
Supplementary materials – What’s a good imputation to predict
with missing values?

A Proofs

A.1 Proof of Lemma A.1

Lemma A.1. Let �(m) 2 C1 �R|obs(m)|
,R|mis(m)|� be the imputation function for missing data pat-

tern m, and let M(m) =
�
x 2 Rd : xmis = �

(m)(xobs)
 

. For all m, M(m) is an |obs|�dimensional
manifold.

Proof. Let:

h
(m) : Rd ! R|mis|

x 7! xmis � �
(m)(xobs)

Regular value: We will show that 0mis is a regular value of h(m). By definition [see p21 in Guillemin
and Pollack, 1974], a point y 2 R|mis| is a regular value of h(m) if dh(m)

x is surjective at every point
x such that h(m)(x) = y. The mapping dh

(m)
x is linear and can be represented by the Jacobian of

h
(m) at x:

Jh(m)(x) =

 
A Id

!
, A 2 R|mis|⇥|obs|

, Id 2 R|mis|⇥|mis|
.

Given the structure of Jh(m)(x), it is obviously of rank |mis| at every point x. Thus dh
(m)
x is

surjective at every point x, and it is true in particular for the points x such that h(m)(x) = 0. We
conclude that by definition, 0mis is a regular value of h(m).

Preimage theorem: By the Preimage theorem ([Guillemin and Pollack, 1974], p.21), since 0 2 Rmis

is a regular value of h(m) : Rd ! R|mis|, then the the preimage
�
h
(m)
��1

(0) is a submanifold of
Rd of dimension d� |mis| = |obs|.

Since by definition,
�
h
(m)
��1

(0) = M(m), we have that M(m) is a |obs|�dimensional mainfold.

A.2 Proof of Lemma A.2

Lemma A.2. Let m and m
0 be two distinct missing data patterns with the same number of missing

values |mis|. Let �(m) 2 C1 �R|obs(m)|
,R|mis(m)|� be the imputation function for missing data

pattern m, and let M(m) =
�
x 2 Rd : xmis = �

(m)(xobs)
 

. We define similarly �
(m0) and M(m0).

For almost all imputation functions �(m) and �
(m0),

dim

⇣
M(m) \M(m0)

⌘
=

⇢
0 if |mis| > d

2

d� 2|mis| otherwise.
(9)

Proof. According to Thom Transversality theorem ([Golubitsky, 1973], p.54) with:

• W = M(m0),

• f = �
(m),

• k = 0 (note that as stated p.37, J0(X,Y ) = X ⇥ Y and j
0
f(x) = graph(f)),
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we have that
n
�
(m) 2 C1(R|obs|

,R|mis|) | graph(�(m)) t M(m0)
o

is a residual subset of

C1(R|obs|
,R|mis|) in the C1 topology. In other words, the fact that graph(�(m)) is transverse to

M(m0) is a generic property. Put differently, almost all functions �(m) have their graph transverse to
M(m0). Note that here the notion of almost all has to be understood in its topological sense, and not
in its measure theory sense.

Suppose that |obs| <
d
2 . According to Lemma A.1, M(m0) is a |obs|�dimensional manifold.

Moreover we just showed that for almost all �(m), graph(�(m)) t M(m0). Applying Proposition
4.2 of [Golubitsky, 1973] (p.51) with W = M(m0) and f = graph(�(m)), we obtain that M(m)

and M(m0) are disjoint, since, by definition, M(m) is the image of graph(�(m)). Consequently, the
dimension of their intersection is 0.

Suppose that |obs| � d
2 . According to the theorem p.30 of [Guillemin and Pollack, 1974],

since M(m) and M(m0) are transverse submanifolds of Rd, their intersection is again a man-
ifold with codim(M(m) \ M(m0)) = codim(M(m)) + codim(M(m0)). This implies that
dim(M(m) \M(m0)) = 2|obs|� d.

A.3 Proof of Theorem 3.1

Theorem 3.1 (Bayes consistency of Impute-then-regress procedures). Assume the data is generated
according to (1). Then, for almost all imputation function � 2 FI

1, the function g
?
� � � is Bayes

optimal. In other words, for almost all imputation functions � 2 FI
1, a universally consistent

algorithm trained on the imputed data �( eX) is Bayes consistent.

Proof. Let �(m) 2 C1 �R|obs(m)|
,R|mis(m)|� be the imputation function for missing data pattern m,

and let M(m) =
�
x 2 Rd : xmis = �

(m)(xobs)
 

. According to Lemma A.1, for all m, M(m) is an
|obs|�dimensional manifold. M(m) corresponds to the subspace where all points with missing data
pattern m are mapped after imputation.

Let us order missing data patterns according to their number of missing values, with the pattern of
all missing entries ranked first and the pattern of all observed entries ranked last. Two patterns with
the same number of missing values are ordered arbitrarily. We use m(i) to refer to the missing data
pattern ranked in i

th position.

Let g? be the function defined as follows: for all i,

8Z = �( eX) 2 M(m(i)) \
[

m(k)<m(i)

M(m(k))
, g

?(Z) = f̃
?( eX).

For a given missing data pattern m(i), by distributivity of intersections across unions, we have:

M(m(i))
\
0

@
[

m(k)<m(i)

M(m(k))

1

A =
[

m(k)<m(i)

⇣
M(m(i))

\
M(m(k))

⌘

If m(k) has strictly more missing values than m(i), then by Lemma A.1 dim(M(m(k))) <

dim(M(m(i))), and thus dim(M(m(k)) \ M(m(i))) < dim(M(m(i))). Moreover, If m(k) has the
same number of missing values as m(i), then by Lemma A.2, for almost all imputation func-
tions �

(m(k)) and �
(m(i)), dim(M(m(k)) \ M(m(i))) < dim(M(m(i))). We conclude that for all

m(k) < m(i), M(m(k))\M(m(i)) is a subset of measure zero in M(m(i)). Finally, since a countable
union of sets of measure zero has measure zero, we obtain that [

m(k)<m(i)

�
M(m(i)) \M(m(k))

�
has

measure zero in M(m(i)).

Let’s now compute the risk of g? � �:

R(g? � �) =
X

M=m

P (M = m)

Z

Xobs

P (Xobs|M = m)
⇣
f̃
?( eX)� g

? � �( eX)
⌘2

(10)
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For a given missing data pattern m, �( eX) 2 M(m). Moreover, we constructed g
? such that g? �

�( eX) = f̃
?( eX) for all �( eX) 2 M(m) except on a set that we just showed to be of measure zero for

almost all imputation functions. As a result, the function Xobs 7! f̃
?( eX)� g

? ��( eX) is zero almost

everywhere for a given m, and the function Xobs 7! P (Xobs|M = m)
⇣
f̃
?( eX)� g

? � �( eX)
⌘2

is
also zero almost everywhere. Since the integral of a function that vanishes almost everywhere is
equal to 0, we conclude that R(g? ��) = 0. Since the risk cannot be negative, g? �� is a minimizer
of the risk and thus it is Bayes optimal.

A.4 Examples of transverse and nontransverse manifolds in 2D.

Theorem 3.1 is true for almost all imputation functions and not all of them. Thus, we can construct
examples with particular choices of imputation functions that lead to nontransverse manifolds, and
consequently for which Impute-then-Regress procedures are not Bayes optimal. We provide such an
example below.

Consider a dataset with points x 2 R2, and let a 2 R. Let �(0,1)
2 (x1) = a ⇤ x1 be the imputation

function for x2 when only x1 is observed. And let �(1,0)
1 (x2) =

1
ax2 be the imputation function for

x1 when only x2 is observed. In this particular case shown in Figure 5 (bottom), the manifolds on
which the data with either x1 missing or x2 missing are projected are exactly the same (the same line
in the 2D space). Thus they are nontransverse and consequently Theorem 3.1 does not hold.

However according to the Thom transversality theorem, almost all imputation functions will lead to
transverse manifolds.

M(0,1)

M(1,0)

M(1,1)
M(0,0)

X1

X
2

M(0,1)

M(1,0)

M(1,1)

M(0,0)

X1

X
2

Figure 5: Example - Linear imputation manifolds in two di-

mensions Manifolds represented for linear imputation functions.
M(0,0) is the whole plane. Note that M(1,1) need not be at the
intersection of the two lines, it depends on the imputation function
chosen. With linear imputation functions, M(0,1) and M(1,0)

are transverse if and only if the two lines are not coincident.Top:

Transverse manifolds. Bottom: Nontransverse manifolds.

A.5 Proof of Lemma A.3

Lemma A.3.

8X 2 Rp
, 8mis ✓ J1, pK , H(X) 4 H̄

+ =) Hmis,mis(X) 4 H̄
+
mis,mis

Proof. Let X 2 Rp, and let m be a missing data pattern with observed (resp. missing) indices obs
(resp. mis). H(X) 4 H̄

+ is equivalent to:

8u 2 Rp
, u

> �
H̄

+ �H(X)
�
u � 0. (11)

Let V ✓ Rp be a subspace such that for any v in V , vobs = 0. Since V ✓ Rp, (11) implies:

8v 2 V, v>
�
H̄

+ �H(X)
�
v � 0

() 8vmis 2 R|mis |
, v

>
mis

�
H̄

+
mis,mis �Hmis,mis(X)

�
vmis � 0

() Hmis,mis(X) 4 H̄
+
mis,mis

A.6 Proof of Lemma 4.1

Lemma 4.1 (First order approximation). Assume that the data is generated according to (1). More-
over assume that (i) f

? 2 C2(S,R) where S ⇢ Rd is the support of the data, and that (ii)
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there exists positive semidefnite matrices H̄
+ 2 P

+
d and H̄

� 2 P
+
d such that for all X in S,

H̄
� 4 H(X) 4 H̄

+ with H(X) the Hessian of f? at X . Then for all X in S and for all missing
data patterns:

1

2
tr
�
H̄

�
mis,mis⌃mis|obs,M

�
 f̃

?( eX)� f
?(XCI)  1

2
tr
�
H̄

+
mis,mis⌃mis|obs,M

�
(5)

where ⌃mis|obs,M is the covariance matrix of the distribution of Xmis given Xobs and M .

Proof. Without loss of generality, suppose that we reorder variables such that we can write X =
(Xobs, Xmis). Consider the function

f
?
mis : R|mis| ! R

Xmis 7! f
?(Xobs, Xmis)

Since f
? 2 C2

�
Rd

,R
�
, we have f

?
mis 2 C2

�
R|mis|

,R
�
. Therefore, we can write the first order

Taylor expansion (see Theorem 2.68 in Folland [2002]) of f?
mis around E [Xmis|Xobs,M ]:

f
?
mis(Xmis) =f

?(Xobs,E [Xmis|Xobs,M ])

+rf
?
mis(Xobs,E [Xmis|Xobs,M ])> (Xmis � E [Xmis|Xobs,M ])

+R (Xmis � E [Xmis|Xobs,M ]) ,

(12)

where R is the Lagrange remainder satisfying

R (Xmis � E [Xmis|Xobs,M ]) =

1

2
(Xmis � E [Xmis|Xobs,M ])> Hmis,mis(c) (Xmis � E [Xmis|Xobs,M ]) ,

for some c in the ball B (E [Xmis|Xobs,M ] , kXmis � E [Xmis|Xobs,M ] k2). By assumption, for
all X , H(X) 4 H̄

+. Therefore, according to Lemma A.3, we have Hmis,mis(X) 4 H̄
+
mis,mis for

any missing data pattern, which leads to:

R (Xmis � E [Xmis|Xobs,M ]) 
1

2
(Xmis � E [Xmis|Xobs,M ])> H̄

+
mis,mis (Xmis � E [Xmis|Xobs,M ]) .

Using equality (12), we get:

f
?(Xobs, Xmis)� f

?(Xobs,E [Xmis|Xobs,M ])

�rf
?
mis(Xobs,E [Xmis|Xobs,M ])> (Xmis � E [Xmis|Xobs,M ])

 1

2
(Xmis � E [Xmis|Xobs,M ])> H̄

+
mis,mis (Xmis � E [Xmis|Xobs,M ])

Finally, taking the expectation with regards to P (Xmis|Xobs,M) on both sides, we obtain

E [f?(Xobs, Xmis)|Xobs,M ]� f
?(Xobs,E [Xmis|Xobs,M ])  1

2
tr(H+>

mis,mis⌃mis|obs,M ), (13)

where we have used the fact that, for any vector X 2 Rd and for any H 2 P
+
d ,

X
>
HX = tr(X>

HX) = tr(HXX
>).

Following a similar reasoning, we can show that:

E [f?(Xobs, Xmis)|Xobs,M ]� f
?(Xobs,E [Xmis|Xobs,M ]) � 1

2
tr(H�>

mis,mis⌃mis|obs,M ) (14)

Together, inequalities (13) and (14) conclude the proof.
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A.7 Proof of Proposition 4.1

Proposition 4.1 ((Non-)Consistency of chaining oracles). The function f
? � �CI is Bayes optimal if

and only if the function f
? and the imputed data X

CI satisfy:

8M s.t. P (M) > 0, E [f?(X)|Xobs,M ] = f
?(XCI) almost everywhere. (6)

Besides, under the assumptions of Lemma 4.1, the excess risk of chaining oracles compared to the
Bayes risk R? is upper-bounded by:

R(f?��CI)�R?  1

4
EM

h
max

⇣
tr
�
H̄

�
mis,mis⌃mis|obs,M

�2
, tr
�
H̄

+
mis,mis⌃mis|obs,M

�2⌘i (7)

Proof.

Y � f
?(XCI) =(Y � f̃

?( eX)) + (f̃?( eX)� f
?(XCI)) (15)

�
Y � f(XCI)

�2
=(Y � f̃

?( eX))2 + (f̃?( eX)� f
?(XCI))2 (16)

+ 2(Y � f̃
?( eX))(f̃?( eX)� f

?(XCI) (17)

=(Y � f̃
?( eX))2 + (f̃?( eX)� f

?(XCI))2 (18)

+ 2(f?(X)� f̃
?( eX))(f̃?( eX)� f

?(XCI)) (19)

+ 2✏(f̃?( eX)� f
?(XCI)) (20)

E
h�
Y � f

?(XCI)
�2i

=R? + E
⇣

f̃
?( eX)� f

?(XCI)
⌘2�

(21)

where we used the definition of the Bayes rate. Moreover, term (20) vanishes when tak-
ing the expectation w.r.t ✏ because E [✏|Xobs,M ] = 0 and ✏ in uncorrelated with X or M ,
and term (19) vanishes when taking the expectation w.r.t Xmis|Xobs,M because by definition
EXmis|Xobs,M [f?(Xobs, Xmis)] = f̃

?( eX).

Clearly, f? � �CI is Bayes optimal if ans only if:

E
⇣

f̃
?( eX)� f

?(XCI)
⌘2�

= 0 (22)

()
X

M

Z
P (Xobs,M)

⇣
f̃
?( eX)� f

?(XCI)
⌘2

dXobs = 0 (23)

() 8M,Xobs : P (Xobs,M) > 0, f̃?( eX) = f
?(XCI) almost everywhere. (24)

where equality 24 is true since all terms are positive.

Besides, by Lemma 4.1, we have:

1

2
tr
�
H̄

�
mis,mis⌃mis|obs,M

�
 f̃

?( eX)� f
?(XCI)  1

2
tr
�
H̄

+
mis,mis⌃mis|obs,M

�
. (25)

By convexity of the square function, it follows that:
⇣
f̃
?( eX)� f

?(XCI)
⌘2

 1

2
max

⇣
tr
�
H̄

�
mis,mis⌃mis|obs,M

�2
, tr
�
H̄

+
mis,mis⌃mis|obs,M

�2⌘
.

(26)

Finally, by taking the expectation on both sides:

E
⇣

f̃
?( eX)� f

?(XCI)
⌘2�



1

2
EM

h
max

⇣
tr
�
H̄

�
mis,mis⌃mis|obs,M

�2
, tr
�
H̄

+
mis,mis⌃mis|obs,M

�2⌘i
.

(27)

Combining equation (21) with inequality (27) concludes the proof.
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A.8 Proof of Proposition 4.2

Proposition 4.2 (Regression function discontinuities). Suppose that f? � �CI is not Bayes optimal,
and that the probability of observing all variables is strictly positive, i.e., for all x, P (M =
(0, . . . , 0), X = x) > 0. Then there is no continuous function g such that g � �CI is Bayes
optimal.

Proof. We will prove this result by contradiction. Suppose that (i) f? ��CI is not Bayes optimal, (ii)
the probability of observing all variables is strictly positive, (iii) there exists a function g continuous
such that g � �CI is Bayes optimal.

Following a reasoning similar to the one in the proof of proposition 4.1, we can show that g � �CI is
Bayes optimal if and only if:

8M,Xobs : P (Xobs,M) > 0, E [f?(X)|Xobs,M ] = g(XCI) almost everywhere.

In particular since for all x, the joint probability P (M = (0, . . . , 0), X = x) of observing all
variables is strictly positive, g should satisfy this equality for M = (0, . . . , 0), i.e.:

f
?(X) = g(X) almost everywhere.

Since g is continuous, it implies g = f
?. Since by assumption, f? is not Bayes optimal, then g is not

either, which is a contradiction.

A.9 Example of a case where no continuous corrected imputation exists.

Let:

f
? : R2 ! R

(X1, X2) 7! X
3
2 � 3X2

and let:

X2 = X1 + ✏ with E [✏|X1,M = (0, 1)] = 0

E
⇥
✏
2|X1,M = (0, 1)

⇤
= �

2
, �

2
> 1

E
⇥
✏
3|X1,M = (0, 1)

⇤
= 0

Suppose that X2 is missing. Then the Bayes predictor is given by:

f̃
?(X1,M = (0, 1)) = E [f?(X)|X1,M = (0, 1)]

= E
⇥
X

3
2 � 3X2|X1,M = (0, 1)

⇤

= E
h
(X1 + ✏)3 � 3 (X1 + ✏) |X1,M = (0, 1)

i

= E
⇥
X

3
1 + ✏

3 + 3X1✏
2 + 3X2

1 ✏� 3X1 � 3✏)|X1,M = (0, 1)
⇤

= X
3
1 + 3X1(�

2 � 1)

Clearly, the Bayes predictor for M = (0, 1) is:

• continuous,

• non-decreasing since �
2
> 1,

• lim
X1!+1

f̃
?(X1,M = (0, 1)) = +1 and lim

X1!�1
f̃
?(X1,M = (0, 1)) = �1.

Proof by contradiction: Suppose that there exists a function � : R ! R (i) continuous and (ii) such
that for all X1, f?(X1,�(X1)) = f̃

?(X1,M = (0, 1)).

Let x+
1 2 R such that f̃?(X1 = x

+
1 ,M = (0, 1)) > 2. x

+
1 exists since lim

X1!+1
f̃
?(X1,M =

(0, 1)) = +1. Clearly,

f
?(x+

1 , X2) = f̃
?(x+

1 ,M = (0, 1)) () X2 = x
+
2 with x

+
2 > 2.
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Figure 6: Graph of X2 7! f
?(X1, X2)

Similarly, let x
�
1 2 R such that f̃

?(X1 = x
�
1 ,M = (0, 1)) < �2. x

�
1 exists since

lim
X1!�1

f̃
?(X1,M = (0, 1)) = �1. Clearly,

f
?(x�

1 , X2) = f̃
?(x�

1 ,M = (0, 1)) () X2 = x
�
2 with x

�
2 < �2.

So � must satisfy:
�(x�

1 ) = x
�
2 < �2

�(x+
1 ) = x

+
2 > 2

Note that since the Bayes predictor is non-decreasing, we have x
�
1 < x

+
1 . Since � is continuous,

there exists x̌1 2
⇥
x
�
1 , x

+
1

⇤
and x̂1 2

⇥
x
�
1 , x

+
1

⇤
such that x̌1 < x̂1 and �(x̌1) = �1 and �(x̂1) = 1.

It implies that:
f
?(x̌1,�(x̌1)) = f

?(x̌1,�1) = 2 > �2 = f
?(x̂1, 1) = f

?(x̂1,�(x̂1)).

This implies that the function X1 7! f
?(X1,�(X1)) cannot be non-decreasing. Since the Bayes

predictor is non-decreasing, the two cannot be equal. CONTRADICTION.

A.10 Proof of Proposition 4.3

We start by proving the result for a given missing pattern m 2 {0, 1}d. Take r 2 {1, . . . , d� 1} and
consider a missing pattern m such that |obs(m)| = r. We let F : Rr ⇥ Rd�r ! R defined, for all
(xobs, xmis) as

F (xobs, xmis) = f
?(xobs, xmis)� f̃

?(xobs,m). (28)
Our aim is to find, for all xobs, a value xmis (depending continuously on xobs) satisfying

F (xobs, xmis) = 0. (29)
To this aim, we check the assumptions of Theorem 6 in Arutyunov and Zhukovskiy [2019] for the
function F . The desired conclusion will follow.

Since f? is uniformly continuous and twice continuously differentiable, condition 1�3 of Theorem 6
in Arutyunov and Zhukovskiy [2019] are satisfied. To verify the next condition, we have to prove that
there exists (xobs,0, xmis,0) such that F (xobs,0, xmis,0) = 0. Note that this is equivalent to finding
(xobs,0, xmis,0) satisfying

f
?(xobs,0, xmis,0) = f̃

?(xobs,0,m) = E [f?(X)|Xobs = xobs,0,M = m] , (30)

by definition of the regression function f̃
?. By assumption, the support of Xmis|Xobs = xobs,0,M =

m is connected. Therefore, the intermediate value theorem can be applied and proves the existence
of a pair (xobs,0, xmis,0) satisfying equation (30). Finally, by assumption, the regularity condition
(GR1) in Arutyunov and Zhukovskiy [2019] is satisfied. This proves that there exists a continuous
mapping �

(m) : Rr ! Rd�r such that

F (xobs,�
(m)(xobs)) = 0. (31)

The previous reasoning holds for all missing patterns m, such that |mis(m)| � 1. Besides the result
is clear for r = 0 since the imputation function is reduced to a constant in this case (no components
of X are observed). On the contrary, in the case where all covariates are observed (r = d), no
imputation function is needed. Therefore, the result holds for all 0  r  d, which concludes the
proof.
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B Additional results

B.1 NeuMiss+MLP architecture

x� m̄ �

µ� m̄

W
(0) + W

(0) + W
(0) + MLP Y

�m̄ �m̄ �m̄

Neumann block Non-linearity

Figure 7: (Non-linear) NeuMiss+MLP network architecture with a Neumann block of depth 3

— m̄ = 1�m. MLP stands for a standard multi-layer perceptron with ReLU activations.

B.2 Expressions of f
?
bowl, f

?
wave and f

?
break and the corresponding Bayes predictors.

Expressions of f
?
bowl, f

?
wave and f

?
break. The functions f

? used in the experimental study are
defined as:

f
?
bowl(X) =

�
�
>
X + �0 � 1

�2

f
?
wave(X) = (�>

X + �0 � 1) +
X

(ai,bi)2S

ai �
�
�
�
�
>
X + �0 + bi

��

f
?
break(X) =

�
�
>
X + �0

�
+ 3⇥ 1�>X+�0>1

where � the standard Gaussian cdf, � = 20
p

⇡
8 and S = {(2,�0.8), (�4,�1), (2,�1.2)}. �

is chosen as a vector of ones rescaled so that var(�>
X) = 1. These functions are depicted in

Figure 3.

Expressions of the Bayes predictors. The expressions of the corresponding Bayes predictors are
given by:

f̃
?
bowl( eX) = E [f?

bowl(X)|Xobs,M ] (32)

=
�
�
>
obsXobs + �

>
misµmis|obs,M + �0 � 1

�2
+ �

>
mis⌃mis|obs,M�mis (33)

f̃
?
wave( eX) = E [f?

wave(X)|Xobs,M ] (34)

= �
>
obsXobs + �

>
misµmis|obs,M + �0 � 1 (35)

+
X

(ai,bi)2S

ai �

0

@�
>
obsXobs + �

>
misµmis|obs,M + �0 + biq

1/�2 + �
>
mis⌃mis|obs,M�mis

1

A (36)

f̃
?
break( eX) = E [f?

break(X)|Xobs,M ] (37)

= �
>
obsXobs + �

>
misµmis|obs,M + �0 + 3

✓
1� �

✓
1� µmis|obs,M

�
>
mis⌃mis|obs,M�mis

◆◆
(38)

with µmis|obs,M and ⌃mis|obs,M the mean and covariance matrix of the conditional distribution
P (Xmis|Xobs,M). Below, we give the expression of these parameters for the MCAR and Gaussian
self-masking missing data mechanisms. Let µmis|obs and ⌃mis|obs the mean and covariance matrix
of the conditional distribution P (Xmis|Xobs). Since the data is generated according to a multivariate
Gaussian distribution N (µ,⌃), we have:

µmis|obs = µmis + ⌃mis|obs⌃
�1
obs(Xobs � µobs)

⌃mis|obs = ⌃mis,mis � ⌃mis,obs⌃
�1
obs⌃obs,mis

In the MCAR case, we simply have ⌃mis|obs,M = ⌃mis|obs and µmis|obs,M = µmis|obs. In the
Gaussian self-masking case, it has been shown in Le Morvan et al. [2020a] that P (Xmis|Xobs,M) is
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again Gaussian but with parameters:

⌃mis|obs,M =
⇣
D

�1
mis,mis + ⌃�1

mis|obs

⌘�1

µmis|obs,M = ⌃mis|obs,M

⇣
D

�1
mis,miseµmis + ⌃�1

mis|obsµmis|obs

⌘

where µ̃ and D are parameters of the Gaussian self-masking missing data mechanism. Finally, we
detail below the derivations to obtain the expression of the Bayes predictors.

Derivation of the Bayes predictor for f
?
bowl.

f
?
bowl(X) =

�
�
>
X + �0 � 1

�2
(39)

=
�
�
>
obsXobs + �

>
misXmis + �0 � 1

�2
(40)

=
�
�
>
obsXobs + �

>
mis(Xmis � µmis|obs,M ) + �

>
misµmis|obs,M + �0 � 1

�2
(41)

=
�
�
>
obsXobs + �

>
misµmis|obs,M + �0 � 1

�2
+
�
�
>
mis(Xmis � µmis|obs,M )

�2
(42)

+ 2�>
mis(Xmis � µmis|obs,M )

�
�
>
obsXobs + �

>
misµmis|obs,M + �0 � 1

�
(43)

Now taking the expectation with regards to P (Xmis|Xobs,M), the last term vanishes and we get:

E [f?
bowl(X)|Xobs,M ] =

�
�
>
obsXobs + �

>
misµmis|obs,M + �0 � 1

�2
+ �

>
mis⌃mis|obs,M�mis (44)

Derivation of the Bayes predictor for f
?
wave.

f
?
wave(X) = (�>

X + �0 � 1) +
X

(ai,bi)2S

ai �
�
�
�
�
>
X + �0 + bi

��
(45)

= (�>
obsXobs + �

>
misXmis + �0 � 1) (46)

+
X

(ai,bi)2S

ai �
�
�
�
�
>
obsXobs + �

>
misXmis + �0 + bi

��
(47)

Define T
(m) = �

>
misXmis. Since P (Xmis|Xobs,M) is Gaussian in both the MCAR and Gaussian

self-masking cases, P (T (m)|Xobs,M) is also Gaussian with mean and variance given by:

µ
T (m)|Xobs,M = �

>
misµmis|obs,M (48)

�
2
T (m)|Xobs,M

= �
>
mis⌃mis|obs,M�mis (49)

To compute the Bayes predictor, we now need to compute the quantity:

ET (m)|Xobs,M

h
�
⇣
�

⇣
�
>
obsXobs + T

(m) + �0 + bi

⌘⌘i

This expectation can then be computed following [Bishop, 2006] (section 4.5.2) which gives the
result.

Derivation of the Bayes predictor for f
?
break.

f
?
break(X) =

�
�
>
X + �0

�
+ 3⇥ 1�>X+�0>1 (50)

E [f?
break(X)|Xobs,M ] = �

>
obsXobs + �

>
misµmis|obs,M + �0 (51)

+ 3⇥
Z

P (Xmis|Xobs,M)1�>
obsXobs+�>

misXmis+�0>1dXmis (52)

Let U (m) = �obsXobs + �misXmis + �0. Since P (Xmis|Xobs,M) is Gaussian in both the MCAR
and Gaussian self-masking cases, P (U (m)|Xobs,M) is also Gaussian with mean and variance given
by:

µ
U(m)|Xobs,M = �

>
obsXobs + �

>
misµmis|obs,M + �0 (53)

�
2
U(m)|Xobs,M

= �
>
mis⌃mis|obs,M�mis (54)
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Using the law of the unconscious statistician, we get:

E [f?
break(X)|Xobs,M ] = �

>
obsXobs + �

>
misµmis|obs,M + �0 (55)

+ 3⇥
Z

P (U (m)|Xobs,M)1U(m)>1dU
(m) (56)

= �
>
obsXobs + �

>
misµmis|obs,M + �0 (57)

+ 3⇥
h
1� P

⇣
U

(m)  1|Xobs,M

⌘i
(58)

= �
>
obsXobs + �

>
misµmis|obs,M + �0 (59)

+ 3⇥
⇥
1� �U(m)|Xobs,M (1)

⇤
(60)

B.3 Supplementary experiments with f
⇤
break.

Figure 8: Performances (R2 score on a test set) compared to that of the Bayes predictor across 10
repeated experiments.
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