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Abstract
“Accuracy-on-the-line” is a widely observed phe-
nomenon in machine learning, where a model’s
accuracy on in-distribution (ID) and out-of-
distribution (OOD) data is positively correlated
across different hyperparameters and data config-
urations. But when does this useful relationship
break down? In this work, we explore its robust-
ness. The key observation is that noisy data and
the presence of nuisance features can be sufficient
to shatter the Accuracy-on-the-line phenomenon.
In these cases, ID and OOD accuracy can be-
come negatively correlated, leading to “Accuracy-
on-the-wrong-line.” This phenomenon can also
occur in the presence of spurious (shortcut) fea-
tures, which tend to overshadow the more com-
plex signal (core, non-spurious) features, result-
ing in a large nuisance feature space. Moreover,
scaling to larger datasets does not mitigate this
undesirable behavior and may even exacerbate
it. We formally prove a lower bound on Out-of-
distribution (OOD) error in a linear classification
model, characterizing the conditions on the noise
and nuisance features for a large OOD error. We
finally demonstrate this phenomenon across both
synthetic and real datasets with noisy data and
nuisance features.

1. Introduction
With the deployment of Machine Learning (ML) models in
real-life scenarios, they encounter more unfamiliar OOD
data due to complexities of the real life compared with the
In-distribution (ID) training data. Consequently, poor OOD
performance can compromise AI safety by making unreli-
able decisions in critical situations. However, ML models
often exhibit a consistent behavior known as “Accuracy-
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(a) Noisy dataset
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(b) Noiseless dataset

Figure 1. Accuracy-on-the-wrong-line behaviour in Noisy dataset
vs. Accuracy-on-the-line behaviour in Noiseless dataset in linear
setting. See Appendix A for a description of the setting.

on-the-line” (Miller et al., 2021). This phenomenon refers
to the positive correlation between a model’s accuracy on
ID and OOD data. The positive correlation is widely ob-
served across various models, datasets, hyper-parameters,
and configurations. It suggests that improving a model’s ID
performance can enhance its generalization to OOD data.
This addresses a fundamental challenge in machine learning:
extrapolating knowledge to new, unseen scenarios by allow-
ing OOD performance assessment across models without
retraining. It also suggests that modern machine learning
does not need to trade off ID and OOD accuracy.

However, does Accuracy-on-the-line always hold? In
this work, we explore the robustness of this phenomenon.
Our key observation, supported by theoretical insights, is
that noisy data and the presence of nuisance features can
shatter the phenomenon, leading to an Accuracy-on-the-
wrong-line phenomenon (Figure 1) with a negative correla-
tion between ID and OOD accuracy. Noisy data is common
in machine learning, as datasets expand and are sourced
automatically from the web, introducing label noise through
human annotation (Frenay & Verleysen, 2014; Northcutt
et al., 2021). It is also common for modern Machine Learn-
ing (ML) models to obtain zero training error on noisy train-
ing data (Zhang et al., 2017), a phenomenon called noisy
interpolation. In this work, we show that when algorithms
memorise noisy data, the correlation between ID and OOD
performance can become nearly inverse.

Beyond noisy data, another crucial condition for Accuracy-
on-the-wrong-line is the presence of multiple “nuisance fea-
tures”, namely features irrelevant to the classification task.
Nuisance features are common in machine learning, as task-
relevant features in high-dimensional data frequently lies on
a low-dimensional manifold; see e.g. Brown et al. (2023)
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and Pope et al. (2021), This lower intrinsic dimensionality
implies that classification-relevant information is concen-
trated in a smaller, more manageable subset of the feature
space, rendering the remaining features as “nuisance”.

Even in the direct absence of these nuisance features, this
phenomenon can occur due to so-called spurious features.
These are features that are not genuinely relevant to the
target task but appear predictive because of coincidental
correlations or dataset biases. Spurious features are often
simpler and more easily learned than non-spurious ones,
creating the illusion that data lies on a low-dimensional
manifold defined by these spurious features. This makes
other non-spurious features effectively “nuisance”. This illu-
sion often becomes reality in training and has been observed
in a series of works (Shah et al., 2020; Arjovsky et al., 2019;
Parascandolo et al., 2021; Singla & Feizi, 2021)1: Models
tend to exploit the easiest spurious features during train-
ing, overshadowing the true, more complex non-spurious
ones. This leads to a large nuisance space that exceeds the
true number of nuisance features, as observed in Qiu et al.
(2023).
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Figure 2. Same setting as Figure 1, increasing dataset size always
increases ID accuracy irrespective of label noise, but decreases
OOD accuracy in the presence of label noise.
A reader might ask: Can scaling up dataset size resolve the
undesirable Accuracy-on-the-wrong-line phenomenon? Re-
cent literature on scaling laws (Kaplan et al., 2020; Hestness
et al., 2017) as well as uniform-convergence-based results
in classical learning theory suggest that larger datasets are
needed to fully benefit from larger models. Even with noise
interpolation, larger datasets usually improve generalisation
error (Bartlett et al., 2020; Belkin et al., 2019; Nakkiran
et al., 2021). However, as Figure 2 suggests, we show that
the answer is no. Scaling can adversely impact OOD error,
exacerbating the negative correlation between ID and OOD
performance. As dataset sizes grow, even a small label noise
rate increases the absolute number of noisy points, signifi-
cantly impacting OOD error, even if it may not always affect
ID error.

Contributions. To summarize, the contributions of this
work are as follows: (1) We show that Accuracy-on-the-
wrong-line can occur in practice and provide experimental

1This observation dates back to the ‘urban tank legend’ e.g. see
section 8 in Schölkopf (2019)

results on two image datasets. (2) In a linear setting, we
formally prove a lower bound on the difference between
per-instance OOD and ID error and characterise sufficient
conditions for it to increase. (3) We argue that these condi-
tions are natural properties of learned models, especially for
noisy interpolation and in the presence of nuisance features.

Related work. Other works have also studied the robustness
of Accuracy-on-the-line. Wenzel et al. (2022) and Teney
et al. (2023) empirically suggested that it holds in most but
not all datasets and configurations. In particular, Teney et al.
(2023) also provided a simple linear example where adding
spurious features can differently impact ID and OOD risks.
Kumar et al. (2022) theoretically established an ID-OOD
accuracy tradeoff when fine-tuning overparameterised two-
layer linear networks. In contrast to all of these works, our
work provides both a theoretical analyses and empirical
investigations demonstrating the essential impact of label
noise and nuisance features in breaking Accuracy-on-the-
line. Moreover, we state that it leads to a negative correlation
between ID and OOD accuracies, dubbed ”Accuracy-on-
the-wrong-line.” Other lines of work show how label noise
affects adversarial robustness (Sanyal et al., 2021; Paleka
& Sanyal, 2023) and fairness (Wu et al., 2022; Wang et al.,
2021). However, they are not directly related to this work.

2. “Accuracy-on-the-wrong-line” in practice
We first show how a combination of practical limitations
in modern machine learning can result in Accuracy-on-
the-wrong-line in two real-world computer vision datasets:
MNIST (Deng, 2012) and Functional Map of the World
(fMoW) (Christie et al., 2018). Then in Section 3, we for-
malise the necessary conditions and provide a theoretical
proof showing their sufficiency. In Appendix A, we conduct
synthetic interventional experiments in a simple linear set-
ting to demonstrate these conditions are indeed sufficient
and behave in line with our theoretical results.

2.1. Colored MNIST dataset

We first examine the Colored MNIST dataset, a variant of
MNIST, derived from MNIST by introducing a color-based
spurious correlation, where the color of each digit is deter-
mined by its label with a certain probability. Specifically,
digits are assigned a binary label based on their numeric
value (less than 5 or not), which is then corrupted with la-
bel noise probability η. The color assigned to each digit is
thus correlated with the label with a small probability. A
three-layer MLP is then trained on this dataset to achieve
zero training error. The model is subsequently tested on
a freshly sampled test set from the same distribution but
without label noise and with a smaller spurious correlation;
see Appendix C.3 for more details. The accuracy on the
training distribution is referred to as the ID accuracy, and the
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(b) η = 0.15
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(d) η = 0.25

Figure 3. Each plot shows OOD vs ID accuracy for varying label noise rates η on the colored MNIST dataset. Similar to Figure 1,
the Accuracy-on-the-line phenomenon degrades with increasing amount of label noise.

accuracy on the test distribution is referred to as the OOD
accuracy.

The results of this experiment are presented in Figure 3.
When the amount of label noise is low (Figures 3a and 3b),
the ID and OOD accuracy are positively correlated, whereas
they become negatively correlated at higher levels of label
noise (Figures 3c and 3d).

2.2. Functional Map of the World (fMoW) dataset

For the next set of experiments, we use the FMoW-CS
dataset designed by Shi et al. (2023) based on the origi-
nal FMoW dataset (Christie et al., 2018) in WILDS (Koh
et al., 2021; Sagawa et al., 2022). The dataset contains
satellite images from various parts of the world and are la-
beled according to one of 30 objects in the image. Similar
to Colored MNIST, FMoW-CS dataset is constructed by
introducing a spurious correlation between the geographic
region and the label. Similar to our previous experiments,
we also introduce label noise with a probability of 0.5. For
the OOD test data, we use the original WILDS (Koh et al.,
2021; Sagawa et al., 2022) test set for FMoW. Further de-
tails regarding the dataset are available in Appendix C.4. To
obtain various training runs, we fine-tuned ImageNet pre-
trained models, including ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and DenseNet121, with various learning
rates and weight decays on the FMoW-CS dataset. We also
varied the width of the convolution layers to increase or de-
crease the width of each network. In total, we trained more
than 400 models using various configurations and report the
results in Figure 4.

Consistent with previous experiments on Colored
MNIST, Figure 4a shows that when the data comprises
label noise and training accuracy is 100%, ID and OOD
accuracy are inversely correlated. In the absence of
label noise, Figure 4b shows that the two are positively
correlated. These two plots only consider models that fully
interpolate the dataset: noisy and noiseless, respectively.
To highlight that noisy interpolation is indeed necessary to
break the Accuracy-on-the-line phenomenon, we also plot
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(a) Noisy Interpola-
tion

0.80 0.84 0.88 0.92
ID Accuracy

0.51

0.54

0.57

0.60

O
O

D
 A

cc
ur

ac
y

(b) Noiseless Interpo-
lation

0.6 0.7 0.8
ID Accuracy

0.36

0.42

0.48

0.54

O
O

D
 A

cc
ur

ac
y

(c) Noisy without in-
terpolation

Figure 4. Experiments on the FMoW domain-correlated dataset
with label noise. The noisy dataset (left) shows the Accuracy-on-
the-wrong-line phenomenon, while the noiseless dataset (center)
shows the Accuracy-on-the-line phenomenon. When the noisy
dataset is not interpolated e.g. due to early stopping (right),
the Accuracy-on-the-line phenomenon persists.

the experiments for those training runs where the data is
not fully interpolated in Figure 4c. This corresponds to
early stopping, stronger regularizations, as well as smaller
widths. Our results show that in this case, the ID and OOD
accuracy are still positively correlated but to a lesser degree
than the noiseless setting. We conjecture that this is because
even minimizing the cross-entropy loss on noisy labels
contributes to this behavior and is strongest when the
minimisation leads to interpolation.

The results in this section highlight that spurious correlations
without label noise are insufficient to enforce Accuracy-on-
the-wrong-line. In Appendix C, we also show evidence
(Figure 12) that the presence of spurious correlations is
necessary in these datasets.

3. “Accuracy-on-the-wrong-line” in theory:
sufficient conditions

In this section, we present our main theoretical results to iso-
late the main factors responsible for breaking the Accuracy-
on-the-line phenomenon. First, we define the data distribu-
tion µ in Definition 1 and shift distribution ∆ in Definition 2.
The ID error is measured as the expected error on µ and
the OOD error is the expected error on the shifted data i.e.
on x+ δ where x ∼ µ and δ ∼ ∆.

Intuitively, the main property of the distribution µ is that the
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“signal” and “nuisance” features are supported on disjoint
subspaces (Sd and Sk respectively) and that the shift ∆ does
not affect the signal features. Then, Theorem 1 lower bounds
the difference between OOD and ID error, as a increasing
function of the lower bound on nuisance sensitivity of the
learned model. Further, in Proposition 3 , we provide a
theoretical example, where the lower bound on nuisance
sensitivity increases with label noise when the label noise
is interpolated. Taken together, Sections 3.3 and 4 proves
that under high dimensions of nuisance space, and high
label noise interpolation negatively impacts OOD error. We
remark that in our theoretical results, we have avoided
defining specific data distribution, distribution shifts, or
learning algorithms in order to show a result on the general
phenomenon and highlight the conditions that give rise to it.
We leave it to future work to derive problem and algorithm
specific statistical rates of OOD error.

3.1. Data distribution

We model our data distribution µ to have a few signal fea-
tures and multiple irrelevant (or nuisance) features. This
corresponds to real-world settings where data is usually
high dimensional but lies in a low dimensional manifold.
We further simplify the setting by restricting this low-
dimensional manifold to the linear subspace spanned by the
first d ∈ Z coordinate basis vectors. Formally, for d, k ∈ Z
let Sd, Sk be any two disjoint subsets of {1 . . . d+ k}. With-
out loss of generality, we assume them to be contiguous i.e.
Sd = {1, . . . , d} and Sk = {d+ 1, . . . , d+ k}.

Definition 1. A distribution µ on Rd+k × {−1, 1} is called
a (Sd, Sk)-disjoint signal distribution with signal and nui-
sance support Sd, Sk respectively if there exists a linear
separator w ∈ Rd+k with its support exclusively on Sd and

E(x,y)∼µ [I {sign(⟨w, x⟩) ̸= y}] = 0.

We define the shift distribution ∆ as only impacting the
nuisance features. This corresponds to widely held assump-
tions that distribution shifts do not affect the dependence
of the label on the signal features. We define such shifts as
Sd-oblivious shifts in Definition 2.

Definition 2. A shift distribution ∆ is called a Sd-oblivious
shift distribution if the marginal distribution ∆Sd

on the
support Sd is concentrated fully on 0d, i.e.

∆Sd
(0d) = 1.

In short, both definitions assume that there are two orthogo-
nal subspaces. For theoretical modelling, we consider that
the signal subspace and the nuisance subspace are exactly
disjoint in the standard coordinate basis. While this may
not hold in the original data space in practice, this usually
holds in the latent space as a few components in the latent
space are sufficient to solve the problem at hand. We regard
those components as the signal space and the rest as the

nuisance subspace. The assumption that the Sd-oblivious
shift distribution has no mass on the signal space reflects
a natural assumption about distribution shifts: they do not
affect the causal factors in the data.

3.2. Properties of learned model

The above definitions for ID and OOD data alone do not pro-
vide sufficient conditions to break the Accuracy-on-the-line
behavior. These definitions align with realistic settings, such
as the sparsity of the true labeling function and distribution
shifts orthogonal to the features in the signal space. Conse-
quently, real-world experiments on the Accuracy-on-the-line
phenomenon already explore these conditions. Therefore,
we next define three conditions on the learned model that
we identify as sufficient to break this phenomenon.

Let ŵ ∈ Rd+k be the learned sparse linear classifier with
support S. Let µ,∆ be any (Sd, Sk)-disjoint signal distribu-
tion and Sd-oblivious shift distribution as defined in Defini-
tion 1 for some Sd, Sk, and define ν = E [∆] as the mean
of ∆. Then, we state the following conditions on ŵ.

Condition C1: “Bounded sensitivity” of ŵ on nuisance
subspace assumes there exists M, τ ≥ 0 s.t.

M ≥ max
i∈Sk∩S

|ŵi| ≥ min
i∈Sk∩S

|ŵi| ≥ τ. (C1)

Condition C2: “Negative Alignment” of ŵ with mean of
shift ν assumes there exists γ > 0 s.t.

γ ≤ −
∑

i∈Sk∩S ŵiνi

∥ŵSk∩S∥1
. (C2)

Condition C3: “Small Margin” of ŵ assumes that for all
x s.t. ⟨ŵ, x⟩ > 0, the following holds

⟨ŵ, x⟩ ≤ τγ |Sk ∩ S| . (C3)

In Section 4, we provide detailed interpretation of the as-
sumptions and their validity.

3.3. Main theoretical result

Now, we are ready to state the main result. In Theorem 1,
we provide a lower bound on the OOD error corresponding
to a fixed x where the randomness is over the sampling of
the shift δ ∼ ∆.

Theorem 1. For any Sd, Sk let D be a (Sd, Sk)-disjoint
signal distribution, and ∆ be a Sd-oblivious shift distribu-
tion where each coordinate is an independent subgaussian
with parameter σ.

Then, for any x ∈ dom (µ) and ŵ ∈ Rd+k with support S
such that ŵ satisfies Conditions C1, C2, and C3, we have
Prδ (⟨ŵ, x+ δ⟩ ≤ 0) ≥ 1− e−Γ where

Γ =
|Sk ∩ S| (τγ − C/|Sk∩S|)

2

2σ2M2
. (1)
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for all x ∈ dom (µ) where ⟨ŵ, x⟩ ≥ 0 and C =
max⟨ŵ,x⟩≥0 ⟨ŵ, x⟩.

Theorem 1 proves that for all (positively) correctly classified
points, the probability of misclassification under the OOD
perturbation δ increases with Γ. In particular, Γ scales with
the nuisance sensitivity τ and nuisance density |Sk ∪ S|.
Our experiments later show that increasing data size, which
leads to lower ID error, in fact increases nuisance density,
which as Theorem 1 suggest, leads to larger OOD error.

Theorem 1 captures a broad class of distribution shifts, in-
cluding bounded and normal distributions. The results can
also be extended to other shifts with bounded moments but
we omit them here as they add more mathematical com-
plexity without additional insights. In particular, under the
conditions of Theorem 1, for some σ > 0, ν ∈ Rd+k where
ν satisfies A2, consider either:

• Gaussian Shifts: Each δi for i ∈ Sk ∩ S is indepen-
dently distributed as N (νi, σ

2), or

• Bounded Shifts: Each δi for i ∈ Sk ∩ S satisfies
|δi − νi| ≤

√
3σ.

Then, the probability that ŵ misclassifies x which satis-
fies (C3) under the shift δ is bounded by the same expression
as in Equation (1).

4. Understanding and relaxing conditions
We next argue why these conditions are merely abstractions
of phenomena already observed in practice, as opposed
to strong synthetic constraints absent in applications. In
addition, we also show how some of these conditions can
be significantly relaxed.

Relaxing Condition (C2) and (C3). In this section, we
relax Condition (C2) and (C3) to allow for imbalanced
classes and for some data points to have large margins.
Condition C3 requires that for all data points that are pos-
itively classified, the margin of classification is bounded
from above. Note that this is not a limitation of our result.
A simple corollary (Corollary 2) states the proportion of
µ for which this holds directly affects the proportion for
which the OOD performance is poor. We use the notation ρ
in Equation (C4) to characterise the fraction of the dataset
classified positively (or negatively, whichever yields a higher
ρ) by ŵ with a margin that is less than half of the maximum
allowed margin.

Condition (C2) requires that the distribution shift should
not orthogonal to ŵ. This is not a strict requirement, as
exact orthogonality of ν with ŵ is a very unlikely setting,
and even slight misalignment will suffice for our result.
Here, we show that if the shift distribution is a mixture of
multiple components with a combination of positive and
negative alignments, our result extends to that setting. Con-

sider a new shift distribution ∆′, which is a mixture of
two shift distributions ∆1 and ∆−1 with mixture coeffi-
cients c1 and c−1, respectively. Now note that at least one
of the two-component shift distributions will likely satisfy
Condition (C2) with ŵ or −ŵ. Assume, ∆1 satisfies condi-
tion (C2) with γ1, and ∆−1 satisfies the same condition by
replacing ŵ with −ŵ for γ−1.

As shown in Corollary 2, when the distribution becomes
more class-imbalanced and a large fraction of data points
have small margins and at least one of the distributions has
a large negative alignment γ, the parameter ρ increases,
thereby increasing the probability of misclassification.
Corollary 2. Define Sd, Sk, and µ as in Theorem 1 and ∆′

as described above. Consider any ŵ ∈ Rd+k with support
S such that ŵ satisfies Conditions C1 and C2. Define

ρ = max
ŷ∈{−1,1}

Prx∼µ

[
I
{
0 ≤ ŷ ⟨ŵ, x⟩ ≤ τγŷ |Sk ∩ S|

2

}]
.

(C4)
Then, we have

Prx,δ (⟨ŵ, x+ δ⟩ ≠ ⟨ŵ, x⟩) ≥ ρ
∑

i∈{−1,1}

ci
(
1− e−Γi

)
,

where Γi =
|Sk∩S|τ2γ2

i

8σ2M2 .
The above result shows how the OOD error adaptively de-
pends on various properties of the learned classifier and
shift distribution. It shows that the OOD error increases
with the increase in the density of ŵ in the nuisance sub-
space, i.e. |Sk ∩ S|, as well as the ratio of the minimum
and maximum spurious sensitivity τ

M , from Condition C1.
Second, the increase in the negative alignment γ increases
the OOD error and it depends on which class has the worse
parameters. Finally, we note that 1 − ρ upper bounds ID
error. Therefore, while a larger ρ leads to a larger lower
bound on the OOD error, it leads to a smaller upper bound
on the ID error— a reflection of the Accuracy-on-the-wrong-
line behaviour.

Understanding Condition (C1). Condition (C1) describes
the condition that the learned classifier has moderately large
values in its support on the nuisance subspace. We provide
an example in Proposition 3 to show that this naturally
occurs when interpolating label noise. Consider a min-ℓ2-
interpolator that solves the following optimization problem
given a dataset (X,Y ) ∈ Rn×d × Rn,

min
w∈Rd

∥w∥2 s.t. Xw = Y.

Consider a simple linear model with a single signal fea-
ture Y = ξ ⊙ ⟨X,w⋆⟩ where w⋆ = (1, 0, . . . , 0). Here,
X is a d-dimensional dataset of size n with signal feature
X1 ∼ N (υ1n, In) and the remaining d − 1 nuisance fea-
tures X2:d ∼ N (0, In).2 The label noise ξ ∈ Rn follows

2Here, 1n denotes an all-ones vector of length n.
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Figure 5. The left plot shows as the amount of label noise increases,
nuisance sensitivity increases faster with larger dataset sizes. This
leads to worse OOD accuracy, shown in the right plot. However,
this phenomenon is not observed without label noise (middle plot).

the distribution π and ⊙ denotes the Hadamard product.
When ξ is a Bernoulli random variable on the set {−1, 1},
it captures the setting of uniformly random label flip.
Proposition 3 (Informal). For d = Ω(log n), some con-
stant C > 0, and β ∈ (0, 1), the noise distribution π satis-
fies Pr

[∥∥X+
2:dξ

∥∥
2
> C

]
≥ 1− β, where A+ is the pseudo-

inverse of A, then with probability at least 0.9 − β, the
min-ℓ2-interpolator ŵ on the noisy dataset (X,Y ) satisfies

∥ŵ2:d∥∞ = Ω(C) .

While Proposition 3 only considers multiplicative label
noise for simplicity of the analysis, similar results also hold
for additive label noise models. Proposition 3 also captures
the properties of label noise that are sufficient to increase
the sensitivity of the nuisance features. It suggests that a
label noise distribution, whose (noisy) labels are nearly or-
thogonal to the nuisance subspace (indicated by large C and
small β), induces small nuisance sensitivity. For example,
a noiseless setting is equivalent to the noise distribution
where Prξ∼µ [ξ = 1n] = 1. Then, standard concentration
bounds on X2:d imply that C must be small while β must be
large, leading to a vacuous bound. Therefore, Proposition 3
implies that the lower bound on nuisance sensitivity is much
smaller in the noiseless setting.

5. Experimental ablation in linear setting
In this section, we conduct experimental simulations to
corroborate our theory by synthetically varying condi-
tions (C1), (C2). In Appendix A, we also validate (C4) and
examine other factors such as label noise rate and dataset
sizes. We consider datasets from a high-dimensional distri-
bution with one signal feature and label noise rate of 0.2.
We train a ℓ1-penalised logistic regression classifier with
coefficient 0.1 on varying dataset sizes. See Appendix C.1
for a detailed discussion of the data distribution.

(C1): Spurious Sensitivity of the Learned Model. Fig-
ure 5 (Left) illustrates that higher label noise leads to faster
increase in mean nuisance sensitivity with dataset size. The-
orem 1 predicts that an increase in nuisance sensitivity
leads to poorer OOD accuracy, which is confirmed in Fig-
ure 5 (Right). However, Figure 5 (Center) demonstrates that
this behaviour is not observed in the absence of label noise;
OOD accuracy still improves with an increasing dataset size.
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Figure 6. Here, cos (Angle) = γ. When angle is close to 0◦

(γ = 1), the accuracy-on-the-wrong line behaviour is the strongest.
The phenomenon slowly transforms to Accuracy-on-the-line as the
angle approaches 90◦ (γ = 0) degrees.

(C2): Mis-alignment of Learned Model with Shift distri-
bution. In Figure 6, we show how the Accuracy-on-the-line
behaviour is affected by changing the alignment γ in The-
orem 1. For the noiseless setting, irrespective of γ, OOD
accuracy remains positively correlated with ID accuracy.
However, for the noisy setting, when the alignment is high
(i.e., the angle is less than 45◦), we observe that OOD ac-
curacy is inversely correlated with ID accuracy, but they
become more positively correlated as the angle increases.
This highlights the necessity of our second condition, which
requires a misalignment between the shift and the learned
parameters. This also highlights that perfect misalignment
is not strictly necessary for breaking Accuracy-on-the-line.

6. Implications for AI Safety and conclusion
To summarise, our work argues that interpolation of label
noise and presence of nuisance features break the otherwise
positively correlated relationship between ID and OOD ac-
curacy. In support of this argument, we provide experimen-
tal evidence with realistic datasets, theoretical results to
isolate the sufficient conditions, and synthetic simulation to
corroborate the theoretical assumptions.

Future Work This raises several questions about the widely
prevalent practice of preferring large but noisy datasets over
smaller cleaner datasets. We hope future work will work
towards striking the right balance between size and qual-
ity of datasets, keeping in mind their impact on trustwor-
thiness metrics like OOD accuracy. It is an interesting
question to consider what label noise models (e.g. uni-
form label flip) and inductive biases of the learning algo-
rithm (e.g. min ℓp) (Aerni et al., 2023; Ben-Dov et al.,
2024) can aggravate or mitigate this phenomenon. It is also
interesting to investigate what other factors (e.g. spurious
correlation alone (Teney et al., 2023)) can lead to similar
behaviours. Finally, other works have proposed approaches
to mitigate memorisation of label noise (Zhang et al., 2018;
Sanyal et al., 2020), selectively learning signal features (Ar-
jovsky et al., 2019; Parascandolo et al., 2021), and improv-
ing robustness towards adversarial corruptions (Madry et al.,
2018; Sinha et al., 2018). The possible impact of these
techniques is an interesting line of future work.
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Figure 7. Figure 7a shows as the amount of label noise increases, nuisance sensitivity as well as the nuisance density increases faster with
larger dataset sizes. This leads to worse OOD accuracy as shown in Figure 7b. However, ID accuracy still increases with dataset size as
shown in Figure 7c.
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Figure 8. Accuracy-on-the-line behaviour degrades increasing with increasing amount of label noise.

A. Experimental ablation of sufficient conditions in linear setting
In this section, we provide additional results of our experimental results in Section 5. We corroborate our theory by
synthetically varying conditions (C1), (C2), and (C4) as well as label noise rate and dataset sizes. The data distribution is
300-dimensional with one signal feature and the remain nuisance features, a sparse setting often considered in the literature;
See Appendix C.1 for a detailed discussion of the data distribution. The default label noise rate is 0.2 unless otherwise
mentioned and the default dataset size is 300 unless otherwise mentioned. We train a ℓ1-penalised logistic regression
classifier with coefficient 0.1 on varying dataset sizes. In short, our experiments show that all three conditions hold for this
learned model in the presence of label noise and corroborates our theory regarding how these problem parameters affect
the OOD and Accuracy-on-the-line phenomenon.

(C1): Spurious Sensitivity of the Learned Model. We begin by examining the sensitivity of the learned model ŵ in the
nuisance subspace. Condition (C1) states that the non-zero components are bounded both from above and below. While
regularisation naturally imposes the upper bound, the lower bound is less common. A key contribution of this work is the
demonstration that this occurs under noisy interpolation, i.e., models that achieve zero training error in the presence of label
noise. Intuitively, when some labels in the training dataset are noisy, the signal subspace cannot be used to “memorise” them.
Consequently, covariates in the nuisance subspace are necessary to memorise these labels, thereby increasing the magnitude
of these covariates. As the amount of label noise increases, more covariates in the nuisance subspace exhibit this behaviour.
We corroborate this intuition using ℓ1-penalised logistic regression in experimental simulations, as shown in Figure 7a.

Figure 7a illustrates that, with higher levels of label noise, the nuisance density and mean nuisance sensitivity increase more
rapidly as the dataset size grows. Theorem 1 predicts that an increase in nuisance sensitivity leads to poorer OOD accuracy,
which is confirmed in Figure 7b (center). However, Figure 7b (left) demonstrates that this behaviour is not observed in the
absence of label noise; OOD accuracy still improves with an increasing dataset size. Figure 7c reveals that ID accuracy
increases with larger datasets, thereby creating a distinction between the behaviour of ID and OOD accuracy in the presence
of label noise. This distinction underpins the central observation of our paper, as illustrated in Figure 8. For η = 0 (no label
noise), ID and OOD accuracy are linearly correlated as noted in several prior studies (Miller et al., 2021). Conversely, as η
increases, the two accuracies become (nearly) inversely correlated, resulting in the Accuracy-on-the-wrong-line behaviour.

(C2): Mis-alignment of Learned Model with Shift distribution. The next condition on ŵ requires that the mean ν of
the shift distribution ∆ is misaligned. Mathematically, this requires that the dot product ⟨ŵ, ν⟩ is negative. Intuitively, this
ensures that the term ⟨ŵ, δ⟩, where δ ∼ ∆, is sufficiently negative to flip the decision of the classifier. In Theorem 1, the
alignment is measured using the quantity γ. In Figure 9a, we synthetically vary γ (represented by the angle between ν
and −ŵ) by controlling the projection of ν on −ŵ and evaluate the OOD accuracy in the presence and absence of noise,
respectively. The simulation shows that with increasing alignment between ν and −ŵ, OOD accuracy decreases sharply for
the noisy setting but remains relatively stable for the noiseless setting.
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Figure 9. Figure 9a shows that as γ increases, the OOD accuracy decreases for the noisy setting but remains relatively unchanged for the
noiseless setting. Figure 9b shows that a large or small angle (cos (Angle) = γ) does not have any impact on breaking the Accuracy-on-
the-line phenomenon. On the other hand, when angle is close to 0◦ i.e. ŵ and ν in C2 are fully mis-aligned, the accuracy-on-the-wrong
line behaviour is the strongest. The phenomenon slowly transforms to Accuracy-on-the-line as the angle approaches 90◦ degrees.

In Figures 9b and 9c, we show how the Accuracy-on-the-line behaviour is affected by changing the alignment γ. For the
noiseless setting, irrespective of γ, OOD accuracy remains positively correlated with ID accuracy. However, for the noisy
setting, when the alignment is high (i.e., the angle is less than 45◦), we observe that OOD accuracy is inversely correlated
with ID accuracy, but they become more positively correlated as the angle increases. This highlights the necessity of our
second condition, which requires a misalignment between the shift and the learned parameters. This also highlights that
perfect misalignment is not strictly necessary for breaking Accuracy-on-the-line.

(C4): Significant fraction of points have low margin. The final property of the learned classifier necessary for the Accuracy-
on-the-wrong-line phenomenon is that a significant portion of the distribution, correctly classified by ŵ, has a small margin.
This is captured in C4. Corollary 2 suggests that the probability mass of points under distribution µ whose margin ⟨ŵ, x⟩
is less than γτ |Sk ∩ S| ≈ γ∥ŵSk∩S∥1 is roughly equal to the probability mass of points under µ that are vulnerable to
misclassification under the distribution shift. Practically, a point classified correctly with a large margin is likely robust
to distribution shifts. However, it is typically the case that not all points are classified with an equally large margin, and
some points are closer to the margin than others. We highlight that as long as this is true, Accuracy-on-the-wrong-line will
continue to hold.

To validate this experimentally, we consider the distribution of ID margin ⟨ŵ, x⟩ for x ∼ µ and plot its CDF in Figure 10
(blue line). Then, we measure the term γτ |Sk ∩ S| and plot it as a vertical red dashed line. The intersection of this red line
with the CDF (blue) represents the probability mass of points under µ whose margin is sufficiently small to be vulnerable to
the distribution shift. We plot the empirical OOD error for this model using the horizontal green dashed line and repeat
this experiment for multiple dataset sizes, each represented in one box in Figure 10. Our simulations clearly show that the
theoretically predicted quantity closely approximates the true OOD error.
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Figure 10. Blue line is the CDF of the ID margin i.e. ⟨ŵ, x⟩ for points x classified positively by ŵ. The red vertical line indicates the
theoretical quantity in the RHS of Condition (C4) i.e. proportional to τγ |Sk ∩ S|. The green line shows the OOD error. Matching the
result of Corollary 2, this simulation shows that the fraction of positively classified points whose margin is less than τγ |Sk ∩ S| is very
close to the true OOD error of that model. Each plot here represents a different run on a different-sized dataset.
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B. Proofs
In this section, we provide the proofs of Theorem 1 and Corollary 2. Then, we state and prove Theorem 5, which is the full
version of Proposition 3.

Theorem 1. For any Sd, Sk let D be a (Sd, Sk)-disjoint signal distribution, and ∆ be a Sd-oblivious shift distribution
where each coordinate is an independent subgaussian with parameter σ.

Then, for any x ∈ dom (µ) and ŵ ∈ Rd+k with support S such that ŵ satisfies Conditions C1, C2, and C3, we have
Prδ (⟨ŵ, x+ δ⟩ ≤ 0) ≥ 1− e−Γ where

Γ =
|Sk ∩ S| (τγ − C/|Sk∩S|)

2

2σ2M2
. (1)

for all x ∈ dom (µ) where ⟨ŵ, x⟩ ≥ 0 and C = max⟨ŵ,x⟩≥0 ⟨ŵ, x⟩.

Proof. WLOG consider x ∈ dom (µ) such that ⟨ŵ, x⟩ ≥ 0. Then, define the event E :=
{
δ ∈ Rd+k : ⟨ŵ, x+ δ⟩ ≤ 0

}
for

which we need to bound Pr [E]. Decomposing the dot product affected by the shift, ⟨ŵ, x+ δ⟩ = ⟨ŵ, x⟩+ ⟨ŵ, δ⟩. Given ∆
is Sd-oblivious, δ contributes only from the coordinates in Sk ∩ S. Then, we can simplify the probability as

Pr [E] = Prδ [⟨ŵ, x+ δ⟩ ≤ 0] = Prδ

[ ∑
i∈Sk∩S

ŵiδi ≤ −⟨ŵ, x⟩

]

= 1− Prδ

[ ∑
i∈Sk∩S

ŵiδi ≥ −C

]
≥ 1− inf

λ≥0
eλC E

[
e
λ
∑

i∈Sk∩S ŵiδi
]

(2)

As each δi is independently distributed with subgaussian parameter σ and mean νi, by the properties of subgaussian random
variables, for λ ≥ 0, the moment generating function (MGF) of δi yields

E
[
eλδi

]
≤ eλνi+

λ2σ2

2

Subsituting this into the Chernoff bound in Equation (2), we obtain

Pr [E] ≥ 1− inf
λ≥0

e
λC+λ⟨ŵ,ν⟩+λ2 ∑

i∈Sk∩S
ŵ2

i σ2/2

≥ 1− inf
λ≥0

eλC+|Sk∩S|(−λτγ+λ2M2σ2)
(3)

where the last inequality uses Assumptions A1 and A2. Solving the above optimisation to obtain the optimal lambda yields

λ =
τγ |Sk ∩ S| − C

σ2M2

Note that assumption A3 ensures that this term is positive. Substituting this back into Equation (3) and simplifying the
resultant expression yields the following probability bound

Pr (⟨ŵ, x+ δ⟩ ≤ 0) ≥ 1− exp

{
−|Sk ∩ S| (τγ − C/|Sk∩S|)

2

2σ2M2

}
.

Here, we provide a full version of Corollary 2. Specifically, Corollary 2 is a special case of Corollary 4 with c = 1/2.
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Corollary 4. Define Sd, Sk, and µ as in Theorem 1 and ∆′ as described above. Consider any ŵ ∈ Rd+k with support S
such that ŵ satisfies Conditions C1 and C2. For any 0 ≤ c ≤ 1 define

ρc = max
ŷ∈{−1,1}

Prx∼µ [I {ŷ ⟨ŵ, x⟩ ≥ 0} · I {ŷ ⟨ŵ, x⟩ ≤ cτγŷ |Sk ∩ S|}] . (C4)

Then, we have

Prx,δ (⟨ŵ, x+ δ⟩ ≠ ⟨ŵ, x⟩) ≥ ρc
∑

i∈{−1,1}

ci

(
1− exp

{
−|Sk ∩ S| τ2γ2

i (1− c)
2

2σ2M2

})
.

Proof. Let ymax denote the value of ŷ that achieve ρc, ie.

ymax = argmax
ŷ∈{−1,1}

Prx∼µ [I {ŷ ⟨ŵ, x⟩ ≥ 0} · I {ŷ ⟨ŵ, x⟩ ≤ cτγŷ |Sk ∩ S|}] .

For simplicity, we also denote the event I {⟨ŵ, x+ δ⟩ ≠ ⟨ŵ, x⟩} as Eerr. Then, the goal of the proof is to lower bound
Prx,δ∼∆′ (Eerr). Let E denote the event I {ymax ⟨ŵ, x⟩ ≥ 0} · I {ymax ⟨ŵ, x⟩ ≤ cτγ |Sk ∩ S|}. We apply law of total
probability over the event E and Ec

Prx∼µ,δ∼∆′ (Eerr) = Prx∼µ (E) Prx∼µ|E,δ∼∆′ (Eerr) + Prx∼µ (Ec) Prx∼µ|Ec,δ∼∆′ (Eerr)

≥ ρcPrx∼µ|E,δ∼∆′ (Eerr)
(4)

WLOG, we assume ymax = 1. Then, we rewrite the probability Prx|E,δ∼∆′ (⟨ŵ, x+ δ⟩ ≠ ⟨ŵ, x⟩) and invoke Theorem 1 to
lower bound the term. As ymax = 1, ⟨ŵ, x⟩ ≥ 0 when event E holds. In other words, ⟨ŵ, x⟩ ≥ 0 for all x in the support of
µ|E . Hence, by law of total probability over the the mixture distributions ∆1 and ∆−1 of the shift random variable δ,

Prx∼µ|E,δ∼∆′ (Eerr) = Prx∼µ|E,δ∼∆′ (⟨ŵ, x+ δ⟩ ≤ 0)

= c1Prx∼µ|E,δ∼∆1
(⟨ŵ, x+ δ⟩ ≤ 0) + c−1Prx∼µ|E,δ∼∆−1

(⟨ŵ, x+ δ⟩ ≤ 0)
(5)

Then, we derive lower bounds on Prx|E,δ∼∆1
(⟨ŵ, x+ δ⟩ ≤ 0) and Prx|E,δ∼∆−1

(⟨ŵ, x+ δ⟩ ≤ 0) respectively using Theo-
rem 1. By the definition of event E and the fact that ymax = 1, any x in the support of µ|E satisfies ⟨ŵ, x⟩ ≤ cτγ |Sk ∩ S|.
We then employ Theorem 1 with C = cτγ |Sk ∩ S| and γ = γ+1 to lower bound Prx|E,δ∼∆1

(⟨ŵ, x+ δ⟩ ≤ 0) when
⟨ŵ, x⟩ ≥ 0,

Prx|E,δ∼∆1
(⟨ŵ, x+ δ⟩ ≤ 0) ≥ 1− exp

{
−|Sk ∩ S|τ2γ2

1(1− c)2

2σ2M2

}
(6)

Similarly, setting C = cτγ |Sk ∩ S| and γ = γ−1 we can lower bound Prx|E,δ∼∆−1
(⟨ŵ, x+ δ⟩ ≤ 0) when ⟨ŵ, x⟩ ≥ 0 by

Prx|E,δ∼∆−1
(⟨ŵ, x+ δ⟩ ≤ 0) ≥ 1− exp

{
−
|Sk ∩ S|τ2γ2

−1(1− c)2

2σ2M2

}
(7)

Substituting Equation (7) into Equation (5) and then substituting Equation (5) into Equation (4), we obtain

Prx,δ (⟨ŵ, x+ δ⟩ ≠ ⟨ŵ, x⟩) ≥ ρc
∑

i∈{−1,1}

ci

(
1− exp

{
−|Sk ∩ S| τ2γ2

i (1− c)
2

2σ2M2

})
.

for ymax = 1. The case with ymax = −1 follows the same analysis.

Now we state the full version of Proposition 3 as Theorem 5 and provide its proof.

Theorem 5. If d = Ω(log n) and the noise distribution π satisfies Prξ∼πn,X2:d
[X+

2:dξ ≥ C] ≥ 1 − β for some constant
C and β ∈ (0, 1). Then, for β1, β2 ∈ (0, 1) and β1 = O(1/d), with probability at least 0.92 − β2 − dβ1 − β, the
min-ℓ2-interpolator ŵ on the noisy dataset (X,Y ) satisfies

∥ŵ2:d∥∞ ≥ 0.1

1−
2 log n

β1

(d− 1)
(
1−

√
6β2 log

β1

d−1

)
C.
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Proof. For i ∈ {1, ..., d}, let Xi ∈ Rn denote the ith feature of the data matrix X . For simplicity, let X̃ = X2:d ∈ Rn×(d−1)

denote the nuisance covariates, Σ1 = X1X
⊤
1 and Σ̃ = X̃X̃⊤. When d > n, min-ℓ2-interpolator on the noisy dataset (X,Y )

has a closed-form solution ŵ = X⊤ (XX⊤)−1
Y . We will show that the estimated parameters for nuisance features ŵ2:d is

lower bounded with high probability.

ŵ2:d =
[
X⊤ (XX⊤)−1

Y
]
2:d

(a)
= X̃⊤

(
Σ1 + Σ̃

)−1

ξ ⊙X1

(b)
= X̃T

(
Σ̃−1 − Σ̃−1Σ1Σ̃

−1

1 + Tr(Σ1Σ̃−1)

)−1

(ξ ⊙X1)

= X̃⊤Σ̃−1ξ ⊙X1︸ ︷︷ ︸
Part I

− X̃T Σ̃−1Σ1Σ̃
−1

1 + Tr(Σ1Σ̃−1)
ξ ⊙X1︸ ︷︷ ︸

Part II

(8)

where step (a) follows from the definition of Σ1, Σ̃ and Y , and step (b) follows from Lemma 1 (Miller, 1981).

Lemma 1 (Inverse of sum of matrices (Miller, 1981)). For two matrices A and B, let g = Tr(BA−1). If A and A+B are
invertible and B has rank 1, then g ̸= −1 and

(A+B)−1 = A−1 − 1

g + 1
A−1BA−1.

We will lower bound Part I and Part II separately using the assumption on the noise distribution µ and the concentration
bound on Gaussian random matrix.

Applying the assumption on the noise distribution and the fact that X̃⊤Σ̃−1 = X+
2:d, we can lower bound Part I with

probability at least 1− β,
X̃⊤Σ̃−1ξ ⊙X1 = X+

2:dξ ⊙X1 ≥ C ⊙X1 ≥ CX1. (9)

It remains to upper bound Part II.

X̃T Σ̃−1Σ1Σ̃
−1

1 + Tr(Σ1Σ̃−1)
ξ ⊙X1 ≤ X̃⊤Σ̃−1ξ ⊙X1

∥∥∥∥∥ Σ1Σ̃
−1

1 + Tr(Σ1Σ̃−1)

∥∥∥∥∥
op

≤ C

∥∥∥∥∥ Σ1Σ̃
−1

1 + Tr(Σ1Σ̃−1)

∥∥∥∥∥
op

≤ C
∥∥∥Σ1Σ̃

−1
∥∥∥
op

(10)

where the last inequality follows from Tr(Σ1Σ̃
−1) ≥ 0 for positive semi-definite matrices Σ1 and Σ̃.

Then, we derive lower bound and upper bound on the term
∥∥ 1
nΣ1

∥∥
op

and
∥∥∥∥( 1

n Σ̃
)−1

∥∥∥∥
op

,

∥∥∥∥1nΣ1

∥∥∥∥
op

=
1

n
X⊤

1 X1 =
1

n

n∑
i=1

X2
1i (11)

where each X1i ∼ N (0, 1).

Lemma 2 (Tail bound of norm of Gaussian random vector). Let X = (X1, ..., Xn) ∈ Rn be a vector where each Xi is an
independent standard Gaussian random variable, then for some constant C ≥ 0,

Pr

[
1

n

n∑
i=1

X2
i ≤ C

]
≥ 1− ne−

nC/2

13
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Thus, with probability 1− β1 for β1 ∈ (0, 1),

Pr

[
∥Σ1∥op ≤ 2 log

n

β1

]
= Pr

[
1

n
∥Σ1∥op ≤ 2

n
log

n

β1

]
≥ 1− β1. (12)

Let λi(Σ) denote the ith eigenvalue of a matrix Σ. Then,
∥∥∥∥( 1

n Σ̃
)−1

∥∥∥∥
op

=
(
mini λi

(
1
n Σ̃
))−1

, we only need to lower

bound mini λi

(
1
n Σ̃
)

,

Pr

[∣∣∣∣min
i

λi

(
1

d− 1
Σ̃

)
− 1

∣∣∣∣ ≤ t

]
≥ Pr

[
∀i,
∣∣∣∣λi

(
1

d− 1
Σ̃

)
− 1

∣∣∣∣ ≤ t

]
= Pr

[
max

i

∣∣∣∣λi

(
1

d− 1
Σ̃

)
− 1

∣∣∣∣ ≤ t

]
(a)

≥ Pr

[∥∥∥∥ 1

d− 1
Σ̃− I

∥∥∥∥
op

≤

√
6β2 log

β1

(d− 1)

]
(b)

≥ 1− β2 − (d− 1)β1

(13)

where the first inequality follows from Weyl’s inequality (Lemma 3), and step (b) follows a corollary of matrix Bernstein

inequality (Corollary 6) by setting t =
√
6β2 log

β1

(d−1) .

Lemma 3 (Weyl’s inequality (Vershynin, 2018)). For any two symmetric matrices A,B with the same dimension,

max
i

|λi(A)− λi(B)| ≤ ∥A− B∥op

Corollary 6. Let X1, ..., Xd be independent Gaussian random vectors in Rn with mean 0 and covariance matrix In. Then
for all t ≥ 0 and β ∈ (0, 1),

Pr

∥∥∥∥∥1d
d∑

i=1

XiX
T
i − In

∥∥∥∥∥
op

≤ t

 ≥ 1− 2n exp

(
−dt2

4 log n
β (1 + 2t/3)

)
− dβ

Therefore, with probability 1− β2 − dβ1,∥∥∥Σ1Σ̃
−1
∥∥∥
op

≤ ∥Σ1∥op
∥∥∥Σ̃−1

∥∥∥
op

≤
2 log n

β1

(d− 1)
(
1−

√
6β2 log

β1

d−1

) , (14)

where the last inequality is obtained by substituting the upper bound for ∥Σ1∥op and
∥∥∥Σ̃∥∥∥

op
in Equation (13) and Equa-

tion (12) respectively.

Substituting Equation (14) into Equation (10), we obtain an upper bound on Part II,

X̃T Σ̃−1Σ1Σ̃
−1

1 + Tr(Σ1Σ̃−1)
ξ ⊙X1 ≤

2CX1 log
n
β1

(d− 1)
(
1−

√
6β2 log

β1

d−1

) . (15)

Combining the lower bound on Part I (Equation (9)) and the upper bound on Part II (Equation (15)), we get the following
lower bound in terms of the random vector X ,

ŵ2:d ≥

1−
2 log n

β1

(d− 1)
(
1−

√
6β2 log

β1

d−1

)
CX1 (16)
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Finally, we employ anti-concentration bound of standard normal random variable to lower bound ∥X1∥∞ to conclude the
proof.

By calculation with the cumulative distribution function of the standard normal random variable, with probability at least
0.92, there exists i such that |X1i| ≥ 0.1. Therefore, with probability at least 0.92− β2 − dβ1 − β,

∥ŵ2:d∥∞ ≥ 0.1

1−
2 log n

β1

(d− 1)
(
1−

√
6β2 log

β1

d−1

)
C.

This concludes the proof.

Proof of Lemma 2.

Pr

[
1

n

n∑
i=1

X2
i ≤ C

]
= Pr

[
n∑

i=1

X2
i ≤ nC

]
≥ Pr

[
∀i,X2

i ≤ nC
]
= Pr

[
∀i,Xi ≥

√
nC
]

= 1− Pr
[
∃i,Xi ≥

√
nC
]

≥ 1− ne−
nC/2

(17)

where the last inequality follows from Union bound and the tail bound of a standard Gaussian random variable.

Proof of Corollary 6. We first apply Lemma 2 with C = 2 log n
β . That is, with probability at least 1−d, all X1, ..., Xd ∈ Rn

satisfy

Pr

[
∀i ∈ [d], ∥Xi∥2 ≤ 2 log

n

β

]
≥ 1− dβ.

Applying a standard corollary of Matrix Bernstein inequality3 on X1, ..., Xd concludes the proof.

C. Experimental details
C.1. Data Distribution for simulation using synthetic data

We construct a binary classification task in a 300-dimensional space. The procedure for generating the training dataset is as
follows: Each label y ∈ {−1, 1} is sampled uniformly at random. The first component x1 is sampled from a mixture of two
Gaussian distributions with a variance of 0.15, centered at y and 1 − y respectively, with mixing proportions of 0.9 and
0.1. As the training dataset size increases, the model’s ability to learn this feature improves, thereby improving the test
accuracy. The remaining 299 dimensions (x2, . . . , x300) are drawn from a standard normal distribution with zero mean and
a variance of 0.1. They constitute the nuisance subspace, primarily used to memorise label noise. We introduce label noise
into training data by flipping 20% of the labels.

For in-distribution (ID) accuracy evaluation, we generate a fresh set of data points from the initial distribution, devoid of
label noise. Out-of-distribution (OOD) accuracy is evaluated by first constructing the shift distribution ∆. Assuming ŵ
represents the trained linear model, the mean ν of the ∆ distribution for each component i for i > 2 is set to −0.25sign(ŵi)
with a variance of 10−3. We then simulate a new ID test instance z, y in the usual manner, sample a shift δ ∼ ∆, and add
them z + δ to generate the OOD test point.

All plots related to linear synthetic experiments can be generated in a total of less than two hours on a Macbook Pro M2.

3See Theorem 13.5 in the lecture notes: https://www.stat.cmu.edu/˜arinaldo/Teaching/36709/S19/Scribed_
Lectures/Mar5_Tim.pdf
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C.2. Additional results on synthetic linear setting

In this section, we provide new results in Figure 11 where we vary the regularisation strength. The results show that both ID
and OOD accuracy increases with increasing regularisation coefficeint but larger datasets have a noticeably smaller OOD
accuracy in the noisy setting uniformly across all regularisation strengths. For all other cases, including noiseless OOD and
both noisy and noiseless ID, larger datasets perform better. The results also show that regularisation affects nuisance density
and sensitivity as expectedi.e. larger regularisation leads to lower sensitivity and density. But both the sensitivity and density
falls to zero faster for the noiseless setting compared to the noisy setting.
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Figure 11. We show varying the strength of regularisation impacts the ID and OOD accuracy as well as the spurious sensitivity and density.
While both ID and OOD accuracy increases with increasing regularisation coefficient, larger datasets have a noticeably smaller OOD
accuracy in the noisy setting for all regularisation strengths. In all other settings, larger datasets have a higher accuracy and this is
the main factor leading to the Accuracy-on-the-wrong-line behaviour. Regarding spurious sensitivity and density, for sufficiently large
regularisation both the spurious sensitivity and the density drops to zero much faster for the noiseless setting than the noisy setting.

C.3. Colored MNIST dataset

As discussed in the main text, this dataset is derived from MNIST by introducing a color-based spurious correlation.
Specifically, digits are initially assigned a binary label based on their numeric value (less than 5 or not), and this label is then
corrupted with label noise probability η. To make this set of experiment more realistic, we use an algorithm that is supposed
to be robust to distribution shift. In particular, we construct domains one with 0.35 and one with 0.7 fraction of the samples
with correlated label and colour. Then, we optimise an average of the losses on these two domains. For test set, the spurious
correlation is at 0.1.

A three-layer MLP is then trained on this dataset to achieve zero training error by running the Adam optimizer for 1000 steps
with ℓ2 regularization. The width of the MLP is varied from 16 to 2048 to generate various runs. The learning rate is set at
0.001. The accuracy on the training distribution is referred to as the ID accuracy, and the accuracy on the test distribution
is referred to as the OOD accuracy. Each set of runs (multiple seeds etc) was run on a single GPU and took less than 30
minutes for the whole set.

C.4. Functional Map of the World (fMoW) Dataset

The original FMoW dataset (Christie et al., 2018) contains satellite images from various parts of the world, classified into
five geographical regions: Africa, Asia, America, Europe, and Oceania, and labeled according to one of 30 objects in the
image. It also includes additional metadata regarding the time the image was captured. The FMoW-CS dataset is constructed
by introducing a correlation between the domain and the label, i.e. only sampling certain labels for certain domains. We use
the domain-label pairing originally used by Shi et al. (2023), which ensures that if the dataset is sampled according to this
pairing, the population of each class relative to the total number of examples remains stable. In this work, we use a spurious
correlation level of 0.9, meaning 90% of the training dataset follows the domain-label pairing, while the remaining 10%
does not match any domain-label pairs. The domain-label pairing for FMoW-CS is detailed in Table 1. To simplify the
problem further, we only select five labels instead of all thirty, which is the first in each of the rows.
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Table 1. Domain-label pairing for FMoW-CS.
Domain (region) Label

Asia
Military facility, multi-unit residential, tunnel opening,
wind farm, toll booth, road bridge, oil or gas facility,

helipad, nuclear powerplant, police station, port

Europe
Smokestack, barn, waste disposal, hospital, water

treatment facility, amusement park, fire station, fountain,
construction site, shipyard, solar farm, space facility

Africa
Place of worship, crop field, dam, tower, runway, airport, electric

substation, flooded road, border checkpoint, prison, archaeological site,
factory or powerplant, impoverished settlement, lake or pond

Americas
Recreational facility, swimming pool, educational institution,

stadium, golf course, office building, interchange,
car dealership, railway bridge, storage tank, surface mine, zoo

Oceania
Single-unit residential, parking lot or garage, race track, park, ground
transportation station, shopping mall, airport terminal, airport hangar,

lighthouse, gas station, aquaculture, burial site, debris or rubble

Similar to our previous experiments, we also introduce label noise with a probability of 0.5. For the OOD test data, we use
the original WILDS (Koh et al., 2021; Sagawa et al., 2022) test set for FMoW, which essentially creates a distribution shift
by thresholding based on a timestamp; images before that timestamp are ID and images after are OOD. To obtain various
training runs, we fine-tuned ImageNet pre-trained models, including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and
DenseNet121, with various learning rates and weight decays on the FMoW-CS dataset. We also varied the width of the
convolution layers to increase the width of each network. In total, we trained nearly 400 models using various configurations
where each model was trained on a single 48GB NVIDIA Quadro RTX 6000 with 36 CPUs or a 32GB NVIDIA V100 with
28 CPUs. Each run took between 9 hours and 15 hours depending on problem parameters.
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Figure 11. Noisy no Spurious correlation

Figure 12. Experiments on the FMoW dataset without spurious correlation shows almost zero correlation between ID and OOD accuracy.
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