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ABSTRACT

Scene Graph Generation (SGG) is an important cross-modal task in
scene understanding, aiming to detect visual relations in an image.
However, due to the various appearance features, the feature distri-
butions of different categories have suffered from a severe overlap,
which makes the decision boundaries ambiguous. The current SGG
methods mainly attempt to re-balance the data distribution, which
is dataset-dependent and limits the generalization. To solve this
problem, a Synergetic Prototype Learning Network (SPLN) is pro-
posed here, where the generalized semantic space is modeled and
the synergetic effect among different semantic subspaces is delved
into. In SPLN, a Collaboration-induced Prototype Learning method
is proposed to model the interaction of visual semantics and struc-
tural semantics. The conventional visual semantics is focused on
with a residual-driven representation enhancement module to cap-
ture details. And the intersection of structural semantics and visual
semantics is explicitly modeled as conceptual semantics, which has
been ignored by existing methods. Meanwhile, to alleviate the noise
of unrelated and meaningless words, an Intersection-induced Pro-
totype Learning method is also proposed specially for conceptual
semantics with an essence-driven prototype enhancement module.
Moreover, a Selective Fusion Module is proposed to synergetically
integrate the results of visual, structural, conceptual branches and
the generalized semantics projection. Experiments on VG and GQA
datasets show that our method achieves state-of-the-art perfor-
mance on the unbiased metrics, and ablation studies validate the
effectiveness of each component.

CCS CONCEPTS

• Computing methodologies→ Scene understanding.

KEYWORDS

Scene Graph Generation, Prototype Learning, Cross-modal integra-
tion, Generalized Semantic Space.

1 INTRODUCTION

Scene Graph Generation (SGG) is attracting more and more re-
searchers as a critical cross-modal task in the field of scene un-
derstanding. The scene graph is a powerful structural knowledge
because it creatively converts an image into a graph that can be
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Figure 1: The paradigm of current methods and our method.

Current SGG methods simply fuse the visual and structural

semantics, while our SPLN reorganizes three different se-

mantics in the generalized semantic space and explores the

synergetic effect among them comprehensively. The region

marked in yellow, green, blue, and gray denotes the visual

semantic subspace, structural semantic subspace, conceptual

semantic subspace, and the other semantics such as linguis-

tics and knowledge, respectively.

easily modeled and understood by machines. Scene graphs are com-
posed of visual triplets in the form of <subject-predicate-object>,
in which the subject and the object are denoted as nodes and the
predicate is denoted as edge. Many downstream tasks can benefit
from scene graphs, such as image captioning [4, 10], human-object
interaction detection [9], and visual question answering [8, 13].

However, the development of SGG has suffered from severe
highly-skewed long-tailed bias, that is, predicates in themajority are
trivial and less informative, such as “on” and “in”. On the contrary,
the more meaningful predicates with rich semantic information,
such as “watching” and “attached to”, are less in quantity. Therefore,
the predicted logit exhibits a similar long-tailed distribution, which
undermines the application of SGG. To address the long-tailed
problem, many methods [21, 26, 45] have attempted to re-balance
the data distribution in the dataset. However, these methods rely
heavily on statistics prior and relieve the bias by defining various
rules that involve excessive human intervention, which makes them
sensitive to datasets and limits the generalization. Furthermore,
the ambiguous decision boundaries caused by diverse appearance
features make the long-tailed problem even worse, which is ignored
by the above methods.

As Fig.1 shown, existing methods [7, 41, 46] only fuse visual
semantics and structural semantics to obtain the final result, and
the holistic supervision signal brings noises during training. Specif-
ically, the most practice is to integrate the visual features of triplets
with certain word meanings of entities, which is supervised by a
one-hot vector of target predicate label. This makes current meth-
ods predict the correct predicate between “person” and “umbrella”
as shown in the upper right corner of Fig.1. However, this holistic

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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supervision signal is easily affected by long-tailed bias, and con-
fuses the method to align visual semantics and structural semantics.
The training samples of “holding” is 6.5 times of “carrying”, and
that is why the current SGG method makes the wrong prediction
“person-holding-bag” as Fig.1 shown.

To address this issue, in this paper, the generalized semantic
space is reorganized to delve into the synergetic effect among dif-
ferent semantic subspaces, and each semantic subspace is guided
by a suitable supervision signal separately. Visual semantics and
structural semantics are two components involved in the gener-
alized semantic space. There also exist other semantic subspaces
such as linguistic semantics, knowledge semantics, etc. In SGG, the
most commonly adopted semantics are visual and structural seman-
tics. The visual semantics includes the scene contexts and pairwise
entity interaction, etc, and the structural semantics includes word
embedding of labels, knowledge graphs, etc. By analyzing these two
types of semantics, we find there is an overlap between them. For
example, there are various appearance features of pairwise entities
corresponding to the predicate “behind”, and this word also has its
own word embedding in low-dimensional textual space. Although
these different representations are in different semantic subspaces,
they all point to the same concept, i.e. At or to the back or far side of.
Therefore, conceptual semantics should also be modeled explicitly.
Specifically, the definitions in Wiktionary are utilized to model this
conceptual semantics. Compared with the predicates between “per-
son” and “bag” predicted by the current SGGmethod, the ambiguity
is relieved by our method. The concept of “holding” is grasp or grip,
and the concept of “carrying” is lift and take it to another place, this
difference is captured by our method to predict correctly.

In Fig.1, a venn diagram depicts the semantic subspaces of two
sources 𝑥 = {𝑥1, 𝑥2} influencing the target distribution𝑦. The visual
semantics is marked in yellow, and the distribution based on this
is denoted as 𝛿 (𝑥1 → 𝑦). Similarly, the structural semantics is
marked in green and the distribution is denoted as 𝛿 (𝑥2 → 𝑦).
The whole synergetic effect in the generalized semantic space is
decomposed as 𝛿 (𝑥 → 𝑦) = 𝛿 (𝑥1 → 𝑦) + 𝛿 (𝑥2 → 𝑦) + 𝜓𝑐 + 𝜓𝑜 ,
where 𝛿 (𝑥1 → 𝑦) + 𝛿 (𝑥2 → 𝑦) denotes the interaction.𝜓𝑐 denotes
the intersection, which is marked in blue and represents our newly
proposed conceptual semantics.𝜓𝑜 is the complementary set, which
is marked in gray. The universal set is generalized semantic space.

Therefore, a Synergetic Prototype Learning Network (SPLN) is
proposed here, which is composed of a Collaboration-induced Pro-
totype Learning branch (CPL), an Intersection-induced Prototype
Learning branch (IPL), and a Selective Fusion Module (SFM). In CPL,
visual semantics is extracted and embedded as prototypes. Due to
the diversity of appearance features, more details are hoped to be
preserved to increase discrimination when generating represen-
tations for classification. Thus, a Residual-Driven Representation
Enhancement (RDRE) module is designed. In IPL, conceptual seman-
tics is also modeled as prototype. To weaken the impact of irrelevant
words, an Essence-Driven Prototype Enhancement (EDPE) mod-
ule is designed to capture the most critical part of each concept.
Finally, the SFM models the integration of distributions from differ-
ent semantics according to the decomposed generalized semantic
space, where a simple but effective loss on the similarity matrix of
prototypes is designed to drive them discriminative.

Overall, the main contributions of this paper are:

• A Synergetic Prototype Learning Network (SPLN) is pro-
posed to deal with the ambiguity decision boundaries based
on the decomposed generalized semantic space of SGG.
• We propose a Collaboration-induced Prototype Learning
method with a residual-driven representation enhancement
module to preserve details of representations in the visual
semantic space.
• We propose an Intersection-induced Prototype Learning
methodwith an essence-driven prototype enhancementmod-
ule to alleviate unrelated noises in the conceptual semantic
space.
• A Selective Fusion Module is proposed to model the distribu-
tion based on three semantic branches and the generalized
semantics projection. Moreover, our SPLN achieves state-of-
the-art performance on Visual Genome and GQA datasets.

2 RELATEDWORK

2.1 Unbiased Scene Graph Generation

SGG has been troubled by the long-tailed problem for a long time.
Since Tang et al. [35] designed the unbiased metric mean Recall@K,
the unbiased SGG was formally defined to deal with this problem.
To deal with this problem, many re-sampling and re-weighting
strategies are proposed, which are dependent on statistics priors.
Li et al. [25] devised a bi-level data re-sampling strategy to allevi-
ate the imbalanced data distribution in the dataset. Min et al. [30]
adopted a re-sampling strategy using the median amount of the
samples over all predicate classes. Biswas et al. [1] addressed the
insufficient samples of minority predicate classes by borrowing
samples of minority classes from its neighboring triplet in the se-
mantic space. However, the development of unbiased SGG should
not be limited to these re-balance strategies. The unique character-
istics of scene graphs need to be focused on, that is, the ambiguous
decision boundaries caused by diverse visual features. Our SPLN
provides a promising way to solve this problem by modeling the
generalized semantic space of SGG and delving into the interaction
and intersection between different semantic subspaces.

2.2 Prototype Learning

Prototype learning is applied in various fields, such as image clas-
sification [48], recommendation systems [12], clustering analysis
[29], etc. In the field of SGG, prototype learning has been explicitly
introduced since Zheng et al. [47]. They devised prototype-guided
learning and prototype regularization to match relation representa-
tions with corresponding predicates. After that, prototype-based
methods are attractingmore andmore researchers. Li et al. [22] mea-
sured the invariance of each predicate class for unbiased prototypes.
Li et al. [27] generated attended semantic prototype representations
for each triplet sample, capturing the intrinsic visual patterns. Our
SPLN is also a prototype-based method, which introduces a new
conceptual prototype to represent the conceptual semantics.

3 METHOD

3.1 Problem Definition

Following previous works [7, 35, 45], the framework of our method
is two-stage. The object detector is followed by SGGmodules, which
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Figure 2: The overview of our proposed SPLN, which can be roughly divided into five parts, i.e. the generalized semantics

projection module, three parallel branches to model the prototype learning within the corresponding semantic subspace, and

the selective fusion module to integrate the distributions from the decomposed generalized semantic space.

can utilize the semantic information provided by entity labels. Here
we choose Faster R-CNN [34] as our object detector, and the whole
process of SGG is reconsidered from the new perspective, which is
formulated as follows:

𝑃 (𝑆𝐺 |𝐼 ) = 𝑃 (𝑅 |𝑆𝑣) + 𝑃 (𝑅 |𝑆𝑡 ) + 𝑃 (𝑅 |𝑆𝑐 ) + 𝑃 (𝑅 |𝑆𝑜 ), (1)

where 𝑆𝐺 denotes the generated scene graph, 𝐼 denotes the input
image, and 𝑅 denotes the predicted predicate label. 𝑆𝑣 , 𝑆𝑡 , 𝑆𝑐 , and
𝑆𝑜 denote the visual semantics, structural semantics, conceptual
semantics and other semantics, respectively. Specifically, 𝑆𝑐 = 𝑆𝑣 ∩
𝑆𝑡 , and 𝑆𝑜 = 𝐶𝑆 (𝑆𝑣 ∪ 𝑆𝑡 ), which means the complementary set
of subset 𝑆𝑣 ∪ 𝑆𝑡 in 𝑆 . 𝑆 is the whole generalized semantic space.
Because the boundary of 𝑆 is hard to be defined, 𝑆𝑜 cannot be
explicitly modeled. To solve this problem, 𝑆𝑜 is regarded as the
global modeling of the generalized semantic space and does not
refer to any specific semantics, which is shown as the gray branch
in Fig.2. Thus, Eq.(1) can be rewritten as follows:

𝑃 (𝑆𝐺 |𝐼 ) = 𝑃 (𝑅 |𝒓𝑖 𝑗 , 𝑷 𝑣𝑖𝑠 )+𝑃 (𝑅 |𝒓𝑖 𝑗 , 𝑷𝑠𝑡𝑟 )+𝑃 (𝑅 |𝒓𝑖 𝑗 , 𝑷𝑐𝑜𝑛)+𝑃 (𝑅 |𝒓𝑖 𝑗 ),
(2)

where 𝒓𝑖 𝑗 is the relation representation. 𝑷 𝑣𝑖𝑠 , 𝑷𝑠𝑡𝑟 , and 𝑷𝑐𝑜𝑛 denote
the visual prototype, structural prototype and conceptual prototype,
respectively. The pipeline of our method is shown in Fig.2. For
the 𝑖-th proposal, the appearance feature 𝒂𝑖 is the region visual
feature extracted by the object detector, and the structural semantic
embedding of the entity label is denoted as 𝒔𝑖 , which is the word
embedding from Glove [32]. The visual feature of the closed union
bounding box is denoted as 𝒗𝑖 𝑗 , and the original relation feature is
denoted as 𝒓𝑖 𝑗 .

3.2 Collaboration-induced Prototype Learning

To extract the robust interaction between visual and structural se-
mantic subspaces, the structural prototype and the visual prototype
are modeled individually. Then a Residual-Driven Representation
Enhancement (RDRE) module is designed to capture the visual
details from the prototype.

3.2.1 Relation Feature Extraction. As Fig.2 shown, the relation fea-
ture is extracted based on the detected results of object detector. In
many typical SGG methods [7, 36, 44], this module is composed of
an object encoder for entity-level context extraction, an object de-
coder for entity label prediction, a relation encoder for relation-level
context extraction and a relation decoder for predicate label predic-
tion. The common object and relation encoders include RNN, GNN,
and Transformer, which are with high computational complexity.

However, in recent works, this complex framework is greatly sim-
plified without any context extraction, and the simple operations,
such as concatenation and element-wise product, are adopted to
fuse the visual semantics and structural semantics. Here we further
simplify this extraction module and only 𝒔𝑖 and 𝒂𝑖 are utilized to
get the relation feature 𝒓𝑖 𝑗 . The whole process is defined as follows:

𝒈𝑖 = 𝜎 (𝑾𝑔 ( [𝑾𝑠 𝒔𝑖 ,𝑾𝑎𝒂𝑖 ])), (3)

�̃�𝑖 = (𝒔𝑖 + 𝒔𝑖 ⊙ 𝒈𝑖 ), (4)
𝒓𝑖 𝑗 = 𝐹 (�̃�𝑠𝑖 , �̃�

𝑜
𝑗 ), (5)

where𝑾𝑔 ,𝑾𝑠 ,𝑾𝑎 are learnable matrices, 𝜎 denotes the sigmoid
function, and [·] is the concatenation operation. ⊙ is the element-
wise product. �̃�𝑠

𝑖
and �̃�𝑜

𝑖
denote the subject feature and object feature

according to the candidate pairs. 𝐹 (·) is fusion function proposed
by [47].
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Figure 3: The illustration of the proposed Residual-Driven

Representation Enhancement (RDRE) module. The differ-

ence between 𝒗𝑖 𝑗 and �̃�𝑖 𝑗 is modeled as residual, which is

encoded and added to the visual space representation.

3.2.2 Visual Prototype Modeling. To represent the visual semantics
comprehensively, the visual prototype is required to contain the
following information, i.e. the appearance of subject and object, and
the spatial relation between them. Spatial feature plays a critical role
in visual semantics. For example, the predicate “riding” contains
positional cues naturally. That is, for the triplet <subject-riding-
object>, it indicates the subject is above and the object is below.
And it is nearly impossible to find a situation where the subject
and the object are next to each other. A practice in previous works
[7, 36, 44] to model this spatial feature is to encode the proposed
bounding box information, including coordinates, area, etc, into
context, which is integrated with union visual feature 𝒗𝑖 𝑗 to obtain
visual semantics. In fact, 𝒗𝑖 𝑗 itself can satisfy the two requirements
that visual prototype raised, and the spatial cues are implicitly
modeled as follows:

𝒂𝑖 𝑗 = 𝐹𝑀 (𝑢𝑛𝑖𝑜𝑛(𝑏𝑖 , 𝑏 𝑗 )), (6)

𝒕𝑖 𝑗 = 𝐶𝑜𝑛𝑣 ( [𝒓𝒆𝒄𝑖 , 𝒓𝒆𝒄 𝑗 ]), (7)

𝒗𝑖 𝑗 = 𝑀𝐿𝑃 (𝒂𝑖 𝑗 + 𝒕𝑖 𝑗 ), (8)
where 𝐹𝑀 (·) is the feature map output by the object detector, 𝑖
and 𝑗 denote the proposal indexes of subject and object, 𝑢𝑛𝑖𝑜𝑛(·) is
the function to compute the union region of two bounding boxes
𝑏𝑖 and 𝑏 𝑗 , and 𝒂𝑖 𝑗 is the appearance feature of union region from
feature map. 𝐶𝑜𝑛𝑣 (·) is the convolution layer. 𝒓𝒆𝒄𝑖 is the mask of
corresponding region on the feature map, and for the internal pixel
of bounding box, the value is set to 1, otherwise, it is set to 0. Thus,
the spatial feature is introduced in 𝒕𝑖 𝑗 . After a simple integration
with appearance feature 𝒂𝑖 𝑗 , the union visual feature 𝒗𝑖 𝑗 is obtained.

To extract visual prototypes, 𝒗𝑖 𝑗 of all foreground paired enti-
ties in training samples are recorded and summed according to
annotated predicate categories. Meanwhile, the sample numbers
of each predicate category are recorded. The visual prototype of
each foreground predicate is averaged by the corresponding sample
number, which is shown in the yellow part of Fig.3. Because back-
ground triplets without annotations are ignored in this process, the
visual prototype of the predicate “background” is obtained by the
Gaussian distribution 𝑁 (0, 1).

To emphasize the equal importance of visual and structural se-
mantics, the prototypes in these two subspaces are modeled inde-
pendently. The structural semantic prototype is extracted by the

average word embedding of all words in a predicate. The relation
feature 𝒓𝑖 𝑗 is projected into different semantic subspace by MLP.
The projected representation is denoted as 𝒓𝑠𝑡𝑟 and 𝒓𝑣𝑖𝑠 respec-
tively, of which the similarity with the corresponding prototype is
calculated.

3.2.3 Residual-Driven Representation Enhancement. There is an-
other problem for 𝒓𝑣𝑖𝑠 to match with the corresponding visual pro-
totype. Specifically, the visual prototype is based on the union visual
feature 𝒗𝑖 𝑗 , but in our relation feature extraction module, there is
not union information. 𝒗𝑖 𝑗 contains a lot of useful visual details
in the background, which should be captured. To introduce these
details into 𝒓𝑣𝑖𝑠 , we propose this Residual-Driven Representation
Enhancement (RDRE) module, leveraging the powerful modeling
ability of VAE [17] in latent space. Different from the common use
of VAE such as generating new samples and classifying, our RDRE
utilizes it to model the details. As Fig.3 shown, the visual VAE in
RDRE is modeled to reconstruct the input feature 𝒗𝑖 𝑗 as much as
possible, but it cannot be exactly the same as the output feature
�̃�𝑖 𝑗 . This is because the latent space is low dimensional and the
compression makes some detailed information lost. The difference
between 𝒗𝑖 𝑗 and �̃�𝑖 𝑗 is regarded as the residual, which should be
focused on by 𝒓𝑣𝑖𝑠 . The process of RDRE supplementing details
contained in the visual prototype to the visual representation is as
follows:

�̃�𝑖 𝑗 = 𝑉𝐴𝐸𝑣 (𝒗𝑖 𝑗 ), (9)

�̃�𝑣𝑖𝑠 = 𝒓𝑣𝑖𝑠 +𝑀𝐿𝑃 (𝒗𝑖 𝑗 − �̃�𝑖 𝑗 ). (10)
The VAE loss of visual VAE is composed of reconstruction loss

and distribution alignment loss, which is defined as follows:

𝐿𝑉𝐴𝐸_𝑣 = | |𝒓𝑣𝑖𝑠 − 𝒓𝑣𝑖𝑠 | |2 + 𝐷𝐾𝐿 (𝑁 (𝜇𝑣, 𝜎2𝑣 ), 𝑁 (𝜇𝑠 , 𝜎2𝑠 )), (11)

where | | · | |2 is the function to calculate L2-norm. 𝐷𝐾𝐿 (·) is to
calculate the Kullback-Leibler (KL) divergence, 𝜇𝑣 and 𝜎𝑣 are the
mean and variance of the latent space of visual VAE, and 𝜇𝑠 and 𝜎𝑠
are the mean and variance of standard normal distribution.

3.3 Intersection-induced Prototype Learning

After the interaction between visual and structural semantics is
explored, the intersection between them is modeled as conceptual
semantics with the conceptual prototype, which is enhanced by a
new conceptual VAE.

3.3.1 Conceptual Prototype Modeling. For a predicate category,
although the representations of visual and structural semantics
are different, they all point to the same concept, which may be
modeled as conceptual semantics to represent this intersection. It
is a higher-level semantics, which enables the method to generalize
from specific instances to broader principles. The definitions in the
dictionary are sufficiently credible as the concept, because they
are based on consensus and can reflect how words are commonly
used and understood by speakers of the language. For example, for
the predicate “between”, the definition in Wiktionary is In the posi-
tion or interval that separates two things. If the meaning of "two
things" is understood accurately by the model, many confusing
candidate predicates regarding “between” can be identified.

Due to several long sentences of definitions in a concept, how
to model these flexible and ultra-long texts is a critical problem
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Fig 4 Redundancy-induced Prototype Learning 

Predicates Conceptual VAE

Wiktionary
conceptual 
prototype

reconstruct

textual 
embedding

Essence Driven Prototype Enhancement

Language Model

Figure 4: The illustration of Intersection-induced Prototype

Learning (IPL) method. The original conceptual prototype

of each predicate is extracted by a frozen LLM, which is re-

constructed by a conceptual VAE to discard the irrelevant

detailed information.

Algorithm 1 Algorithm of Definition Filtration.

INPUT: All predicate labels 𝑅 in the dataset.
OUTPUT: Filtered Definitions 𝐷 of predicate labels.
for each label 𝑟 ∈ 𝑅: do

Set all the candidate definitions as 𝑑𝑎 , 𝑑𝑎 ← 𝜙 .
Set the filtered definitions as 𝐷𝑟 , 𝐷𝑟 ← 𝜙 .
if 𝑟 is verb:

Remove the tense of 𝑟 .
end if

if 𝑟 in Wiktionary:
Add corresponding definitions to 𝑑𝑎 .

else:
for each word𝑤 𝑗 ∈ 𝑟 : do

Set the definitions of𝑤 𝑗 as 𝑑𝑝 ; 𝑑𝑎 ← {𝑑𝑎, 𝑑𝑝 }
end for

end if

for each definition 𝑑𝑒 𝑓 in 𝑑𝑎 : do
if 𝑑𝑒 𝑓 is for verb or preposition or conjunction:

𝐷𝑟 ← {𝐷𝑟 , 𝑑𝑒 𝑓 }.
end if

end for

Reserve top 𝑘 definitions in 𝐷𝑟 .
end for

if 𝑟𝑚 and 𝑟𝑛 are with different tenses:
Replace the last definition in 𝐷𝑚 and 𝐷𝑛 with an example
sentence corresponding to 𝑟𝑚 and 𝑟𝑛 , respectively.

end if

return 𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑟 , ...}

to be solved. Thanks to the rapid development of LLM, the input
sequences are not limited to fixed length and the long-range depen-
dency is better solved compared with the conventional Transformer.
However, there are several definitions of a concept, covering vari-
ous part of speech, such as verb, noun, conjunction, etc. To preserve
the most meaningful part and make the semantically similar predi-
cates distinguishable, the definitions are filtered and supplemented
as Algorithm 1 shown.

3.3.2 Essence-Driven Prototype Enhancement. Although the most
meaningful definitions are preserved by Algorithm 1, there are still
many irrelevant words in definitions, such as pronouns, to be fil-
tered. To make the method concentrate more on the essence of each
concept, a conceptual VAE is utilized to reconstruct the textual em-
bedding from LLM. The information that cannot be reconstructed
is also regarded as details. But different from the visual VAE, these
details are discarded, because the conceptual prototype needs to be

Fig 5 Selective Fusion Module

do

d1 d2 d3

×σ(w1)

×(1-σ(w1))

×σ(w3)

×σ(w2)

×(1-σ(w2)) ×(1-σ(w3))

+ + =
dfinal

Figure 5: The illustration of Selective Fusion Module (SFM).

The output of three branches, i.e. conceptual semantics (blue),

structural semantics (green), visual semantics (yellow), and

generalized semantics projection (gray), are integrated ac-

cording to the decomposed generalized semantic space.

compact to provide a clear guide for the projected representation
in conceptual semantic space. The final conceptual prototype is the
reconstructed feature by the conceptual VAE. The corresponding
VAE loss is as follows:

𝐿𝑉𝐴𝐸_𝑐 = | |𝑷𝑐𝑜𝑛 − �̃�𝑐𝑜𝑛 | |2 + 𝐷𝐾𝐿 (𝑁 (𝜇𝑐 , 𝜎2𝑐 ), 𝑁 (𝜇𝑠 , , 𝜎2𝑠 )), (12)

where 𝑷𝑐𝑜𝑛 is the original textual embedding extracted by LLM,
and �̃�𝑐𝑜𝑛 is reconstructed by the conceptual VAE. 𝜇𝑐 and 𝜎𝑐 are the
mean and variance of the latent space of conceptual VAE.

3.4 Selective Fusion Module

As shown in Eq.(2), other semantics 𝑆𝑜 is modeled as the generalized
semantics projection, which is a global modeling of the general-
ized semantic space. The output distribution of this branch 𝒅𝑜 is
calculated by relation feature 𝒓𝑖 𝑗 fed into the classifier. The cosine
similarities between the prototype and representation in the visual,
structural, and conceptual semantic subspaces are calculated as the
following:

𝒅1 =
< �̃�𝑣𝑖𝑠 , 𝑷 𝑣𝑖𝑠 >

| |�̃�𝑣𝑖𝑠 | |2 | |𝑷 𝑣𝑖𝑠 | | 2
, (13)

𝒅2 =
< 𝒓𝑠𝑡𝑟 , 𝑷𝑠𝑡𝑟 >

| |𝒓𝑠𝑡𝑟 | |2 | |𝑷𝑠𝑡𝑟 | |2
, (14)

𝒅3 =
< 𝒓𝑐𝑜𝑛, �̃�𝑐𝑜𝑛 >

| |𝒓𝑐𝑜𝑛 | |2 | |�̃�𝑐𝑜𝑛 | |2
, (15)

where < · > means the dot product of two vectors.
The above three similarities are regarded as the output distribu-

tions from different semantic subspaces. Then the results of gener-
alized semantics projection branch and three semantic subspace-
based branches are integrated as Fig.5 shown. Three learnable fac-
tors𝒘1,𝒘2, and𝒘3 are utilized to dynamically measure the impor-
tance of the semantic subspace based result and the global result.
The final distribution 𝒅 𝑓 𝑖𝑛𝑎𝑙 for predicate classification is as follows:

𝒅 𝑓 𝑖𝑛𝑎𝑙 =
3∑︁
𝑘=1

𝒅𝑜 × 𝜎 (𝒘𝑘 ) + 𝒅𝑘 × (1 − 𝜎 (𝒘𝑘 )) . (16)
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3.5 Loss Fuction

To make the prototype of different predicate categories distinguish
from each other, a simple but effective similarity loss 𝐿𝑠𝑖𝑚 is pro-
posed. Take the conceptual prototype �̃�𝑐𝑜𝑛 as an example, the
similarity matrix is calculated as follows:

𝑆 = �̃�𝑐𝑜𝑛 × �̃�
𝑇
𝑐𝑜𝑛, (17)

where �̃�𝑐𝑜𝑛 ∈ 𝑁 × 𝐷 , 𝑁 is the number of predicate categories,
and 𝐷 is the dimension of prototype. 𝑆 is the similarity matrix,
which is a square matrix with all diagonal elements are 1. The other
elements in 𝑆 mean the similarity between different pairwise pro-
totypes, which should be minimized. This similarity loss is defined
as follows:

𝐿𝑠𝑖𝑚 = [𝑠𝑢𝑚(𝑆) − 𝑡𝑟 (𝑆)]/(𝑁 × 𝑁 ), (18)
where 𝑠𝑢𝑚(·) is the function that sums all elements in a matrix, and
𝑡𝑟 (·) is to calculate the trace of the matrix. The final loss function
𝐿 for SPLN is expressed as follows:

𝐿 =

3∑︁
𝑘=1

𝐿𝑘𝑠𝑖𝑚 + 𝐿𝑉𝐴𝐸_𝑣 + 𝐿𝑉𝐴𝐸_𝑐 + 𝐿𝑜𝑏 𝑗 + 𝐿𝑟𝑒𝑙 , (19)

where 𝐿𝑘
𝑠𝑖𝑚

is the similarity loss of the 𝑘-th semantic subspace
to prevent holistic supervision signal. 𝐿𝑜𝑏 𝑗 and 𝐿𝑟𝑒𝑙 are the cross-
entropy loss for object and predicate classification respectively.

4 EXPERIMENTS

4.1 Experimental Settings

We conducted experiments on two datasets, i.e. Visual Genome
(VG) [18] and GQA [11]. VG is the most popular dataset in SGG,
which contains 150 object classes and 50 predicate classes. GQA
is a cross-modal dataset with 200 object classes and 100 predicate
classes. All experiments are evaluated on three standard modes:
Predicate Classification (PredCls), Scene Graph Classification (SG-
Cls), and Scene Graph Detection (SGDet). For the evaluation metric,
mean Recall@K (mR@K) is chosen, which is designed specifically
for unbiased SGG as the average value of Recall@K (R@K) of all
predicate categories.

4.2 Implementation Details

Following previous works [20, 39, 45], a pre-trained Faster R-CNN
[34] with the ResNeXt-101-FPN backbone is utilized as the object
detector, of which parameters are frozen during training. The net-
work is optimized by an SGD optimizer with an initial learning rate
of 5e-4. The batch size is set to 8 as many current methods, and
each model is trained with 45,000 iterations. The preserved defi-
nition number 𝑘 in Algorithm 1 is set to 3 by default. As previous
works [47], to make a trade-off between head and tail predicates,
an off-the-shelf re-weighting method [6] is equipped. Here two pre-
trained language models, CLIP [33] and LLaMA [37], are adopted
to extract the textual embedding of each concept. For CLIP, only
the text encoder is utilized. All experiments are conducted on an
NVIDIA GeForce RTX 4090 GPU.

4.3 Comparisons with State-of-the-art Methods

Visual Genome. As Table.1 shown, our SPLN is divided into two
versions: SPLN(C) and SPLN(L), where C means the text encoder of

CLIP is adopted to extract the textual embeddings of concepts, and
L means LLaMA is adopted. Compared with CLIP, LLaMA-based
SPLN can achieve better performance, which demonstrates that
better conceptual prototypes contribute to more fine-grained scene
graphs. All the methods we choose to be compared are the latest
proposed, which can be divided into model-agnostic methods and
specific methods. Following previous works [14, 16, 24, 42], the
model-agnostic methods under two commonly used baseline net-
works, MOTIFS [44] and VCTree [36], are compared. Our SPLN is a
specific method, which achieves the best performance for PredCls.
For SGCls, SPLN(L) is the best on mR@20/100, and is only lower
than VCTree-EICR [31] by 0.1% on mR@50. For SGDet, SPLN(L)
achieves the second highest mR@50/100, and CI-SGG+SI-CGG [3]
achieves the highest. It is because CI-SGG+SI-CGG introduces ex-
ternal commonsense knowledge, which provides strong and reason-
able priors. However, it leads to extra bias in commonsense space
and affects the performance for PredCls and SGCls.

GQA. As Table 2 shown, our SPLN not only achieves SOTA
performance on VG dataset but also on GQA dataset, which demon-
strates the generalization of our method. Our SPLN(C) outper-
forms other methods for the most challenging subtask SGDet, lead-
ing to a new state-of-the-art performance. Inf [2] performs better
than our SPLN(L) for PredCls on mR@100, but it is sensitive to
dataset changes. For the experiments conducted on VG dataset, the
mR@100 for PredCls of VCTree-Inf and MOTIFS-Inf is 30.7%, while
our SPLN(C) is 47.1%, and SPLN(L) is 48.5%.

4.4 Ablation Studies

Ablation on Different Prototypes. As Table.3 shown, the effec-
tiveness of each prototype in the corresponding semantic subspace
is demonstrated. All the experiments are conducted on the VG
dataset for PredCls. The result of baseline is from the single gener-
alized semantics projection branch, and the other ablation results
are obtained with this branch integrated. Because our method is
equipped with the reweighting strategy [6], the baseline method is
equipped with the same strategy for a fair comparison.

When a single type of prototype is utilized, the performance is
limited. Especially when only visual prototype is utilized, perfor-
mance is damaged compared to the baseline. This is because the
problem of ambiguous decision boundaries is caused by diverse
visual features, and the visual prototype suffers from the same prob-
lem and makes it worse. When working together with the structural
semantic prototype or the conceptual prototype, the performance is
improved significantly, indicating the ambiguity is relieved. When
all branches are utilized simultaneously, the generalized seman-
tic space is modeled comprehensively, and performance achieves
the best, which validates the effectiveness of the interaction and
intersection among the decomposed semantic subspaces.

Ablation on Model Components. As Table.4 shown, the perfor-
mances of each component are evaluated, which can be observed
that every component in SPLN is indispensable. Results show the
importance of RDRE and EDPE, which demonstrates the neces-
sity of representation and prototype reconstruction. If the visual
representation and conceptual prototype are not enhanced, the per-
formance will drop. Meanwhile, the ablation of SFM is conducted.
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Table 1: Performance (%) comparison of our method and the state-of-the-art methods on VG dataset. The best result is marked

in bold and the second best result is marked with underline. †means using the resampling strategy provided by [45], and ‡
means using the resampling strategy provided by [25].

Predicate Classification Scene Graph Classification Scene Graph Detection
Type Models Source mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

M
o
d
e
l
-
A
g
n
o
s
t
i
c

MOTIFS

baseline [44] CVPR18 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
A-PFG [39] AAAI23 33.5 39.9 42.0 19.8 22.7 23.6 11.9 15.8 18.3
BAI [23] ACM MM23 28.7 34.3 36.5 14.3 16.2 17.2 10.2 15.2 17.1
SIL [38] ACM MM23 13.6 16.9 18.4 8.5 10.2 10.8 5.5 7.3 8.5
DKBL [5] ACM MM23 — 29.7 32.2 — 18.2 19.4 — 12.6 15.1
Inf [2] CVPR23 — 24.7 30.7 — 14.5 17.4 — 9.4 11.7

EICR [31] ICCV23 — 34.9 37.0 — 20.8 21.8 — 15.5 18.2
CFA [20] ICCV23 — 35.7 38.2 — 17.0 18.4 — 13.2 15.5
LS-KD [24] TCSVT23 — 34.2 37.9 — 18.7 20.9 — 13.7 16.6
QuatRE [42] TMM23 17.7 23.9 28.0 10.7 14.8 17.1 6.4 8.9 10.9
ST-SGG† [16] ICLR24 — 32.5 35.1 — 18.0 19.3 — 12.9 15.8

VCTree

baseline [36] CVPR19 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
A-PFG [39] AAAI23 34.6 41.7 43.8 17.3 20.4 21.8 12.3 16.6 19.1
BAI [23] ACM MM23 28.2 32.8 34.6 16.0 18.9 19.6 9.6 12.6 16.8
SIL [38] ACM MM23 14.5 18.1 19.6 10.1 12.6 13.9 5.7 7.6 8.9
DKBL [5] ACM MM23 — 28.7 31.3 — 21.2 22.6 — 11.8 14.2
Inf [2] CVPR23 — 28.1 30.7 — 17.3 19.4 — 10.4 11.9

EICR [31] ICCV23 — 35.6 37.9 — 26.2 27.4 — 15.2 17.5
CFA [20] ICCV23 — 34.5 37.2 — 19.1 20.8 — 13.1 15.5
LS-KD [24] TCSVT23 — 33.8 37.5 — 22.2 24.9 — 13.7 16.6
QuatRE [42] TMM23 19.3 25.5 29.1 10.8 15.9 18.7 7.0 9.5 11.6
ST-SGG† [16] ICLR24 — 32.7 35.6 — 21.0 22.4 — 12.6 15.1

S
p
e
c
i
fi
c

Het-SGG [43] AAAI23 — 31.6 33.5 — 17.2 18.7 — 12.2 14.4
CI-SGG+SI-CGG [3] ACM MM23 — 42.8 45.0 — 25.4 27.1 — 19.3 21.5

PE-Net [47] CVPR23 — 31.5 33.8 — 17.8 18.9 — 12.4 14.5
CV-SGG [14] CVPR23 — 32.6 36.2 — — — — 14.6 17.0
SQUAT‡ [15] CVPR23 25.6 30.9 33.4 14.4 17.5 18.8 10.6 14.1 16.5
IS-GGT [19] CVPR23 — 26.4 31.9 — 15.8 18.9 — 9.1 11.3
TGIR [40] IJCV23 12.7 16.1 17.2 7.6 9.2 9.7 4.4 6.4 7.9
CSL [28] TPAMI23 — 29.5 31.6 — 16.7 17.9 — 11.9 14.3
SPLN(C) — 36.4 43.9 47.1 21.3 25.6 27.4 12.4 17.2 20.6
SPLN(L) — 36.9 44.9 48.5 21.9 26.1 28.0 13.6 17.6 20.8

The experiment of w/o SFM means the output distributions from
three semantic branches are simply summed without generalized
semantics projection involved. This verifies the effectiveness of
regarding generalized semantics projection as other semantics to
model the generalized semantic space. The importance of 𝐿𝑠𝑖𝑚 is
also evaluated, which helps our SPLN to make more distinguishable
prototypes.

4.5 Qualitative Analysis

Visualization of R@K. As Fig.6 shown, Recall@100s of all
predicate categories are reported, which are sorted in descending
order by frequency. The experiments are conducted on the VG
dataset under PredCls task, and the baseline is equipped with the

same re-weighting strategy as our SPLN. As shown in many unbi-
ased works [15, 16, 45], it is a common phenomenon that the perfor-
mance of head predicates decreases. This is because the trivial head
predicates are divided into fine-grained body and tail predicates
with more semantics. Our SPLN(L) maintains the head performance
as much as possible, and the drop is limited within a small mar-
gin. Meanwhile, our SPLN(L) performs well for the body and tail
predicates, which effectively solves the long-tailed problem. For the
predicate “flying in”, which only has four samples during training,
the R@K in the testing set is improved from 0 to 64.91% by our
method.

Visualization of Image. As Fig.7 shown, the visualization of
the generated scene graphs of baseline and our SPLN(L) is compared.
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Table 2: Performance comparison of our method and the

state-of-art-methods on GQA dataset(%). The best result is

marked in bold and the second best result is marked with

underline.

Type Models PredCls SGCls SGDet
mR@50/100 mR@50/100 mR@50/100

M
o
d
e
l
-
A
g
n
o
s
t
i
c MOTIFS

baseline [44] 16.4 / 17.1 8.2 / 8.6 6.4 / 7.7
Inf [2] 37.9 / 40.1 19.1 / 20.0 14.3 / 15.8

EICR [31] 36.3 / 38.0 17.2 / 18.2 16.0 / 18.0
CFA [20] 31.7 / 33.8 14.2 / 15.2 11.6 / 13.2

VCTree

baseline [36] 16.6 / 17.4 7.9 / 8.3 6.5 / 7.4
Inf [2] 39.4 / 41.6 19.2 / 20.0 13.6 / 15.1

EICR [31] 35.9 / 37.4 17.8 / 18.6 14.7 / 16.3
CFA [20] 33.4 / 35.1 14.1 / 15.0 10.8 / 12.6

S
p
e
c
i
fi
c SPLN(C) 38.2 / 39.6 17.8 / 18.4 16.2 / 18.6

SPLN(L) 39.4 / 40.7 19.4 / 20.2 16.4 / 18.4

Table 3: Ablation studies of each prototype of SPLN(C) (%).

Structural Visual Conceptual mR@20 mR@50 mR@100

baseline 32.7 40.1 43.7
✓ 34.2 41.8 45.1

✓ 32.2 39.3 42.3
✓ 33.3 40.4 43.8

✓ ✓ 35.5 43.1 46.4
✓ ✓ 34.9 42.2 45.5

✓ ✓ 35.1 42.6 46.3
✓ ✓ ✓ 36.4 43.9 47.1

Table 4: Ablation studies of components of SPLN(C) (%).

Models mR@20 mR@50 mR@100

w/o RDRE 35.7 42.9 45.8
w/o EDPE 35.3 42.7 45.9
w/o SFM 35.5 43.3 46.5
w/o 𝐿𝑠𝑖𝑚 36.0 42.7 46.0
SPLN(C) 36.4 43.9 47.1

The red arrows denote the wrong or coarse-grained predictions,
and the green arrows denote the right or fine-grained predictions.
The baseline is strong with high mR@K values, but the visualization
shows that it overfits the body and tail predicates, leading to some
unreasonable predictions such as “train-to-window” in the first
row and “arm1-part of-fence” in the second row. Compared to the
baseline, our SPLN(L) shows a more reasonable trade-off between
head and tail predicates, which does not deliberately suppress the
prediction of head predicates such as “train-has-window” in the
first row. Furthermore, our method generates more semantically
rich triplets such as “window-part of-building” v.s. “window-on-
building” and “man-riding-skateboard” v.s. “man-using-skateboard”
in the second row.
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Figure 6: Recall@100 of baseline and our SPLN(L) for all

predicate categories under PredCls task on the VG dataset.
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Figure 7: Visualization of the generated scene graphs by base-

line (in blue) and our SPLN(L) (in yellow) under PredCls task

on the VG dataset.

5 CONCLUSION

In this work, a Synergetic Prototype Learning Network (SPLN) is
proposed to deal with the ambiguous decision boundaries by model-
ing the generalized semantic space, which is decomposed as visual
semantics, structural semantics, conceptual semantics, and other
semantics. The interaction between visual and structural semantics
is comprehensively explored. To bridge the gap between the visual
prototype and corresponding representation, a Residual-Driven
Representation Enhancement module is proposed, which regards
the residual that cannot be modeled by VAE as details and mod-
els them explicitly. The intersection between visual and structural
semantics is modeled the conceptual semantics, which adopts the
definitions in a Wiktionary. To preserve the essential information
in the conceptual prototype, an Essence-Driven Prototype Enhance-
ment module is proposed, which discards the irrelevant details.
Due to the difficulty to define the boundary of generalized semantic
space, other semantics is modeled by generalized semantics projec-
tion, which is a global modeling and does not refer to any specific
semantics. Finally, to integrate the output distributions of these
three branches and the generalized semantics projection, a Selective
Fusion Module is proposed to dynamically measure the importance
of them, where a simple but effective similarity-based loss is pro-
posed to make the prototypes of predicate categories apart from
each other. Experimental results show our SPLN achieves state-of-
the-art performance on unbiased metrics. In the future, we try to
generate more meaningful scene graphs by exploring more types
of synergetic effects among different semantic subspaces.
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