
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRAM SYNTHESIS BENCHMARK FOR VISUAL
PROGRAMMING IN XLOGOONLINE ENVIRONMENT

Anonymous authors
Paper under double-blind review

A TABLE OF CONTENTS

In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides more details about the datasets.

• Appendix C provides more details about the fine-tuning process and evaluation.

• Appendix D provides additional experiments and results.

• Appendix E provides more details about the prompts used for fine-tuning and evaluation.

B MORE DETAILS ABOUT THE DATASETS

We provide the following details about the datasets.

1. Real-world tasks in the XLogoOnline platform: The real-world visual programming tasks
in the REAL dataset are curated from the Mini level of the XLogoOnline platform. These
real-world programming tasks can be accessed and viewed at https://xlogo.inf.
ethz.ch/. Figure 8 shows the screenshots of the platform.

2. The benchmark source code and datasets: See the provided file iclr2025-xlogo-
benchmark_src.zip. After unzipping this file, the dataset is available in the data.zip
file.

3. Data license confirmation: We confirm that all data used in this paper is either publicly
available or has been obtained and used in accordance with the relevant data licenses.

(a) Task 38 (b) Task 73

Figure 8: Example tasks from the XLogoOnline platform. Students need to drag and drop different
blocks to solve the tasks.

1

https://xlogo.inf.ethz.ch/
https://xlogo.inf.ethz.ch/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

B.1 DETAILS OF THE SYNTHETIC DATASET GENERATION

In this section, we provide more details about the generation process of the synthetic dataset SIM.

We use the adapted task synthesis technique (Ahmed et al., 2020; Wen et al., 2024) to generate a
synthetic dataset. The key idea is to take a reference task and its solution code as input, and then apply
symbolic execution and constraint satisfaction techniques to systematically enumerate all possible
task-code outputs. The details are described as follows.

First, we manually craft a solution code for each of the N = 85 tasks in the REAL dataset, resulting
in a set {(Ti,Ci)}Ni=1. However, our objective is to generate a large and diverse set of tasks to train
large models. To achieve this, we specify an additional parameter difficulty level D. This parameter
enables us to generate tasks with varying levels of difficulty by specifying the desired code length,
number of code constraints, and goals relative to the reference input, thereby enhancing the diversity
of the dataset. The parameters are detailed as follows:

• Easy: The code length and number of code constraints remain the same as in the reference
code and code constraints, and the goal remains unchanged.

• Medium: The code length is increased by 1 or 2 additional commands compared to the
reference code, while the number of code constraints and the goal remain the same as in the
reference task T.

• Hard: The code length is increased by up to 2 additional commands, one more code
constraint is added compared to the reference code constraints, and the goal may be modified.

Note that the difficulty levels mentioned above indicate the relative difficulty of the generated tasks
compared to the reference task, not the absolute difficulty of the tasks.

Given the reference input (T,C,D), we begin by enumerating all possible codes, code constraints,
and goals that meet the specified difficulty levels. To achieve this, we first create templates for the
code, constraints, and goals, respectively, each containing placeholders. These placeholders are then
populated with specific values using an SMT-based constraint solver (de Moura & Bjørner, 2008).
This process allows us to generate all possible combinations of code, constraints, and goals that align
with the desired difficulty levels.

Next, we generate task-code pairs by combining the previously generated code, code constraints, and
goals with corresponding grid worlds. To generate these grid worlds, we symbolically execute the
previously generated code within an empty grid, constructing elements like walls and target items
to ensure the grid can be successfully solved by the code. After the grid world is constructed, it is
combined with the corresponding code, code constraints, and goal to form a task-code pair.

In implementation, we generate up to 3,000 tasks for each combination of code, code constraints,
and goals. Subsequently, we sample 500 tasks from the pool of all generated tasks for each (T,C,D),
resulting in up to 500 tasks × 3 difficulty levels = 1, 500 tasks for each reference input (T,C). This
process is repeated for all reference inputs in the dataset, resulting in a total of up to 85× 1, 500 =
127, 500 tasks. Finally, we apply the processing steps described in the main paper to generate the
synthetic dataset, resulting in the final dataset, SIM, containing 89, 053 tasks and solution codes.

To run the adapted task synthesis technique, we use a 12-core, 3 GHz Intel Xeon E7-8857 CPU, with
parallelization across 8 cores under a 64-bit Debian operating system.

B.2 QUALITY OF THE DATASETS

The quality of the datasets is crucial for the success of the models trained on them. Therefore, we
provide the more details about the quality of the datasets. We mainly use the following two datasets
for evaluation:

1. REAL dataset (85 samples): This dataset was derived from the visual programming platform
XLogoOnline. The tasks included in this platform were meticulously crafted by experts
and have been used by tens of thousands of students every year (Hromkovic et al., 2017;
Staub, 2021). Given this extensive use and expert involvement, the quality of the tasks in
this dataset is guaranteed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. SIM-EVAL dataset (1000 samples): This dataset was synthetically generated. However,
we ensure data quality by implementing the following checks: (i) we have removed any
duplicate task-code pairs; (ii) we have conducted a correctness check on the generated
solution codes using the emulator, and (iii) we have excluded any task-code pairs present in
the REAL dataset from this synthetic dataset.

To further demonstrate the quality of our datasets, we conduct a quality annotation for both datasets.
Specifically, we annotate the quality of all 85 samples in the REAL dataset and randomly sample 5%
of tasks from the SIM-EVAL dataset for annotation. The following rubrics are used to evaluate each
(task, code) pair:

1. Visual appeal
• 0: Poor - The visual grid is highly unappealing.
• 0.5: Acceptable - The visual grid is moderately appealing.
• 1: Excellent - The visual grid is highly appealing.

2. Grid elements utility
• 0: Poor - The distractors are neither useful nor reasonably positioned.
• 0.5: Acceptable - Some distractors are useful, while others lack utility.
• 1: Excellent - Most, if not all, distractors are strategically useful and sensibly placed.

3. Code quality
• 0: Poor - The code is of poor quality, unable to solve the task, or violates code

constraints.
• 0.5: Acceptable - The code can solve the task but contains some unnecessary com-

mands.
• 1: Excellent - The code solves the task, meets code constraints, and has no redundant

commands.
4. Overall quality: Calculated as the minimum score across visual appeal, grid elements utility,

and code quality.

Visual Appeal Grid Elements Utility Code Quality Overall Quality

REAL 1.00 1.00 1.00 1.00
SIM-EVAL 0.97 0.94 0.89 0.84

Figure 9: Quality annotation results for REAL and SIM-EVAL datasets. For REAL, we annotate all 85
samples, while for SIM-EVAL, we randomly sample 5% of the dataset for annotation.

The results in Figure 9 demonstrate that the overall quality of the REAL dataset is excellent. The
SIM-EVAL dataset, with an overall quality score of 0.84, exceeds the acceptable threshold (score =
0.5) and approaches the level of excellence (score = 1.0). Additionally, during the quality annotation,
we do not find any (task, code) pair where the task is unsolvable or the code fails to successfully
solve the task.

C MORE DETAILS OF THE FINE-TUNING AND EVALUATION

Details of fine-tuning Llama family models. For Llama family models, we choose non-instruction-
tuned versions for fine-tuning because the base models will be fine-tuned to generate code, without
requiring instruction-following capabilities. We use LoRA for parameter-efficient fine-tuning (Hu
et al., 2022). To find the best LoRA rank and scaling factor, we experimented with ranks of 8, 16,
32, and 64, using a scaling factor α four times the rank in each case. We found that a rank of 32
and 64 provide the best performance. Consequently, we use a rank of 32 and a scaling factor of
128 for all fine-tuning experiments. Fine-tuning is performed with a batch size of 4 and a learning
rate of 1 × 10−4. All fine-tuning experiments are conducted on an internal cluster using 4 A100
GPUs. Each epoch of fine-tuning for the Llama3-8B and Llama2-7B models takes approximately
3.75 hours. In our experiments, all fine-tuned Llama models are trained for 8 epochs, as we observed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Vanilla 3-shot 3-shot + CoT

GPT-4 12.94 10.59 18.82
GPT-4V 20 14.12 15.29

Figure 10: Success rates (%) of GPT-4 and GPT-4V with different prompting strategies on the
REAL dataset. 3-shot prompting is not notably effective, but when combined with CoT, it leads to
performance improvements. However, for GPT-4V, the vanilla prompt is the most effective.

that the validation dataset loss stabilizes around epoch 8. We train all fine-tuned Llama models using
5 different random seeds.

Details of fine-tuning Llava family model. We perform standard supervised fine-tuning to Llava1.5-
13B (Liu et al., 2023). To do this, we follow the default fine-tuning setup and code provided by the
authors.1 Specifically, we use LoRA with a rank of 128 and a scaling factor of 256 for fine-tuning
Llava1.5-13B. During fine-tuning, we use a batch size of 16, a learning rate of 2 × 10−4, and a
maximum sequence length of 2048. We fine-tune the Llava model for 3 epochs on the 87k training
dataset using 5 different random seeds, utilizing 4 A100 GPUs.

Details of emulator-driven fine-tuning. For emulator-driven fine-tuning, we use the same hyper-
parameters and setup as the standard fine-tuning, with the exception of resampling every 3 epochs.
Specifically, we resample the training dataset based on the emulator’s evaluation results every 3
epochs. To save time and resources, we start from the checkpoint of the fine-tuned models without
resampling at epoch 3. We then reuse this checkpoint to continue fine-tuning for 5 additional epochs
using emulator-driven resampling, resulting in a total of 8 epochs. Emulator-driven resampling re-
quires calculating a weight for each training sample, which involves inference over the entire training
dataset. For inference, we use the vLLM inference engine (Kwon et al., 2023) with max_num_seqs
of 8, batch size of 2, and temperature of 0. In this setting, a single iteration of inference and resam-
pling on the 87k training dataset takes approximately 8 hours. After inference, we use the emulator
to evaluate the correctness of the model’s predicted code. Based on this evaluation, we calculate the
weight for each training sample using a value of β = 1.

Details of evaluation. To evaluate GPT family models, we use the OpenAI API with a temperature
of 0. For Llama3-8B, Llama2-7B, and fine-tuned models, we use the vLLM (Kwon et al., 2023)
inference engine with 2 A100 GPUs, using a temperature of 0 and max_num_seqs of 2. We
find that a smaller max_num_seqs value slows down inference speed but improves performance.
Therefore, we choose a max_num_seqs value of 2 to balance performance and speed for inference.
After inference, we use the emulator to evaluate the models’ success rates over the evaluation datasets.

D ADDITIONAL EXPERIMENTS AND RESULTS

In this section, we present additional experiments and results. First, we investigate the influence
of different prompting strategies on model performance. Next, we investigate task representations,
comparing natural language and ASCII-based prompts. Then, we analyze the performance of fine-
tuned Llama models across different epochs. Finally, we present a case study on output code analysis
for perturbed tasks, providing further insights into failure analysis.

D.1 INFLUENCE OF THE PROMPTING STRATEGIES

Carefully designed prompts have been shown to improve the performance of large models (Wei et al.,
2022; Brown et al., 2020). We conduct experiments on different prompting strategies to investigate
their effectiveness in our benchmark. We consider the following prompting strategies: (i) Vanilla
is the prompt without any additional examples or chain-of-thoughts; (ii) 3-shot is the prompt with
3-shot examples (Brown et al., 2020). (iii) 3-shot + CoT is the prompt with the 3-shot examples
and a step-by-step chain-of-thought (CoT) for each example (Wei et al., 2022). Note that the 3-shot
examples are manually designed to ensure they cover most skills, including math, logic, draw, basic

1https://github.com/haotian-liu/LLaVA

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Success Rates (%)

NL ASCII

Base models
GPT-4 12.94 5.88
Llama3-70B 2.35 1.18

Fine-tuned models
Llama3-8B-Uni 54.12± 1.78 53.18± 1.01

(a) Performance of base and fine-tuned models
with NL and ASCII prompts.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Llama3-8B-Uni (NL)
Llama3-8B-Uni (ASCII)

(b) Performance of Llama3-8B-Uni across epochs
with NL and ASCII prompts.

Figure 11: Influence of task representations on model performance. We compare the performance of
base models and fine-tuned models using natural language (NL) and ASCII prompts, respectively.
(a) shows the success rates of base and fine-tuned models. (b) shows the performance of fine-tuned
models across different epochs. Natural language prompts lead to better performance in base models.
However, the fine-tuned Llama3-8B-Uni performs similarly with both NL and ASCII prompts.

actions, variables, loops, and code constraints. These same 3-shot examples are used to prompt all
tasks for 3-shot and 3-shot + CoT prompting.

The results are shown in Figure 10. We observe that 3-shot prompting by itself is not notably effective.
However, when combined with CoT, it leads to performance improvements, though these gains are
limited. We speculate that this is due to the nature of our visual programming tasks, which require
long-term path planning, an understanding of spatial relationships, and accurate prediction of the
consequences of actions. These elements are typically absent from the training data, making it
difficult for the model to leverage in-context learning to solve unfamiliar visual programming tasks.

D.2 INFLUENCE OF TASK REPRESENTATIONS

In this section, we investigate the influence of natural language and ASCII representations on model
performance.

For visual programming tasks, the 2-dimensional grid can be represented in various ways, including
natural language descriptions, ASCII-based representations, and images. For the ASCII representa-
tion, we developed a template to represent the task’s visual grid using ASCII characters. These ASCII
characters are then provided to the model as a replacement for the natural language descriptions of
the visual grid, both for fine-tuning and evaluation. An example of an ASCII-based prompt is shown
in Figure 15.

The evaluation results are shown in Figure 11. Our results indicate that GPT-4 and Llama3-70B
perform better with natural language (NL) representations. This might be due to their predominant
training on natural language data. However, the fine-tuned Llama3-8B-Uni model performs similarly
with both NL and ASCII prompts, with final success rates of 54.12% and 53.18%, respectively.

In Figure 11b, we show Llama3-8B-Uni’s performance across different epochs with NL and ASCII
prompts. We find that the performance of Llama3-8B-Uni with NL and ASCII prompts converges at
a similar rate, suggesting that fine-tuning helps the model adapt to ASCII-based task representations,
making task representations less critical for fine-tuning models in our visual programming domain.

D.3 FINE-TUNING PERFORMANCE ACROSS DIFFERENT EPOCHS.

Figure 12a illustrates the performance of fine-tuned models across different epochs. For the emulator-
driven fine-tuning (Emu), we adjust the resampling interval to every three epochs, specifically at
epochs 3 and 6. At epoch 3, we reuse the checkpoint from the standard fine-tuning (Uni) to save
time and resources. As a result, the performance of the emulator-driven fine-tuning (Emu) matches
that of the corresponding standard fine-tuning (Uni) up until epoch 3. Then, an emulator-driven
resampling is performed at epoch 3, leading to further performance improvements compared to
models without resampling. Notably, at the end of training, Llama2-7B-Emu achieves performance

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(a) REAL dataset.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(b) SIM-EVAL dataset.

Figure 12: Fine-tuning performance across different epochs on two evaluation datasets. (a) shows the
performance of fine-tuned models across different epochs on the evaluation dataset REAL. (b) shows
the fine-tuning performance across different epochs on the synthetic evaluation dataset SIM-EVAL.

close to that of Llama3-8B-Uni, despite the latter being fine-tuned on a more advanced base model.
This demonstrates the effectiveness of the curriculum designed by emulator-driven resampling in
enhancing the performance of standard fine-tuning.

In Figure 12b, we show the fine-tuning performance across different epochs on the synthetic evaluation
dataset SIM-EVAL. This synthetic evaluation dataset exhibits the same distribution as the training
dataset due to our splitting method. Emulator-driven resampling is performed at epochs 3 and 6 for
both Llama3-8B-Emu and Llama2-7B-Emu. We find that standard fine-tuning without resampling
leads to a smooth increase in performance across epochs, as seen in the Llama3-8B-Uni and Llama2-
7B-Uni curves. In contrast, emulator-driven fine-tuning with resampling shows slight performance
fluctuations, particularly in the epochs immediately following resampling (i.e., epochs 4 and 7).
The fluctuations in emulator-driven fine-tuning might be due to the resampling process altering the
distribution of the training data, leading to a temporary drop in performance. However, in later epochs
after resampling (e.g., epoch 8), the performance of the resampling models outperforms that of the
standard fine-tuning models, indicating the effectiveness of emulator-driven fine-tuning in improving
fine-tuning performance.

D.4 CASE STUDY: OUTPUT CODE ANALYSIS ON PERTURBED TASKS

In the main paper, we presented a failure analysis by perturbing tasks and calculating the success
rate. To illustrate the failure cases, we provide examples of output code from the evaluated models on
these perturbed tasks, including GPT-4V, Llama3-70B, and Llama3-8B-Uni.

The output code is displayed in Figure 13. In the provided examples, we observe that GPT-4V has
difficulty handling grid constraints and spatial reasoning. For example, in T and TA, GPT-4V attempts
to reach the strawberry by ignoring the walls. However, once the walls are removed (TB), GPT-4V is
able to successfully solve the task. Interestingly, GPT-4V fails to solve TA,B, even though this task is
conceptually simpler than TB due to the absence of code constraints. Upon examining the code and the
accompanying comments from GPT-4V, we found that it miscalculates the strawberry’s coordinates,
indicating a struggle with spatial reasoning. Additionally, we observed that moving the turtle closer
to the strawberry consistently improves GPT-4V’s performance, suggesting long-path planning and
spatial reasoning are challenging for GPT-4V. However, for Llama3-70B and Llama3-8B-Uni, we
observe that neither model successfully solves any of the perturbed tasks.

E PROMPTS FOR THE XLOGOONLINE-MINI DOMAIN

In this section, we present three types of prompts for program synthesis in the XLogoOnline-Mini
domain. Figures 14 and 15 show examples of the prompts using natural language and ASCII
representation, respectively. Figure 16 shows the prompt for the few-shot + CoT prompting.

Note that after the title “#### Available Python Functions” in prompts, we provide an explanation and
two examples of the code format. This is intended for base models, such as GPT-family and Llama-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

family base models, to ensure they follow the desired code format. However, fine-tuning models
does not need this code format in the prompt, as models are trained with formatted code directly.
Therefore, we omit the code format and examples from the prompts when fine-tuning models.

REFERENCES

Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov, Nigel Fernandez, Ahana Ghosh, Abhik
Roychoudhury, and Adish Singla. Synthesizing Tasks for Block-based Programming. In NeurIPS,
2020.

Tom B. Brown et al. Language Models are Few-Shot Learners. In NeurIPS, 2020.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An Efficient SMT Solver. In TACAS,
2008.

Juraj Hromkovic, Giovanni Serafini, and Jacqueline Staub. XLogoOnline: A Single-Page, Browser-
Based Programming Environment for Schools Aiming at Reducing Cognitive Load on Pupils. In
ISSEP, 2017.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In SIGOPS, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. CoRR, abs/2310.03744, 2023.

Jacqueline Staub. Logo Environments in the Focus of Time. Bulletin of EATCS, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. In NeurIPS, 2022.

Chao Wen, Ahana Ghosh, Jacqueline Staub, and Adish Singla. Task Synthesis for Elementary Visual
Programming in XLogoOnline Environment. In AIED Track on Late Breaking Results, 2024.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task GPT-4V Llama3-70B Llama3-8B-Uni

Find the strawberry. Use
at most 8 commands.

T

def run():
Turtle faces east
turn_right()

Moves to (1,3)
move_forward()

Moves to (2,3)
move_forward()

Moves to (3,3) where the strawberry is located
move_forward()

def run():
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()
move_forward()

def run():
move_forward()
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
for i in range(3):
move_forward()

Find the strawberry.

TA

def run():
Start at (0,3) facing north
First, turn right to face east
turn_right()

Move forward three times to reach (3,3)
for i in range(3):
move_forward()

def run():
for i in range(3):
move_forward()
turn_right()

move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
for i in range(2):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
move_forward()

Find the strawberry. Use
at most 8 commands.

TB

def run():
turn_right() # Turtle faces east
for i in range(3):
move_forward() # Moves from (0,3) to (3,3)

def run():
for i in range(3):
move_backward()

turn_right()
move_forward()
turn_left()
move_forward()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_backward()
for i in range(3):
move_forward()

Find the strawberry. Use
at most 8 commands.

TC

def run():
move_forward() # Moves from (3,1) to (3,2)
move_forward() # Moves from (3,2) to (3,3)
↪→ where the strawberry is located
turn_right() # Turns to face west
turn_right() # Turns to face north
turn_right() # Turns to face east
turn_right() # Turns to face south again
turn_right() # Turns to face west
turn_right() # Turns to face north

def run():
turn_left()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_forward()
move_forward()

Find the strawberry.

TA,B

def run():
Turn right to face east
turn_right()

Move forward three times to reach column 3
for i in range(3):
move_forward()

Turn right to face south
turn_right()

Move forward to reach the strawberry at (3,3)
move_forward()

def run():
for i in range(3):
move_forward()

turn_right()
move_forward()
turn_left()
for i in range(3):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

Find the strawberry. Use
at most 8 commands.

TB,C

def run():
Moves from (3,1) to (3,2)
move_forward()

Moves from (3,2) to (3,3)
↪→ where the strawberry is located
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
move_forward()
for i in range(2):
move_forward()
turn_right()

turn_left()
move_forward()

Find the strawberry.

TA,C

def run():
The turtle starts at (3,1) facing south.
First, move forward to (3,2).
move_forward()

Then, move forward to (3,3)
where the strawberry is located.
move_forward()

def run():
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
... (repeat outputs)

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()

Find the strawberry.

TA,B,C

def run():
The turtle starts at (3,1) facing south.
Move forward to reach (3,2).
move_forward()

Move forward again to reach (3,3)
↪→ where the strawberry is located.
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
for i in range(3):
move_forward()

turn_right()
move_forward()

def run():
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

Figure 13: Output codes generated by GPT-4V, Llama3-70B, and Llama3-8B-Uni for various
perturbations applied to a task T. The perturbations include removing code constraints (TA), removing
grid constraints (TB), simplifying spatial relationships (TC), and combinations of these perturbations
(TA,B, TB,C, TA,C, and TA,B,C). Note that only the code is shown due to space limitations. The red
line in the output code marks the point where the code first triggers an execution error or fails to
successfully solve the task. GPT-4V successfully solves 5 out of 8 perturbed tasks, but Llama3-70B
and fine-tuned Llama3-8B-Uni fail to solve any of the perturbed tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Natural Language Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates
`(0, 0)`. - The turtle starts at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 14: An example of natural language prompt in the XLogoOnline-Mini domain.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ASCII-based Prompt for Program Synthesis in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
A task’s grid contain a turtle and some items. The turtle can face one of four directions: North (`ˆ`), South (`v`), East (`>`), or West (`<`). An item has three attributes:
`count`, `color`, and `name`. The `count` indicates the number of identical items in that grid cell. The `color` specifies the item’s color, and the `name` describes the
item’s type. Here are the possible options:
- Colors: Red (`R`), Green (`G`), Blue (`B`), Yellow (`Y`), Black (`K`), White (`W`), Orange (`O`), Purple (`U`), Pink (`P`)
- Names: Circle (`o`), Rectangle (`□`), Triangle (`△`) ,Cross (`X`), Strawberry (`S`), Lemon (`L`)
- Counts: `1`, `2`, `3`, `4`
- For example, `2RS` means two red strawberries.

We use the following symbols to describe a grid:
- `—` represents the top or bottom edge of a grid cell.
- `|` represents the left or right edge of a grid cell.
- `===` represents an upper or lower wall of a cell.
- `||` represents a left or right wall of a cell.
- `+` represents the corner of a grid cell.
- `X` represents a forbidden cell that cannot be accessed.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task:
Task:

+---+---+---+
| |1RS| |
+---+---+---+
| | ^ | |
+---+---+---+
| | | |
+---+---+---+

Goal:
Find the strawberry.
CORRECT Code:

Figure 15: An example of ASCII-based prompt in the XLogoOnline-Mini domain.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Few-shot + CoT Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates
`(0, 0)`. - The turtle starts at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.

Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```

Here are some examples of the the tasks and their corresponding solution codes:
{few_shot_example_1}
{few_shot_example_2}
{few_shot_example_3}

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 16: An example of the few-shot + CoT prompt in the XLogoOnline-Mini domain. This prompt
has several placeholders to include details for few-shot examples.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

{few_shot_example_1}
Task 1: A 4x4 grid. The turtle starts at (3,3) facing south.
Accessible cells: (3,0), (3,1), (3,2), (0,3), (1,3), (2,3), (3,3).
Forbidden cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Lines in the grid:
- A red line from (3,0) to (3,1).
- A red line from (3,1) to (3,2).
- A red line from (3,2) to (3,3).
- A red line from (0,3) to (1,3).
- A red line from (1,3) to (2,3).
- A red line from (2,3) to (3,3).

Goal 1:
Draw the picture in red. Use at most 8 commands.

Code 1:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(3, 3)`, facing south. To achieve the goal of drawing the picture in red, we first need to set the pen color to red using the `setpc(’red’)` command.

2. Plan the path:
- To draw the pattern, the path is `(3,3) -> (3,0) -> (3,3) -> (0,3)`.

3. Compiling the Path into Commands:
- The turtle starts at `(3, 3)`, facing south. To draw the first red line from `(3, 3)` to `(3, 0)`, we need to first set the pen color to red and then move back 3 times to reach
from `(3, 3)` to `(3, 0)`.
- Now, the turtle is at `(3, 0)` and still facing south. To move back to `(3, 3)`, we move forward 3 times in the same direction (south).
- At `(3, 3)` and facing south, the turtle needs to turn right to face west.
- Now, the turtle is at `(3, 3)` and facing west. Move forward 3 times to reach from `(3, 3)` to `(0, 3)` facing west.
- Now the turtle has drawn the picture in red.

Putting it all together and notice that the solution code can use at most 8 commands. Here is the solution code:

```python
def run():

setpc(’red’)
for i in range(3):

move_backward()
for i in range(3):

move_forward()
turn_right()
for i in range(3):

move_forward()
```

Figure 17: The detail of the first few-shot + CoT example {few_shot_example_1}.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

{few_shot_example_2}
Task 2:
A 3x3 grid. The turtle starts at (1,2) facing south.

Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
(1,0) has a wall at the bottom edge.
(2,0) has a wall at the bottom edge.
(1,1) has a wall at the top edge.
(2,1) has a wall at the top edge.

Items in the grid:
- 4 red strawberries at (1,0).
- 1 red strawberry at (2,0).
- 2 red strawberries at (2,1).
- 1 red strawberry at (2,2).

Goal 2:
Collect exactly 5 strawberries.

Code 2:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(1, 2)`, facing south.
- The goal is to collect exactly 5 strawberries.
- There are 4 strawberries at `(1, 0)` and 1 strawberry at `(2, 0)`. By visiting these two cells, we can collect exactly 5 strawberries. We need a path to visit both `(1, 0)`
and `(2, 0)` while considering walls that block movement between cells `(1, 0)` & `(1, 1)` and `(2, 0)` & `(2, 1)`.

2. Planning the Path:
- An ideal path to avoid the walls and collect strawberries is: `(1, 2) -> (1, 1) -> (0, 1) -> (0, 0) -> (2, 0)`.
- This path efficiently collects exactly 5 strawberries.

3. Compiling the Path into Commands:
- The turtle starts at `(1, 2)` facing south.
- To move from `(1, 2)` to `(1, 1)`, it needs to move backward. Now the turtle is at `(1, 1)` facing south.
- To move from `(1, 1)` to `(0, 1)`, it needs to turn right and move forward. Now it is at `(0, 1)` facing west.
- To move from `(0, 1)` to `(0, 0)`, it needs to turn right to face north, then move forward. Now it is at `(0, 0)` facing north.
- To move from `(0, 0)` to `(2, 0)`, it needs to turn right to face east, and finally, move forward twice to go from `(0, 0)` to `(2, 0)`.
- Now the turtle has collected exactly 5 strawberries.

Putting it all together. The solution code is:

```python
def run():

move_backward()
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

```

Figure 18: The detail of the second few-shot + CoT example {few_shot_example_2}.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

{few_shot_example_3}
Task 3:
A 3x3 grid. The turtle starts at (2,2) facing south.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 blue triangle at (0,0).
- 1 red circle at (1,0).
- 1 green circle at (2,0).
- 1 blue circle at (0,1).
- 1 blue rectangle at (1,1).
- 1 red triangle at (2,1).
- 1 red cross at (0,2).
- 1 green rectangle at (1,2).

Goal 3:
Find the blue triangle without standing on a red. Use at most 3 ’backward’.

Code 3:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(2, 2)`, facing south.
- The goal is to find the blue triangle located at `(0, 0)` without standing on any red items.
- There are several items in the grid: red circle at `(1, 0)`, red triangle at `(2, 1)`, and red cross at `(0, 2)`.
- We need to avoid these red items and reach `(0, 0)` using at most 3 backward movements.

2. Planning the Path:
- Since we have to avoid red items and should use at most 3 backward movements, we need to plan an efficient path.
- A suitable path that avoids red items and stays within the permitted movements is: `(2, 2) -> (1, 2) -> (1, 1) -> (0, 1) -> (0, 0)`.

3. Compiling the Path into Commands:
- The turtle starts at `(2, 2)` facing south. First, turn left to face east.
- Move backward to reach `(1, 2)` facing east.
- Turn left again to face north.
- Move forward to reach `(1, 1)` facing north.
- Turn right to face east.
- Move backward to reach `(0, 1)` facing east.
- Turn right to face south.
- Move backward to reach `(0, 0)` facing south.

Putting it all together. The solution code is:

```python
def run():
turn_left()
move_backward()
turn_left()
move_forward()
turn_right()
move_backward()
turn_right()
move_backward()
```

Figure 19: The detail of the third few-shot + CoT example {few_shot_example_3}.

14

	Table of Contents
	More Details About the Datasets
	Details of the Synthetic Dataset Generation
	Quality of the Datasets

	More Details of the Fine-tuning and Evaluation
	Additional Experiments and Results
	Influence of the Prompting Strategies
	Influence of Task Representations
	Fine-tuning Performance Across Different Epochs.
	Case Study: Output Code Analysis on Perturbed Tasks

	Prompts for the XLogoOnline-Mini Domain

