
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL EXPERIMENTS

Data scaling. In this section, we present additional scaling experiments for the scaling portion of
Section 4.1 and the temporally correlated noise portion of Section 5. We present the performance of
the methods for each task instead of an average over the tasks.

Figure 11: Normalized returns of value-based RL compared with IL, filtered-IL, and temporally-
correlated noise at different data scales, shown for each task.
From Figure 11, we see that value-based RL scales better with data in nearly every task, while
IL-based methods either do not scale or scale in a limited capacity. In addition, temporally-correlated
noise outperforms not adding temporally correlated noise for each task and data scale. Temporally
correlated noise is especially useful for Adroit Pen, which has been known in the literature to benefit
from more exploration.

Value-based RL with more iterations for Square and Stack. Because of compute restrictions,
the results reported in the main paper for Robomimic Square and MimicGen Stack were converged
for IL-based methods but not for value-based RL. We report the results for value-based RL run for
a longer number of iterations in Figure 12. We see that the difference between IL methods and
value-based RL becomes larger with more iterations.

Figure 12: Normalized returns of value-based RL for Robomimic Square and MimicGen Stack.
Error bars show standard error over 3 seeds.
Value-based RL with more rollouts per iteration. We also report runs for value-based RL with
more rollouts per iterations for environments that saturated prematurely. From Figure 13, we see that
value-based RL often exceeds premature saturation just with more data in each iteration.

Figure 13: Normalized returns of value-based RL for more rollouts per iteration for Robomimic
Can, Square and MimicGen Stack. Error bars show standard error over 3 seeds.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B EXPERIMENT DETAILS

Training Parameters. We set the number of iterations from N=10 to 20 depending on the en-
vironment and M=200 rollouts per iteration. We choose the number of trajectories in the initial
dataset such that the base IL policy can get 30 to 65% normalized returns prior to batch online RL.
For temporally correlated Ornstein-Uhlenbeck (OU) noise, we select one ✓ and � value for each
environment suite. For implementation, we use the same residual block structure for the policy as
IDQL (Hansen-Estruch et al., 2023) for both expressive policy RL and imitation learning. We use a
simple MLP for Gaussian policies.

Tasks Parameters Values

Robomimic Lift Dataset Size 5

OU ✓ 5

OU � 0.05

Robomimic Can Dataset Size 10

OU ✓ 5

OU � 0.05

Robomimic Square Dataset Size 100

OU ✓ 5

OU � 0.05

MimicGen Stack Dataset Size 20

OU ✓ 5

OU � 0.03

MimicGen Threading Dataset Size 50

OU ✓ 5

OU � 0.03

Adroit Pen Dataset Size 3

OU ✓ 0.1

OU � 0.03

All Tasks Batch Size 256

Learning Rate 3e-4

IQL Expectile 0.8

Discount 0.99

Number of Sampled Actions 64

Optimizer Adam

Beta Schedule Variance
Preserving

Diffusion Steps 100

Diffusion Policy: MLP Hidden Dim 256

Diffusion Policy: Num Residual
Blocks

3

Gaussian Policy: MLP Hidden Dim 256

Gaussian Policy: MLP Hidden
Layers

3

Table 1: Hyperparameters for each simulation task. The values specified under All Tasks are shared
for different tasks.

Data Sources. For each task, the dataset consists of expert trajectories. In Robomimic tasks, we use
the Proficient Human dataset provided by Mandlekar et al. (2021). In MimicGen environments, we
use the dataset provided by the benchmark (Mandlekar et al., 2023). For Adroit, we use the dataset
from D4RL (Fu et al., 2020).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Evaluation Protocol. Evaluations are performed by rolling out the policy from start states randomly
sampled from the default initial state distribution of the task. The rollout length for Lift, Can, and
Square is 400; for Stack is 200; for Threading is 400; and for Pen is 100. Results in the main text
report normalized return averaged over 3 seeds and 100 evaluation trials each.

C REAL-WORLD TASK DETAILS

In this section, we provide more information on the real world Tape task in our analysis.

Setup Description. The Tape task involves hanging a roll of tape onto a rack by controlling a 7-DoF
Franka Research 3 robot. To successfully complete the task, the robot needs to precisely aim for and
grasp the roll of tape and hang it to the hook. The initial distribution is a roughly 15 cm ⇥ 15 cm
area. We illustrate an example initial state, success state, and the initial state distribution in Figure 14.
The RL agent sends actions to the robot at 5Hz with a maximum episode length of 200 timesteps.
The robot obtains visual RGB input from two Intel RealSense D435 cameras, one on the mounted on
the end effector and one mounted on the side.

Figure 14: Scenes showing sample initial and success state and the initial state distribution of the
real-world Tape task.

Success Detection. The Tape task contains a success state that must be reached for the rollout to
be considered successful, namely having the tape on the rack. We use a scripted rule to detect if
this state has been reached and if there is a success. For each environment step, we utilize a color
threshold to check the color of the pixel above the hook. We manually select the pixel location and
verify the error of the success detection is near zero.

Resets. We perform automatic resets of the Tape environment in our experiments. For a successful
rollout, we replay a pre-recorded trajectory to grasp the tape and lift it off the hook. For a failed
rollout, we detect the location of the tape and execute a primitive to lift the tape. In both cases, after
lifting the tape, we sample an initial state from the initial state distribution and place the tape at the
initial state location for the next episode.

15


	Introduction
	Related Work
	Preliminaries
	Empirical Analysis of Batch Online RL
	Which algorithm class works best?
	How to extract the policy?
	Does the expressivity of the policy matter?

	Recipe for Batch Online RL
	Discussion
	Limitations
	Additional Experiments
	Experiment Details
	Real-World Task Details

