ2δ2ℓ rσ
⋆
max

4 (4)

=
ϵ21(Gm − Gm−1)T

2.4µ2rκ4

g

maxn,tKn,t
⩾
ϵ1δℓ(Gm − Gm−1)σ

⋆
min

2

maxn,t |w⊤
t v|∥θ⋆t − θt∥

⩾
ϵ1δℓ(Gm − Gm−1)σ

⋆
min

2

maxt ∥θ⋆t − θt∥maxt ∥wt∥
(5)

⩾
ϵ1δℓ(Gm − Gm−1)σ

⋆
min

2T

1.4µ2δℓrσ⋆max
2 (6)

=
ϵ1(Gm − Gm−1)T

1.4µ2rκ2

where Eq. (3) follows from
∑T
t=1 |w⊤

t v|2 = ∥v⊤wt∥2 ⩽ ∥W∥2 and the upper bound of ∥θ⋆t −θt∥ resulting from Lemma B.2.
Eq. (4) follows from the upper bound ∥W∥ ⩽ 1.1σ⋆max obtained from Lemma B.2. Eq. (5) follows from |w⊤

t v| ⩽ ∥wt∥.
Eq. (6) follows from the upper bound ∥W∥ ⩽ 1.1σ⋆max derived from Lemma B.2 and the inequality ∥wt∥ ⩽ µ

√
r
T σ

⋆
max from

the Assumption 2.2. Consequently, with probability at leastO(1−exp(−c ϵ
2
1(Gm−Gm−1)T

2.4µ2rκ4 )−exp(log T+r−c(Gm−Gm−1))),
for a given z, v,

z⊤(GradB′ − E[GradB′])v ⩽ ϵ1δℓ(Gm − Gm−1)σ
⋆
min

2.

Applying a standard epsilon-net argument to bound the maximum of the above over all unit norm z, v. We conclude that

∥GradB′ − E[GradB′]∥ ⩽ ϵ1δℓ(Gm − Gm−1)σ
⋆
min

2

with probability at least O(1− exp(C(d+ r)− c ϵ
2
1(Gm−Gm−1)T

2.4µ2rκ4 )− exp(log T + r − c(Gm − Gm−1))). The probability
factor of exp(C(d+ r)) arises from the epsilon-net over z and that over v: z is an d-length unit norm vector while v is an
r-length unit norm vector. The size of the smallest epsilon net that covers the hyper-sphere of all ws is (1 + 2

ϵnet
)d, where

ϵnet = c. Similarly, the size of the epsilon net that covers v is Cr. Applying the union bound over both results in a factor of
Cd+r. This completes the proof.

Now we have the following lemma for the gradient when noise is considerd.

Lemma B.4. Assume that SD(B,B⋆) ⩽ δℓ, and σ2
η ⩽ r

T δ
2
ℓσ

⋆
min

2. The following statements are true:

• E[GradB] = (Gm − Gm−1)(Θ−Θ⋆)W⊤ = (Gm − Gm−1)(BWW⊤ −Θ⋆W⊤)

• ∥E[GradB]∥ ⩽ 1.6(Gm − Gm−1)µδℓ
√
rσ⋆max

2

• If δℓ < c√
rκ

, then with probability at leastO(1−exp(C(d+r)−c ϵ
2
1(Gm−Gm−1)T

2.4µ2rκ4 )−exp(log T +r−c(Gm−Gm−1))),

∥GradB− E[GradB]∥ ⩽ 2ϵ1(Gm − Gm−1)δℓσ
⋆
min

2.

19



Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits

Proof. Recall the definition of GradB.

GradB =

T∑
t=1

Φ(m)
t (Φ(m)

t Bwk − Y
(m)
t )w⊤

t

=

T,Gm∑
t=1,n=Gm−1+1

ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤(θt − θ⋆t )w⊤

t − ηn,tϕ(xn,t, cn)w⊤
t .

From this we obtain

E[GradB] = E

 T,Gm∑
t=1,n=Gm−1+1

ϕ(xn,t, cn)ϕ(xn,t, cn)
⊤(θt − θ⋆t )w⊤

t + ηn,tϕ(xn,t, cn)w
⊤
t


= (Gm − Gm−1)

T∑
t=1

(θt − θ⋆t )w⊤
t

= (Gm − Gm−1)(Θ−Θ⋆)W⊤

Applying bounds on ∥W∥ and (Θ⋆ −Θ) from Lemma B.2, we have

∥E[GradB]∥ = ∥(Gm − Gm−1)(Θ−Θ⋆)W⊤∥
⩽ (Gm − Gm−1)∥Θ−Θ⋆∥F ∥W∥
⩽ 1.6(Gm − Gm−1)µδℓ

√
rσ⋆max

2.

Subsequently, we finish the proof of the bound for ∥E[GradB]∥. Considering unit vectors v, z, we need to bound∑T,Gm
t=1,n=Gm−1+1 ηn,tv

⊤ϕ(xn,t, cn)w
⊤
t z. This implies E[ηn,tv⊤ϕ(xn,t, cn)w⊤

t z] = 0 and

Var(v⊤ϕ(xn,t, cn)w
⊤
t z) = E[v⊤ϕ(xn,t, cn)w⊤

t z]
2 − (E[v⊤ϕ(xn,t, cn)w⊤

t z])
2

= E[v⊤ϕ(xn,t, cn)w⊤
t zz

⊤wtϕ(xn,t, cn)
⊤v]

= |w⊤
t z|2v⊤E[ϕ(xn,t, cn)ϕ(xn,t, cn)⊤]v

= |w⊤
t z|2

Given ηn,t
iid∼ N (0, σ2

η), we have Var(ηn,t) = σ2
η. Therefore, ηn,tv⊤ϕ(xn,t, cn)w⊤

t z is a sum of subexponential random

variables with parameter Kn,t ⩽ |w⊤
t z|ση . Setting g = ϵ2(Gm − Gm−1)σ

⋆
minση

√
T
r , we obtain

g2∑T,Gm
t=1,n=Gm−1+1K

2
n,t

⩾
ϵ22(Gm − Gm−1)

2σ⋆min
2σ2
η
T
r

σ2
η

∑T,Gm
t=1,n=Gm−1+1(w

⊤
t z)

2

⩾
ϵ22(Gm − Gm−1)

2σ⋆min
2σ2
η
T
r

σ2
η(Gm − Gm−1)∥W∥2

⩾
ϵ22(Gm − Gm−1)

2σ⋆min
2σ2
η
T
r

1.3(Gm − Gm−1)σ2
ησ

⋆
max

2

=
ϵ22(Gm − Gm−1)T

1.3rκ2
,

g

maxn,tKn,t
⩾
ϵ2(Gm − Gm−1)σ

⋆
minση

√
T
r

σηmaxn,t ∥wt∥

⩾
ϵ2(Gm − Gm−1)σ

⋆
minση

√
T
r

σηµ
√

r
T σ

⋆
max

⩾
ϵ2(Gm − Gm−1)T

µrκ
.
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Consequently, with probability at least 1 − exp(−c ϵ
2
2(Gm−Gm−1)T

µrκ2 ), for fixed v, z,∑T,Gm
t=1,n=Gm−1+1 |ηn,tv⊤ϕ(xn,t, cn)w⊤

t z| ⩽ ϵ2(Gm − Gm−1)σ
⋆
minση

√
T
r . Utilizing an epsilon-net to maximize

over all unit vectors v, z. This will give a factor of exp(d + r) in probability. Thus, with probability at least
1− exp((d+ r)− c ϵ

2
2(Gm−Gm−1)T

µrκ2 ),∥∥∥∥∥∥
T,Gm∑

t=1,n=Gm−1+1

ηn,tϕ(xn,t, cn)w
⊤
t

∥∥∥∥∥∥ ⩽ ϵ2(Gm − Gm−1)σ
⋆
minση

√
T

r
.

Recall GradB′ =
∑T,Gm
t=1,n=Gm−1+1 ϕ(xn,t, cn)ϕ(xn,t, cn)

⊤(θ⋆t − θt)w
⊤
t . From Proposition B.3, if δℓ < c√

rκ
, then,

with probability at least O(1 − exp(C(d + r) − c
ϵ21(Gm−Gm−1)T

2.4µ2rκ4 ) − exp(log T + r − c(Gm − Gm−1))), it holds that
∥GradB′ − E[GradB′]∥ ⩽ ϵ1δℓ(Gm − Gm−1)σ

⋆
min

2. By combining both and setting ϵ2 = ϵ1, we conclude that with
probability at least O(1− exp(C(d+ r)− c ϵ

2
1(Gm−Gm−1)T

2.4µ2rκ4 )− exp(log T + r − c(Gm − Gm−1))),

∥GradB− E[GradB]∥ ⩽ ϵ1(Gm − Gm−1)(δℓσ
⋆
min + ση

√
T

r
)σ⋆min.

Thus, if σ2
η ⩽ r

T δ
2
ℓσ

⋆
min

2, then we have

∥GradB− E[GradB]∥ ⩽ 2ϵ1(Gm − Gm−1)δℓσ
⋆
min

2.

This completes the proof.

B.1. Proof of Theorem 5.2

Consider the Projected GD step for B: B̂+ = B − γ
(Gm−Gm−1)

GradB and B̂+ QR
= B+R+. Given that B+ = B̂+(R+)−1

and ∥(R+)−1∥ = 1
σmin(R+) =

1

σmin(B̂+)
, it follows that SD(B+, B⋆) = ∥PB+∥ can be bound as

SD(B+, B⋆) ⩽
∥PB̂+∥
σmin(B̂+)

⩽
∥PB̂+∥

σmin(B)− γ
(Gm−Gm−1)

∥GradB∥
. (7)

By considering the numerator and performing adding and subtracting of E[GradB], left multiplying both sides by P , and
utilizing the result from Lemma B.4, we derive

B̂+ = B − γ

(Gm − Gm−1)
E[GradB] +

γ

(Gm − Gm−1)
(E[GradB]−GradB).

Consequently,

PB̂+ = PB − γPBWW⊤ + γPΘ⋆W⊤ +
γ

(Gm − Gm−1)
P (E[GradB]−GradB)

= PB − γPBWW⊤ +
γ

(Gm − Gm−1)
P (E[GradB]−GradB)

where the last step follows by PΘ⋆ = (I −B⋆B⋆⊤)Θ⋆ = Θ⋆ −B⋆B⋆⊤B⋆W ⋆ = 0. Thus,

∥PB̂+∥ ⩽ ∥PB∥∥I − γWW⊤∥+ γ

(Gm − Gm−1)
∥E[GradB]−GradB∥. (8)

Applying the result stated in Lemma B.2, we obtain

λmin(I − γWW⊤) = 1− γ∥W∥2 ⩾ 1− 1.21γσ⋆max
2.

Therefore, for γ < 0.5
σ⋆
max

2 , then the matrix mentioned above is a positive semidefinite. Furthermore, this along with
Lemma B.2, leads to that

∥I − γWW⊤∥ = λmax(I − γWW⊤) ⩽ 1− 0.81γσ⋆min
2.
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Based on the result mentioned above, Eq. (8), and the bound on ∥E[GradB]−GradB∥ from Lemma B.4, we conclude the
following: If γ < 0.5

σ⋆
max

2 and δℓ ⩽ c√
rκ

, then with probability at leastO(1−exp(C(d+r)− cϵ21(Gm−Gm−1)T
2.4rµ2κ4 )−exp(log T +

r − cϵ23(Gm − Gm−1))),

∥PB̂+∥ ⩽ ∥PB∥∥I − γWW⊤∥+ γ

(Gm − Gm−1)
∥E[GradB]−GradB∥

⩽ (1− 0.81γσ⋆min
2)δℓ + 2ϵ1γδℓσ

⋆
min

2. (9)

This probability is at least O(1 − d−10) if (Gm − Gm−1)T ⩾ Cκ4µ2dr and (Gm − Gm−1) ≳ max(log d, log T, r).
Subsequently, we use Eq. (9) with ϵ1 = ϵ2 = 0.1 and Lemma B.4 in Eq. (7), and setting γ =

cγ
σ⋆
max

2 . If cγ ⩽ 0.5, if
δℓ ⩽ c√

rκ2 , and lower bounds on (Gm − Gm−1) from above hold, then Eq. (7) implies that with high probability,

SD(B+, B⋆) ⩽
∥PB̂+∥
σmin(B̂+)

⩽
∥PB̂+∥

σmin(B)− γ
(Gm−Gm−1)

∥GradB∥

=
∥PB̂+∥

σmin(B)− γ
(Gm−Gm−1)

∥GradB− E[GradB] + E[GradB]∥

⩽
∥PB∥∥I − γWW⊤∥+ γ

(Gm−Gm−1)
∥E[GradB]−GradB∥

1− γ
(Gm−Gm−1)

∥E[GradB]∥ − γ
(Gm−Gm−1)

∥GradB− E[GradB]∥

⩽
(1− (0.81− 0.2)γσ⋆min

2)δℓ
1− γ

(Gm−Gm−1)
∥E[GradB]∥ − γ

(Gm−Gm−1)
∥GradB− E[GradB]∥

⩽
(1− 0.5γσ⋆min

2)δℓ

1− γδℓ
√
rσ⋆max

2(1.6µ+ 0.2
κ2

√
r
)

⩽
(1− 0.5γσ⋆min

2)δℓ
1− 1.8µγδℓ

√
rσ⋆max

2 (10)

⩽ (1− 0.5γσ⋆min
2)(1 + 1.8µγδℓ

√
rσ⋆max

2)δℓ (11)

⩽ (1− 0.5γσ⋆min
2 + 1.8γµδℓ

√
rσ⋆max

2)δℓ

= (1− γσ⋆min
2(0.5− 1.8µδℓ

√
rκ2))δℓ

⩽ (1− γσ⋆min
2(0.5− 0.036µ))δℓ (12)

⩽ (1− 0.4µγσ⋆max
2/κ2)δℓ

= (1− 0.4µ
cγ
κ2

)δℓ (13)

where Eq. (10) follows from κ2
√
r > 1. Eq. (11) follows from (1 − x)−1 < (1 + x) if |x| < 1. Eq. (12) follows from

δℓ ⩽ 0.02√
rκ2 . Eq. (13) follows from γ =

cγ
σ⋆
max

2 . This completes the proof.

B.2. Proof of Theorem 5.1

We analyze the initialization process by computing B̂(0) as top r singular vectors of YB =∑T
t=1

∑G1
n=1 y

2
n,tϕ(xn,t, cn)ϕ(xn,t, cn)

⊤1
{y2n,t⩽C0

∑T
t=1

∑G1
n=1

y2
n,t
G1T }

. Subsequently, we use Claim B.15 from (Nayer &

Vaswani, 2021) to analyze this. Claim B.15 shows that if

∥η(m)
t ∥2 ⩽ c

δ20
r2κ4

∥θ⋆t ∥2,

then with probability at least 1− exp(d− cδ0G1T
r2µ2κ4 ),

SD(B̂(0), B⋆) ⩽ δ0.
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In order to determine an upper bound for ∥η(m)
t ∥2 =

∑G1
n=1 η

2
n,t, we observe that ηn,t

iid∼ N (0, σ2
η). Thus, ∥η(m)

t ∥2 is a sum
of subexponential random variables with parameter Kn ⩽ ση · ση = σ2

η . We apply the sub-exponential Bernstein inequality
stated in Proposition A.1, with g = 0.1G1σ2

η . We have

g2∑G1
n=1K

2
n

⩾
0.01G21σ4

η

G1σ4
η

= 0.01G1

g

maxnKn
⩾

0.1G1σ2
η

σ2
η

= 0.1G1

Since E[ηn,t] = σ2
η, it can be proved that with probability at least 1 − exp(cG1),

∑G1
n=1 η

2
n,t ⩽ 0.1G1σ2

η. Thus, we can
determine that with probability at least 1− exp(cG1),

∥η(m)
t ∥2 =

G1∑
n=1

η2n,t

⩽
G1∑
n=1

E[η2n,t] + 0.1G1σ2
η

= 1.1G1σ2
η

By utilizing a union bound over all T vectors, we conclude that with probability at least 1− exp(log T − cG1), ∥η(m)
t ∥ ⩽

1.1G1σ2
η . By combining the results from (Nayer & Vaswani, 2021), we complete the proof.

B.3. Proof of Theorem 5.3

From Theorem 5.1, we know that at the initialization round, we need

σ2
η ⩽ c

δ20
r2κ4G1

∥θ⋆t ∥2.

At GD round ℓ, we assume that SD(B,B⋆) ⩽ δℓ, and we need σ2
η ⩽ r

T δ
2
ℓσ

⋆
min

2. By using Assumption 2.2, this holds if

σ2
η ⩽ c

δ2ℓ
κ2
∥θ⋆t ∥2.

This implies that for the algorithm to converge to error level δℓ, we need noise below this level. In other words, the error
cannot go below the noise level. All rounds ℓ > 0 also need δℓ ⩽ 0.02√

rκ2 . This is satisfied by setting δ0 = 0.02√
rκ2 . Thus, the

initialization round needs

σ2
η ⩽

c∥θ⋆t ∥2

r3κ6G1
.

In summary, let ϵnoise = Cκ2
√
NSR, where NSR :=

σ2
η

mint ∥θ⋆t ∥2 . From Theorem 5.2, we haven shown that if δℓ ⩽ 0.02√
rκ2 ,

γ =
cγ

σ⋆
max

2 with cγ ⩽ 0.5, and if (Gm − Gm−1)T ⩾ Cκ6µ2(d + r)r(κ2r2 + log( 1
max(ϵ,ϵnoise)

)) and (Gm − Gm−1) ≳

max(log d, log T, r) log( 1
max(ϵ,ϵnoise)

), then with probability at least O(1− d−10), at each round ℓ,

SD(B,B⋆) ⩽ δℓ := (1− 0.4µcγ
κ2

)ℓδ0 = (1− 0.4µcγ
κ2

)ℓ
0.02√
rκ2

.

Thus, to guarantee SD(BL, B
⋆) ⩽ ϵnoise, we need

L = Cκ2 log(
1

max(ϵ, ϵnoise)
),

where it follows by using log(1−x) < 1−x for |x| < 1 and using κ2
√
r ⩾ 1. Thus, setting cγ = 0.4, our sample complexity

become (Gm−Gm−1)T ⩾ Cκ6µ2r(κ2r2+log( 1
max(ϵ,ϵnoise)

)), and Gm−Gm−1 ⩾ Cmax(log d log T, r) log( 1
ϵnoise

).
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C. Regret Analysis Proofs
Now, our goal is to bound the per-epoch regret. In order to minimize overall regret, we must ensure that the regret incurred
in each epoch is not too large because the overall regret is dominated by the epoch that has the largest regret (Han et al.,
2020). To the end, we need to choose the epoch length in such away that the total; number of epochs M = ⌈log2 log2N⌉.

Guided by this observation, we can see intuitively an optimal way of selecting the grid must ensure that each batch’s regret
is the same (at least orderwise in terms of the dependence of T and d): for otherwise, there is a way of reducing the regret
order in one batch and increasing the regret order in the other, and the sum of the two will still have a smaller regret order
than before (which is dominated by the batch that has a larger regret order). As we shall see later, the following grid choice
satisfies this equal-regret-across-batches requirement.

Let Rm =
∑Gm
n=Gm−1+1

∑T
t=1⟨ϕ(x⋆n,t, cn,t)θ⋆t ⟩ − ⟨ϕ(xn,t, cn,t)θ⋆t ⟩ denotes the cumulative regret incurred for all tasks

during the m−th epoch. We will utilize this definition to determine its upper bound.

Lemma C.1. Assume that Assumptions 2.1 and 2.2 hold and σ2
η ⩽ c∥θ⋆t ∥

2

r3κ6G1 . Set γ = 0.4
σ⋆
max

2 and L = Cκ2 log( 1
max(ϵ,ϵnoise)

).
If

(Gm − Gm−1)T ⩾ Cκ6µ2(d+ T )r(κ2r2 + log(
1

max(ϵ, ϵnoise)
))

and

Gm − Gm−1 ⩾ Cmax(log d, log T, r) log(
1

max(ϵ, ϵnoise)
),

then for any epoch m ∈ [M ], with probability at least O(1− δ − d−10) that

Rm ⩽ 2µσ⋆max max(ϵ, ϵnoise)

√
rNT log

1

δ
.

Proof. For any epoch m ∈ [M ], any task t, it follows that

Gm∑
n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤θ⋆t − ϕ(xn,t, cn,t)⊤θ⋆t

=

Gm∑
n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤(θ⋆t − θ̂m−1,t)− ϕ(xn,t, cn,t)⊤θ⋆t + ϕ(x⋆n,t, cn,t)

⊤θ̂m−1,t

⩽
Gm∑

n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤(θ⋆t − θ̂m−1,t)− ϕ(xn,t, cn,t)⊤θ⋆t + ϕ(xn,t, cn,t)

⊤θ̂m−1,t

=

Gm∑
n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤(θ⋆t − θ̂m−1,t)− ϕ(xn,t, cn,t)⊤(θ⋆t − θ̂m−1,t)

Since ϕ(xn,t, cn,t) follows an i.i.d standard Gaussian distribution, we can determine that
∑Gm
n=Gm−1+1 ϕ(x

⋆
n,t, cn,t)

⊤(θ⋆t −

θ̂m−1,t) − ϕ(xn,t, cn,t)⊤(θ⋆t − θ̂m−1,t) ∼ N (0, 2(Gm − Gm−1)
∥∥∥θ⋆t − θ̂m−1,t

∥∥∥2
2
). By utilizing the Chernoff bound for

Gaussian stated in Proposition A.2, with probability at least 1− δ,

Gm∑
n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤(θ⋆t − θ̂m−1,t)− ϕ(xn,t, cn,t)⊤(θ⋆t − θ̂m−1,t) ⩽ 2

√
(Gm − Gm−1) log

1

δ

∥∥∥θ⋆t − θ̂m−1,t

∥∥∥
2

Using a union bound and combining the result with Theorem 5.3, we can find that with probability at least O(1− δ− d−10),
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we have

Rm =

T∑
t=1

Gm∑
n=Gm−1+1

ϕ(x⋆n,t, cn,t)
⊤θ⋆t − ϕ(xn,t, cn,t)⊤θ⋆t

⩽ 2

T∑
t=1

√
(Gm − Gm−1) log

1

δ

∥∥∥θ⋆t − θ̂m−1,t

∥∥∥
2

= 2

√
(Gm − Gm−1) log

1

δ

T∑
t=1

∥∥∥θ⋆t − θ̂m−1,t

∥∥∥
2

⩽ 2

√
(Gm − Gm−1) log

1

δ
· T ·max(ϵ, ϵnoise)µ

√
r

T
σ⋆max (14)

⩽ 2µσ⋆max max(ϵ, ϵnoise)

√
rNT log

1

δ
(15)

where Eq. (14) is derived from Theorem 5.3 and Assumption 2.2, Eq. (15) from Gm − Gm−1 ⩽ N .

Proof of Theorem 5.4. By applying the result of Lemma C.1, we can demonstrate that with probability at leastO(1−δ−d−10),

RN,T =

M∑
m=1

Rm

⩽M2µσ⋆max max(ϵ, ϵnoise)

√
rNT log

1

δ

⩽ 2µσ⋆max max(ϵ, ϵnoise)

√
rNT log

1

δ
(1 + log logN)

= O(max(ϵ, ϵnoise)r
1
2N

1
2T

1
2

√
log

1

δ
log logN)

= Õ(max(ϵ, ϵnoise)r
1
2N

1
2T

1
2 )

where the last inequality is derived from M = ⌈log2 log2N⌉.
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