
Numerical influence of ReLU’(0) on backpropagation
Supplementary Material

David Bertoin
IRT Saint Exupéry & ISAE-SUPAERO & ANITI

Toulouse, France
david.bertoin@irt-saintexupery.com

Jérôme Bolte
Toulouse School of Economics & Université Toulouse 1 Capitole & ANITI

Toulouse, France
jbolte@ut-capitole.fr

Sébastien Gerchinovitz
IRT Saint Exupéry & Institut de Mathématiques de Toulouse & ANITI

Toulouse, France
sebastien.gerchinovitz@irt-saintexupery.com

Edouard Pauwels
CNRS & IRIT, Université Paul Sabatier & ANITI

Toulouse, France
edouard.pauwels@irit.fr

This is the appendix for “Numerical influence of ReLU′(0) on backpropagation”.

A Mathematical details for Section 2

In Section A.1, we provide some elements of proof for Theorems 1 and 2. In Section A.2, we explain
how to check the assumptions of Definition 1 by describing the special case of fully connected ReLU
networks.

A.1 Elements of proof of Theorems 1 and 2

The proof arguments were described in [7, 8]. We simply concentrate on justifying how the results
described in these works apply to Definition 1 and point the relevant results leading to Theorems 1
and 2.

It can be inferred from Definition 1 that all elements in the definition of a ReLU network training
problem are piecewise smooth, where each piece is an elementary log − exp function. We refer
the reader to [30] for an introduction to piecewise smoothness and recent use of such notions in
the context of algorithmic differentiation in [8]. Let us first argue that the results of [8] apply to
Definition 1.

• We start with an explicit selection representation of backprops ReLU. Fix any s ∈ R and
consider the three functions f1 : x 7→ 0, f2 : x 7→ x and f3 7→ sx with the selection index
t(x) = 1 if x < 0, 2 if x > 0 and 3 if x = 0. We have for all x

ft(x) = ReLU(x)

13



Furthermore, differentiating the active selection as in [8, Definition 4] we have

∇̂tf =


0 if x < 0

1 if x > 0

s if x = 0

and the right hand side is precisely the definition of backprops ReLU. This shows that we
have a selection derivative as used in [8].

• Given a ReLU network training problem as in Definition 1, we have the following property.
– All elements in the ReLU network training problem are piecewise elementary log −
exp. That is each piece can be identified with an elementary log − exp function. Fur-
thermore the selection process describing the choice of active function can similarly
be described by elementary log − exp functions with equalities and inequalities.

Therefore, we meet the definition of log−exp selection function in [8] and all corresponding results
apply to any ReLU network training problem as given in Definition 1. Fix T ≥ 1, getting back
to problem (1), using [8, Definition 5] and the selection derivative described above, for each i =
1, . . . , N , there is a conservative field Di : RP ⇒ RP (definition of conservativity is given in [7]
and largely described in [8]) such that for any s ∈ [0, T ], and θ ∈ RP

backpropsli(θ) ∈ Di(θ).

Using [7, Corollary 5] we have Di(θ) = {∇li(θ)} for all θ outside of a finite union of differentiable
manifolds of dimension at most P−1. This leads to Theorem 1 for s ∈ [0, T ]. Theorem 2 is deduced
from the proof of [8, Theorem 7] (last paragraph of the proof) that with probability 1, for all k ∈ N,
for all n = 1, . . . , N and s ∈ [0, T ]

backprops[`(f(xn, θk,s), yn)] = ∇θ`(f(xn, θk,s), yn)

since we have θ0,s = θ0 for all s, the generated sequence in (4) does not depend on s ∈ [0, T ]. This
is Theorem 2 for s ∈ [0, T ], note that a similar probabilistic argument was developped in [6]. We
may repeat the same arguments fixing T < 0, so that both results actually hold for all s ∈ [−T, T ].

A.2 The special case of fully connected ReLU networks

The functions gi,j in the composition (2) can be described explicitly for any given neural network
architecture. For the sake of clarity, we detail below the well-known case of fully connected ReLU
networks for multiclass classification. We denote by K ≥ 2 the total number of classes.

Consider any fully connected ReLU network architecture of depth H , with the softmax function
applied on the last layer. We denote by dh the size of each layer h = 1, . . . ,H , and by d0 the input
dimension. In particular dH = K equals the number of classes. All the functions fθ : Rd0 → RdH
represented by the network when varying the weight parameters θ ∈ RP are of the form:

fθ(x) = f(x, θ) = softmax ◦AH ◦ σ ◦AH−1 ◦ · · ·σ ◦A1(x) ,

where each mapping Ah : Rdh−1 → Rdh is affine (i.e., of the form Ah(z) = Whz + bh), where
σ(u) =

(
ReLU(ui)

)
i

applies the ReLU function component-wise to any vector u, and where
softmax(z) =

(
ezi/

∑dH
k=1 e

zk
)
1≤i≤dH

for any z ∈ RdH . The weight parameters θ ∈ RP cor-
respond to stacking all weight matrices Wh and biases bh in a single vector (in particular, we
have here P =

∑H
h=1 dh(dh−1 + 1)). In the sequel, we set Ph =

∑H
j=h dj(dj−1 + 1) and write

θh:H ∈ RPh for the vector of all parameters involved from layer h to the last layer H . We also write
concatenate(x1, . . . , xr) to denote the vector obtained by concatenating any r vectors x1, . . . , xr.
In particular, we have θh:H = concatenate(Wh, bh, θh+1:H).

Note that the decomposition above took x as input, not θ. We now explain how to construct the gi,j
in (2). For each i = 1, . . . , N , the function θ ∈ RP 7→ f(xi, θ) can be decomposed as

f(xi, θ) = softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) , (6)

where, roughly speaking, the gi,2h−1 apply the affine mapping Ah to the output zh−1 ∈ Rdh−1 of
layer h− 1 and pass forward all parameters θh+1:H ∈ RPh+1 to be used in the next layers, while the

14



gi,2h apply the ReLU function to the first dh coordinates. More formally, gi,1 : RP → Rd1+P2 is
given by

gi,1(θ) = concatenate(W1xi + b1, θ2:H) ,

gi,2 : Rd1+P2 → Rd1+P2 maps any (z1, θ2:H) ∈ Rd1 × RP2 to

gi,2(z1, θ2:H) = concatenate
(
σ(z1), θ2:H

)
and, for each layer h = 2, . . . ,H , the functions gi,2h−1 : Rdh−1+Ph → Rdh+Ph+1 and gi,2h :
Rdh+Ph+1 → Rdh+Ph+1 are given by

gi,2h−1(zh−1, θh:H) = concatenate(Whzh−1 + bh, θh+1:H)

and
gi,2h(zh, θh+1:H) = concatenate

(
σ(zh), θh+1:H

)
(for h < H).

Consider now the cross-entropy loss function ` : ∆(K) × {1, . . . ,K} → R+ which compares any
probability vector q ∈ ∆(K) of size K (with non-zero coordinates qi > 0) with any true label
y ∈ {1, . . . ,K}, given by

`(q, y) = − log q(y) .

Finally, using (6), the functions li : RP → R appearing in (1)-(2) can be decomposed as

li(θ) = `
(
f(xi, θ), yi

)
=
(
q ∈ ∆(K) 7→ `(q, yi)

)
◦ softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) .

The last decomposition satisfies (2) with M = 2H + 1. Since ` is the cross-entropy loss func-
tion, all M functions involved in this decomposition are either elementary log-exp or consist in
applying ReLU to some coordinates of their input, and they are all locally Lipschitz, as required in
Definition 1. This provides an explicit description of fully connected ReLU network and a similar
description can be done for all architectures studied in this work.

B First experiment in 64 bits precision, and using a different activation

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

64 bits precision. We reproduce the same bifurcation experiment as in Section 3 under 64 bits
arithmetic precision. The results are represented in Figure 7 which is to be compared with its 32
bits counterpart in Figure 1. As mentioned in the main text, the bifurcation does not occur anymore.
Indeed the magnitude of the smallest activation before application of ReLU is of the same order,
but this time it is well above machine precision which is around 10−16. When depicting the same
neighborhood as in Figure 1, the effect of numerical error completely disappears, the bifurcation
zone being reduced to a segment in the picture, which is consistent with Theorems 1 and 2.

ReLU6 activation. We conducted the same experiment with the ReLU6 activation function in
place of ReLU and found similar results on a slightly larger network (754, 4000, 256). Recall that
ReLU6 is equal to ReLU for x < 6 and equal to 6 for x ≥ 6 and the default choice of derivatives at
non differentiable points are zero. The illustration is given in Figure 8.

C Details on Monte Carlo sampling in Table 1

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

Recall that we want to estimate the relative volume of the set

S01 = {θ ∈ RP : ∃i ∈ {1, . . . , N}, backprop0[li](θ) 6= backprop1[li](θ)} ⊂ S.

by Monte Carlo sampling. We randomly generate a set of parameters {θj}Mj=1, with M = 1000, for
a fully connected network architecture f composed of L hidden layers using Kaiming-Uniform [17]
random weight generator. Given this sample of parameters, iterating on the whole MNIST dataset,

15

https://github.com/deel-ai/relu-prime
https://github.com/deel-ai/relu-prime


0 25 50 75 100
Iteration counter

0.050

0.025

0.000

0.025

0.050

W
ei

gh
t d

iff
er

en
ce

 6
4b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n 

64
bi

ts

5.0 2.5 0.0 2.5
1e 6

4

2

0

2

4
1e 6

10 9

10 8

10 7

10 6

Figure 7: Same experiment as Figure 1 in 64 bits precision. Left: Difference between network
parameters (L1 norm), 100 iterations within an epoch. “0 vs 0” indicates ‖θk,0 − θ̃k,0‖1 where
θ̃k,0 is a second run for sanity check, “0 vs 1” indicates ‖θk,0 − θk,1‖1. Center: minimal absolute
activation of the hidden layers within the k-th mini-batch, before ReLU. At iteration 65, there is no
jump on the left and no drop in the center anymore. Right: illustration of the bifurcation zone at
iteration k = 65 (same weight parameter plane as in Figure 1, but in 64 bits precision). The quantity
represented is the absolute value of the neuron of the first hidden layer which was exactly zero in 32
bits (see Figure 1) before application of ReLU. Exact zeros are represented in white.

0 25 50 75 100
Iteration counter

0

10

20

30

W
ei

gh
t d

iff
er

en
ce

 3
2b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n 

32
bi

ts

0 25 50 75 100
Iteration counter

0.050

0.025

0.000

0.025

0.050

W
ei

gh
t d

iff
er

en
ce

 6
4b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n 

64
bi

ts

Figure 8: Same experiment as Figure 1 with ReLU6 in place of ReLU. Top: 32 bits weight differ-
ence and minimal activation before application of ReLU6. Bottom: 64 bits weight difference and
minimal activation before application of ReLU6

we approximate the proportion of θj for which backprop0(li)(θj) 6= backprop1(li)(θj) for some i,
for different networks and under different conditions. More precisely, denoting by Q the number of
mini-batches considered in the MNIST dataset, and by Bq ⊂ {1, . . . N} the indices corresponding
to the mini-batch q, for q = 1, . . . Q, the first line of Table 1 is given by the formula

1

M

M∑
m=1

I

∃q ∈ {1, . . . , Q}, backprop0

∑
j∈Bq

lj(θm)

 6= backprop1

∑
j∈Bq

lj(θm)

 ,

where the function I takes value 1 or 0 depending on the validity of the statement in its argument.
Similarly, the second line of Table 1 is given by the formula

1

MQ

M∑
m=1

Q∑
q=1

I

backprop0

∑
j∈Bq

lj(θm)

 6= backprop1

∑
j∈Bq

lj(θm)

 ,

while the last line provides statistics of the quantity∥∥∥backprop0

[∑
j∈Bq

lj(θm)
]
− backprop1

[∑
j∈Bq

lj(θm)
]∥∥∥∥∥∥backprop0

[∑
j∈Bq

lj(θm)
]∥∥∥ ,

16



conditioned on q,m being such that backprop0

[∑
j∈Bq

lj(θm)
]
6= backprop1

[∑
j∈Bq

lj(θm)
]
.

The error margin associated with the confidence interval on the first line of Table 1 is computed
using Hoeffding’s inequality at risk level 5%. It is given by the formula√

ln
(

2
0.05

)
2M

.

As for the confidence interval of the second line of Table 1, we use the bounded differences inequal-
ity (a.k.a. McDiarmid’s inequality) at risk level 5%. The error margin is given by the formula√

1

2

(
1

M
+

1

Q

)
ln

(
2

0.05

)
.

D Complements on experiments

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

D.1 Benchmark datasets and architectures

Overview of the datasets used in this work. These are image classification benchmarks, the corre-
sponding references are respectively [24, 23, 25].

Dataset Dimensionality Training set Test set
MNIST 28× 28 (grayscale) 60K 10K

CIFAR10 32× 32 (color) 60K 10K
SVHN 32× 32 (color) 600K 26K

ImageNet 224× 224 (color) 1300K 50K

Overview of the neural network architectures used in this work. The corresponding references are
respectively [32, 31, 18].

Name Type Layers Loss function
Fully connected fully connected 4 Cross-entropy

VGG11 convolutional 9 Cross-entropy
ResNet18 convolutional 18 Cross-entropy
ResNet50 convolutional 50 Cross-entropy

Fully connected architecture: This architecture corresponds to the one used in [32]. We only
trained this network on MNIST, the resulting architecture has an input layer of size 784, three hidden
layers of size 2048 and the ouput layer is of size 10.

VGG11 architecture: We used the implementation proposed in the following repository https:
//github.com/kuangliu/pytorch-cifar.git which adapts the VGG11 implementation of the
module torchvision.models for training on CIFAR10. The only modification compared to the
standard implementation is the fully connected last layers which only consist in a linear 512 × 10
layer. When adding batch normalization layers, it takes place after each convolutional layer.

ResNet18 architecture: We use PyTorch implementation for this architecture found in the module
torchvision.models. We only modified the size of the output layer (10 vs 1000), the size of the
kernel in the first convolutional layer (3 vs 7) and replaced batch normalization layers by the identity
(when we did not use batch normalization).

D.2 Additional Experiments with MNIST and fully connected networks

We conducted the same experiments as in Section 4.2 with a fully connected 784-2048-2048-2048-
10 network on MNIST. The results are represented in Figure 9 which parallels the results in Figure 3

17

https://github.com/deel-ai/relu-prime
https://github.com/kuangliu/pytorch-cifar.git
https://github.com/kuangliu/pytorch-cifar.git


on VGG11 with CIFAR10. We observe a similar qualitative behavior, but the fully connected archi-
tecture is less sensitive to the magnitude chosen for ReLU′(0). Note that in this case, learning rate
tuning with optuna [3] induces a lot of spurious variability. Indeed, the same experiment with fixed
learning rate results in a much smoother bell shape in Figure 10.

-50.0 -10.0 -8.0 -6.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 4.0 6.0 8.0 10.0 50.0
ReLU'(0)

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_lo
ss

ReLU'(0)
-10.0
0.0
0.5
1.0
10.0

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST

Precision
32b
16b

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST-Batchnorm

Precision
32b
16b

Figure 9: Top: Test error on MNIST with a fully connected 784-2048-2048-2048-10 network. The
boxplots and shaded areas represent variation over ten random initializations. We recover the bell
shaped curve, but the sensitivity to ReLU′(0) is less important. Bottom left: corresponding train-
ing loss, higher magnitude of ReLU′(0) induces chaotic oscillation explaining the decrease in test
accuracy. Bottom center and right: relative volume estimation of the bifurcation zone without and
with batch normalization. Batch normalization increases the size of the bifurcation zone with 32 bits
arithmetic and decreases it under 16 bits arithmetic precision.

-50.0-10.0 -8.0 -6.0 -5.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 50.0
ReLU'(0)

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

Figure 10: Same experiment as in Figure 9 without learning rate tuning.

We investigated further the effect of combining different choices of ReLU′(0) with dropout [32].
Dropout is another algorithmic way to regularize deep networks and it was natural to wonder if it
could have a similar effect as batch normalization. Using the same network, we combined different
choices of dropout probability with different choices of ReLU′(0). The results are represented in
Figure 11 and suggests that dropout has no conjoint effect.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout probability

0.983

0.984

0.985

0.986

0.987

0.988

te
st

_a
cc

ur
ac

y

relu
0.0
0.5
1.0

Figure 11: Experiment on combination of the choice of ReLU′(0) with dropout on MNIST with a
fully connected 784-2048-2048-2048-10 network. The boxplots represent 10 random initializations.

D.3 Additional experiments with VGG11

This section complements Sections 4.2 and 4.3, with additional experiments with VGG11.

18



Batch normalization. As suggested by the experiment shown in Section 4.3, batch normalization
stabilizes the choice of ReLU′(0), leading to higher test performances. We display in Figure 12 the
decrease of training loss on CIFAR 10 and SVHN, for VGG11 with batch normalization. We see
that the choice of ReLU′(0) has no impact and that the chaotic oscillations induced by this choice
have completely disappeared.

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0
50.0

Figure 12: Training loss on CIFAR10 with VGG11 (left) and SVHN with VGG11 (right). The
instability induced by the choice of ReLU′(0) completely disappears with batch normalization.

Adam optimizer. The training curves corresponding to Figure 4 are shown in Figure 13. They
suggest that the Adam optimizer features much less sensitivity than SGD to the choice of ReLU′(0).
This is seen with a relatively efficient buffering effect on the induced oscillatory behavior on training
loss decrease.

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0
50.0

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0

Figure 13: Training losses on CIFAR10 (left) and SVHN (right) on VGG network trained with
Adam optimizer. The filled area represent standard deviation over ten random initializations.

Numerical precision. For this neural network we investigated the joint effect of ReLU′(0) and
numerical precision (16, 32 or 64 bits). The results are displayed in Figure 14. The choice
ReLU′(0) = 1 leads to such a high instability in 16 bits precision that we were not able to tune
the learning rate to train the network without explosion of the weights. In 32 bits, a few experiments
resulted in non-convergent training—these were removed. We observe first that for ReLU′(0) = 0
numerical precision has barely any effect while for ReLU′(0) = 1 it leads to an increase in test
accuracy. Furthermore, we observe that ReLU′(0) = 1 with 64 bits precision leads to the same test
accuracy as ReLU′(0) = 0 in 32 bits precision.

D.4 Additional experiments with ResNet18

We performed the same experiments as the ones described in Section 4 using a ResNet18 architecture
trained on CIFAR 10. The test error, training loss evolution with or without batch normalization are
represented in Figure 15. We have similar qualitative observations as with VGG11. We note that the
ResNet18 architecture is much more sensitive to the choice of ReLU′(0):

• Test performances degrade very fast. Actually, beyond a magnitude of 0.2, we could not
manage to train the network without using batch normalization.
• Even when using batch normalization, the choice of ReLU′(0) seems to have an effect

for relatively small variations. This is qualitatively different from what we observed with
VGG11 and fully connected architectures.

19



16.0 32.0 64.0
precision

0.894

0.896

0.898

te
st

_a
cc

ur
ac

y

32.0 64.0
precision

0.87

0.88

0.89

te
st

_a
cc

ur
ac

y

Figure 14: Test accuracy for different numerical precisions with a VGG11 network on CIFAR10.
Left: ReLU′(0) = 0. Right: ReLU′(0) = 1.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
ReLU'(0)

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2

0.4
0.6
0.8
1.0

Figure 15: Training experiment on CIFAR10 with Resnet18 and the SGD optimizer. Top left: test
accuracy with and without batch normalization. Top right: training loss during training without
batch normalization. Bottom: training loss during training with batch normalization.

Similar Monte Carlo relative volume experiments were carried out for this network architecture; the
results are presented in Figure 17. The results are qualitatively similar to what we observed for the
VGG11 architecture: the bifurcation zone is met very often for 16 bits precision, and the addition
of batch normalization increases this frequency in 32 bits precision. Note that we did not observe a
significant variation in 16 bits precision.

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18-Batchnorm

Precision
32b
16b

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18

Precision
32b
16b

Figure 16: Relative volume Monte Carlo estimation on CIFAR10 with Resnet18 with and without
batch normalization under 16 bits or 32 bits precision.

20



0 20 40 60 80
step

0

20

40

60

va
lu

e

acc1

relu
0
1

Figure 17: Test accuracy during training of a Resnet50 on ImageNet with SGD. The shaded area
represents two runs. We can see a massive drop in test accuracy with ReLU′(0) = 1.

Dataset Network Optimizer Batch size Epochs Time by epoch Repetitions
CIFAR10 VGG11 SGD 128 200 9 seconds 10 times
CIFAR10 VGG11 Adam 128 200 10 seconds 10 times
CIFAR10 ResNet18 SGD 128 200 13 seconds 10 times
SVHN VGG11 Adam 128 64 85 seconds 10 times
MNIST MLP SGD 128 200 2 seconds 10 times

Table 2: Experimental setup

D.5 Additional experiments with ResNet50 on ImageNet

E Complimentary information, total amount of compute and resources used

All the experiments were run on a 2080ti GPU. The code corresponding to the experiments and
experiments results are available at https://github.com/deel-ai/relu-prime Details about
each test accuracy experiments are reported on Table 2. CIFAR10 is released under MIT license,
MNIST, SVHN and R are released under GNU general public license, ImageNet is released under
BSD license Numpy and pytorch are released under BSD license, python is released under the
python sofware fondation license.

21

https://github.com/deel-ai/relu-prime


F Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] Indeed, we have tried to be comprehensive and
precise.

(b) Did you describe the limitations of your work? [Yes] Although observational our
work should be deepened to investigate other nonsmooth activations as mentioned in
the conclusion

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
has a numerical observational nature during neural network training and we do not
foresee any such direct impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] It does.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We did, as for

notions we use and we do not redefine, we provide adequate references to the reader,
published in ML venues. All this concerns Theorem 1 and 2 (who are essentially due
to [7,8]) and is recalled is section A.1 of the Appendix.

(b) Did you include complete proofs of all theoretical results? [No] The stated results are
reformulations, or direct consequences of material published in ML venues, applied to
our specific setting. We carefully pointed out these published results and explain how
they fit the specific models we consider in Appendix A.1. We also provided a carefully
described step by step example explaining how a simple fully connected network fits
our assumptions in appendix A.2. We did this with the greatest care.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] The
code and results associated to every experiments is publicly available here: https:
//github.com/deel-ai/relu-prime

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We train on standard benchmarks using widespread neural archi-
tectures with default parameters in Appendix D. We investigate the effect of several
hyperparameters on the observed behavior and carefully describe such experiments
when they are performed.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We systematically consider ten random initializations
in our training experiments and account for this variability both in training and test-
ing phases using boxplots and transparent colored fills. As for the experiments of
Section 3, we report 95% confidence intervals resulting from the Hoeffding or McDi-
armid bound for all the estimated proportions.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] This is reported in Appendix E

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] This is reported in Appendix E
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code to reproduce all our experiments as a separate URL
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [No] We only use standard benchmarks
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [No] We only use standard benchmarks
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

22

https://github.com/deel-ai/relu-prime
https://github.com/deel-ai/relu-prime


(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

23


