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Abstract

Neural Collapse refers to the remarkable structural properties characterizing
the geometry of class embeddings and classifier weights, found by deep nets
when trained beyond zero training error. However, this characterization only
holds for balanced data. Here we thus ask whether it can be made invariant
to class imbalances. Towards this end, we adopt the unconstrained-features
model (UFM), a recent theoretical model for studying neural collapse,
and introduce Simplex-Encoded-Labels Interpolation (SELI) as an invariant
characterization of the neural collapse phenomenon. We prove for the UFM
with cross-entropy loss and vanishing regularization that, irrespective of
class imbalances, the embeddings and classifiers always interpolate a simplex-
encoded label matrix and that their individual geometries are determined
by the SVD factors of this same label matrix. We then present extensive
experiments on synthetic and real datasets that confirm convergence to
the SELI geometry. However, we caution that convergence worsens with
increasing imbalances. We theoretically support this finding by showing that
unlike the balanced case, when minorities are present, ridge-regularization
plays a critical role in tweaking the geometry. This defines new questions
and motivates further investigations into the impact of class imbalances on
the rates at which first-order methods converge to their preferred solutions.

1 Introduction
What are the unique structural properties of models learned by training deep neural networks
to zero training error? Is there an implicit bias towards solutions of certain geometry? How
does this vary across training instances, architectures, and data? These questions are at
the core of understanding the optimization landscape of deep-nets. Also, they are naturally
informative about the role of models since different parameterizations might affect preferred
geometries. Ultimately, such understanding makes progress towards explaining generalization
of overparameterized models.
Recently, remarkable new progress in answering these questions has been made by Papyan et al.
[26], who empirically discover and formalize the so-called Neural-collapse (NC) phenomenon.
NC describes geometric properties of the learned embeddings (aka last-layer features) and of
the classifier weights of deep-nets, trained with cross-entropy (CE) loss and balanced data
far into the zero training-error regime. The NC phenomenon produces a remarkably simple
description of a particularly symmetric geometry: (i) The embeddings of each class collapse
to their class mean (see (NC) property); and (ii) The class means align with the classifier
weights and they form a simplex equiangular tight frame (see (ETF) property). Importantly,
as noted by Papyan et al. [26], this simple geometry appears to be “cross-situational invariant”
across different architectures and different balanced datasets.
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Figure 1: Visualizing and contrasting the SELI and ETF geometries for k = 4 classes.

In this paper, we study Neural collapse with imbalanced classes: Is there a (ideally equally
simple) description of the geometry that is invariant across class-imbalanced datasets?
Contributions. We propose a new description capturing the geometric structure of learned-
embeddings and classifier-weights on possibly class-imbalanced data, which we call the Simplex-
Encoded-Labels Interpolation (SELI) geometry. This new geometry is a generalization of
the ETF geometry: It recovers the latter when data are balanced or when there are only
two classes, and also, unlike ETF, it remains invariant across different imbalance levels.
Importantly, it too, has a simple description: The matrix of learned logits interpolates a
simplex-encoded label (SEL) matrix Ẑ, and, the individual geometries of the embeddings
and classifiers are determined by the SVD factors of this same SEL matrix. Because the
particular arrangement of columns of the SEL matrix changes with the imbalance level, this
also impacts the geometric arrangement of the embedding and classifier vectors. Overall,
the norms and angles of these vectors admit simple closed-form expressions in terms of the
imbalance characteristics and the number of classes.
We use an example to illustrate this. Fig. 1a depicts the SEL matrix Ẑ ∈ R4×110 for a
STEP-imbalanced k = 4-class dataset with two majority classes of 50 examples each, and,
two minority classes of 5 examples each. Each column of Ẑ includes the k learned logits
for each one of the 110 examples in the dataset. Each such column has exactly one entry
equal to 1 − 1/k = 0.75 and three entries equal to −1/k = −0.25. The corresponding geometry
of the embeddings and classifiers, shown in the 3D plot, is found by an SVD of Ẑ: the
left eigenvectors determine the classifiers and the right ones the embeddings. Note that Ẑ
is rank 3, hence the geometry is 3D. Since embeddings collapse to their class means (see
(NC) property), we only show the four class-mean embeddings and the corresponding four
classifiers. Two of each correspond to majorities (“●” marker) and two to minorities (“+”
marker). The radii of the two concentric spheres are equal to the norms of the minority
classifiers (red sphere) and of the minority embeddings (blue sphere), respectively. Note that
the norms of minorities and majorities are different, and so are the angles. Moreover, the
classifiers are not aligned with the embeddings. Overall, the geometry is different compared
to the ETF geometry seen in the balanced case, which is shown in Fig. 1b. What remains
invariant across class-imbalances is that the logits (i.e. inner products between classifiers and
embeddings) only take values either 1 − 1/k or −1/k, so that the logit matrix is equal to the
SEL matrix. Equivalently, the learned model interpolates the simplex-encoding of the labels.
Below we explain the conception of this geometry and our contributions in detail. The initial
major challenge was: Assuming a class-imbalance-invariant geometry exists, how to find it?
To answer this question, we adopted the Unconstrained Feature Model (UFM ) previously
introduced as a two-layer proxy model to theoretically justify neural collapse [24, 3, 41].
Motivated by deep-learning practice and by studies on implicit bias of gradient descent (GD)
for unregularized CE minimization, we analyze the geometry of solutions to an unconstrained-
features Support Vector Machines (UF-SVM) problem. We prove, for STEP-imbalanced
data, any solution of the UF-SVM follows the SELI geometry. Thus, the learned end-to-end
model always interpolates a simplex labels encoding. We show that (ETF)Ô⇒ (SELI).
However, (SELI) /Ô⇒ (ETF) unless classes are balanced or there is just two of them (k = 2).
Next, we analyze training of the UFM with ridge-regularized CE. Unlike previous studies,
we find in the presence of imbalances that regularization matters as it changes the geometry
of solutions. In fact, we show that there is no finite regularization that leads to the SELI
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Figure 2: Convergence of learned classifiers, embeddings and corresponding logits to the SELI (solid
lines) vs ETF (dashed lines) geometries, measured using a ResNet-18 model, trained far beyond zero
training error on STEP-Imbalanced CIFAR10, MNIST and Fashion-MNIST, for different imbalance
ratios R; see Sec. 5 for metrics and discussion.

geometry. However, we also show that as regularization vanishes, the solutions do interpolate
the SEL matrix (after appropriate normalization.) Finally, we show that the SELI geometry
differs from the minority-collapse phenomenon [3], since the latter does not correspond to
solutions with zero training error. In fact, we show minority collapse: (i) does not occur
for small finite regularization and finite imbalance ratio, and (ii) occurs asymptotically for
vanishing regularization, but only asymptotically as the imbalance ratio grows.
We numerically test convergence to the SELI geometry in both synthetic and real class-
imbalanced datasets. For different imbalance levels, the learned geometries approach the SELI
geometry significantly faster compared to the ETF geometry (Fig. 2). However, convergence
worsens with increasing level of imbalance. A plausible theoretical justification is that as
we show regularization plays critical role under imbalances. We also consistently get better
convergence rate for the classifiers. We believe our observations strongly motivate further
investigations regarding potential frailties of “asymptotic” implicit bias characterizations
and how these might vary in multiclass and possibly imbalanced settings.

1.1 Related works
The original contribution by Papyan et al. [26] has attracted lots of attention resulting in
numerous followups within short time period, e.g., [41, 12, 3, 9, 21, 24, 5, 40, 32]. (See also
[9, Sec. E] for a review of the recent literature.) Several works have proposed and/or used
the UFM with CE training to analyze theoretical abstractions of NC [41, 12, 3, 5]. Other
works analyze the UFM with square loss [24, 9, 40, 32] and recent extensions accounting for
additional layers are studied in [32]. Here, we drove particular inspiration from Zhu et al. [41],
who presented a particularly transparent and complete analysis of the optimization landscape
of ridge-regularized CE minimization for the UFM under balanced data. In the same spirit,
we also relied on the UFM. However, our work is, to the best of our knowledge, the first
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Geometry of global minimizers for UFM
UF-RidgeCE (Eqn. (1)) UF-SVM (Eqn. (2))

Balanced ETF
[21, 5, 41, 3, 32]

ETF
[12], [Cor. 1.3]

Imbalanced
∀λ: NO SELI [Prop. 1]
λ→ 0: SELI [Prop. 2]

λ < 1
2 : NO minority collapse [Sec. H]

SELI
[Thm. 1]

Table 1: Summary of contributions and comparison to most-closely related work.

explicit geometry analysis for class-imbalanced data. See also Table 1 for a comparison.
The only previous work on neural collapse with imbalances is [3], which was the first to
note that collapse of the embeddings is preserved, but otherwise the geometry might skew
away from ETF. Also, Fang et al. [3] first proposed studying the new geometry using the
UFM and appropriate convex relaxations. With this setup, they presented an intriguing
finding, which they termed minority collapse: for asymptotically large imbalance levels, the
minorities’ classifiers collapse to the same vector. Instead, we derive an explicit geometric
characterization of both embeddings and classifiers for both majorities and minorities and for
all imbalance levels. Specializing these findings to vanishing regularization and imbalance
ratio growing to infinity recovers and gives new insights to minority collapse. Our results
also draw from and relate to the literatures on implicit bias, matrix factorization, and
imbalanced deep-learning. We defer a detailed discussion on these to Sec. I of the SM.
Notation. For matrix V ∈ Rm×n, V[i, j] denotes its (i, j) entry, vj denotes the j-th column,
VT its transpose and V† its pseudoinverse. We denote ∥V∥F , ∥V∥2, ∥V∥∗ the Frobenius,
spectral, nuclear norms of V. tr(V) denotes the trace of V. ⊙ and ⊗ denote Hadammard
and Kronecker products. V ≻ 0 denotes V is positive semidefinite and V ≥ 0 that V has
nonnegative entries. ∇VL ∈ Rm×n is the gradient of a scalar function L with respect to V.
1m denotes an m-dimensional vector of all ones and Im the m-dimensional identity matrix.
For vectors/matrices with all zero entries, we simply write 0, with dimensions understood
from context. ej denotes a column with a single non-zero entry of 1 in the j-th entry.

2 Problem setup
We adopt the unconstrained feature model (UFM) [24, 3] in a k-class classification setting.
Let Wd×k = [w1,w2,⋯,wk] be the matrix of classifier weights corresponding to the k classes.
Here, d is the feature dimension. We assume throughout that d ≥ k − 1. Next, we let
Hd×n = [h1,h2,⋯,hn] denote a matrix of n feature embeddings, each corresponding to a
different example in the training set. We assume each class c ∈ [k] has nc ≥ 1 examples
(thus, nc embeddings) so that ∑c∈[k] nc = n. Without loss of generality, we assume examples
are ordered. Formally, we assume that examples i = 1, . . . , n1 have labels yi = 1, examples
i = n1 + 1, . . . , n1 + n2 have labels yi = 2, and so on. The UFM trains the features hi, i ∈ [n]
(jointly with the weights wc, c ∈ [k]) without any further constraints, i.e., by minimizing the
ridge-regularized cross-entropy (CE) loss as follows [41]:

(Ŵλ, Ĥλ) ∈ arg minW,H L(WTH) + λ∥W∥2
F /2 + λ∥H∥2

F /2, (1)

where L(WTH) ∶= ∑i∈[N] log(1 +∑c≠yi e−(wyi
−wc)Thi) is the CE loss.

UFM as 2-layer linear net. The formulation above does not explicitly specify inputs.
Alternatively, consider training a 2-layer linear net with hidden dimension d, first / second
layers H / W, over n examples with n-dim. inputs xi = ei ∈ Rn, i ∈ [n] and labels as above.
Unconstrained-features SVM (UF-SVM). Since neural-collapse is observed when train-
ing with small / vanishing regularization [26], it is reasonable to consider an unregularized
version of (1). In this special case, gradient descent (with sufficiently small step size) on (1)
produces iterates that diverge in norm, but converge in direction [22, 12]. In fact, it has been
recently shown that the GD solutions converge in direction to a KKT point of the following
max-margin classifier [22, 12]:
(Ŵ, Ĥ) ∈ arg minW,H ∥W∥2

F /2 + ∥H∥2
F /2 sub. to (wyi −wc)Thi ≥ 1, i ∈ [n], c ≠ yi. (2)

For convenience, we refer to the optimization in (2) as unconstrained-features SVM (UF-
SVM). This minimization (unlike ‘standard’ SVM) is non-convex. Hence, KKT points (thus,
GD convergence directions) are not necessarily global minimizers; see discussion in Sec. 6.
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Class-imbalance model. To streamline the presentation, we focus on a setting with STEP
imbalances. This includes balanced data as special case by setting R = 1.
Definition 1 ((R,ρ)-STEP imbalance). In a (R,ρ)-STEP imbalance setting with label-
imbalance ratio R ≥ 1 and minority fraction ρ ∈ (0, 1), the following hold. All minority (resp.
majority) classes have the same sample size nmin (resp. Rnmin). There are (1−ρ)k majority
and ρk minority classes. Without loss of generality, classes {1, . . . , (1 − ρ)k} are majorities.

3 Global structure of the UF-SVM: SELI geometry

In this section, we show that the global minimizers of the non-convex program in (2) take a
particularly simple form that is best described in terms of a simplex-encoding of the labels.
Definition 2 (SEL matrix). The simplex-encoding label (SEL) matrix Ẑk×n is such that

∀c ∈ [k], i ∈ [n] ∶ Ẑ[c, i] = {1 − 1/k , c = yi
−1/k , c ≠ yi

. (3)

Onwards, let ẐT = UΛVT be the compact SVD of ẐT . Specifically, Λ is a positive (k − 1)-
dimensional diagonal matrix and Un×(k−1), Vk×(k−1) have orthonormal columns.

Each column ẑi ∈ Rk of Ẑ represents a class-membership encoding of datapoint i ∈ [n]. This
differs from the vanilla one-hot encoding ŷi = eyi in that ẑi = ŷi − 1

k
1k. Specifically, Ẑ has

exactly k different and affinely independent columns, which together with the zero vector
form a k-dimensional simplex, motivating the SEL name. Finally, note that ẐT1k = 0; thus,
rank(Ẑ) = k − 1. We gather useful properties about the eigenstructure of Ẑ in Sec. A.
Theorem 1 (Structure of the UF-SVM minimizers). Suppose d ≥ k − 1 and a (R,ρ)-STEP
imbalance setting. Let (Ŵ, Ĥ) be any solution and p∗ the optimal cost of the UF-SVM in
(2). Then, p∗ = ∥Ẑ∥∗ = ∥Ĥ∥2

F = ∥Ŵ∥2
F . Moreover, the following statements characterize the

geometry of global minimizers in terms of the the SEL matrix and its SVD.

(i) For the optimal logits it holds that ŴT Ĥ = Ẑ.
(ii) The Gram matrices satisfy ĤT Ĥ = UΛUT and ŴTŴ = VΛVT .

(iii) For partial orthonormal matrix R ∈ R(k−1)×d, Ŵ = RTΛ1/2VT and Ĥ = RTΛ1/2UT .

We outline the theorem’s proof in Sec. 3.3 and defer the details to Sec. C.1. The theorem
provides an explicit characterization of the geometry of optimal embeddings and classifiers
around the key finding that the optimal logit matrix is always equal to the SEL matrix.
Simplicity. The lack of symmetry in the imbalanced setting, makes it a priori unclear
whether a simple geometry description is still possible, as in the balanced case. But, the
theorem shows this to be the case. The key observation is that the optimal logit matrix
ŴT Ĥ equals Ẑ (cf. Statement (i)). Then, the Gram matrices of embeddings and classifiers
are given simply in terms of the singular factors of the SEL matrix (cf. Statements (ii),(iii)).
Invariance to imbalances. Equality of the optimal logit matrix to the SEL matrix is
the key invariant characterization across changing imbalances. This also implies that at
optimality all margins are equal irrespective of the imbalance type. The description of Gram
matrices in terms of the SVD of Ẑ is also invariant. Of course, the particular arrangement of
columns of Ẑ itself depends on the values of (R,ρ). In turn, the singular factors determining
the geometry of embeddings and classifiers depend implicitly on the same parameters. Thus,
the geometry differs for different imbalance levels; see Fig. 1 for an example.

3.1 Invariant properties: NC and SELI

Here, we further discuss the geometry of embeddings and classifiers induced by the SVD of
the SEL matrix. The first realization is that the embeddings collapse under all settings.
Corollary 1.1. The UF-SVM solutions satisfy the following irrespective of imbalance:
(NC) The embeddings collapse to their class means ĥi = µ̂c ∶= 1

nc
∑j∶yj=c ĥj , ∀c ∈ [k], i ∶ yi = c.
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This can be inferred from Theorem 1 (specifically from Statement (iii) and that U has
repeated columns.) A more straightforward argument is by directly inspecting (2) is as
follows. For any fixed (say optimal) Ŵ, the minimization over hi is: (i) separable and
identical for all i ∶ yi = c in same class c, and (ii) strongly convex. Hence, for all i ∶ yi = c,
there is unique minimizer corresponding to the fixed Ŵ; this must be their class mean.
Beyond (NC), Theorem 1 specifies the exact geometry of solutions.
Definition 3 (SELI geometry). The embedding and classifier matrices Hd×n and Wd×k
follow the simplex-encoded-labels interpolation geometry when for some scaling α > 0:

(SELI) [W
T

HT ] [W H] = α [VΛVT Ẑ
ẐT UΛUT ] , where Ẑ = VΛUT is the SEL matrix.

Corollary 1.2. The UF-SVM solutions follow the SELI geometry, irrespective of imbalance.

The (SELI) geometry specifies (up to a global positive scaling) the Gram matrices GW ∶=
WTW and GH ∶= HTH, and the logit matrix Z ∶= WTH: The diagonals of the Gram
matrices specify the norms 2, and together with their off-diagonal entries, they further
specify the angles between classifiers and between embeddings. Because of (NC), the norms
and angles of the embeddings are uniquely determined in terms of the norms and angles of
the mean-embeddings; thus, for all i ∈ [n], GH[i, j] = GH[i, `] if yj = y`. Finally, the norms
together with the entries of the logit matrix determine the angles between the two sets of: (a)
the k classifiers and (b) the k mean embeddings. Thus, they specify the degree of alignment
between the two sets of vectors. In the next section, we show that it is in fact possible to
obtain explicit closed-form formulas describing the norms, angles and alignment of classifier
and embedding vectors, in terms of the imbalance characteristics and the number of classes.
Remark 3.1 (Why “SELI”?). For the UFM, Z = WTH is the learned end-to-end model.
According to its definition, the SELI geometry implies WTH = αẐ. Thus, the learned model
interpolates (a scaling of) the SEL matrix, motivates the naming in Definition 3.

3.1.1 Special case: Balanced or binary data
For the special cases of balanced or binary data, Theorem 1 recovers the ETF structure, i.e.
(SELI)≡(ETF). Let M̂ = [µ̂1, . . . , µ̂k] denote the matrix of mean embeddings.
Corollary 1.3 (R = 1 or k = 2). Assume balanced data (R = 1) or binary classification
(k = 2). Then, any UF-SVM solution (Ŵ, Ĥ) follows the ETF geometry as defined in [26]:
(ETF) Ŵ = M̂ and M̂TM̂ = ŴTŴ = Ik − 1

k
1k1

T
k .

Thus, when data are balanced or binary: (i) the norms of the classifiers and of the embeddings
are all equal; (ii) the angles between any two classifiers or any two embeddings are all equal
to −1/k − 1; and, (iii) the set of classifiers and the set of embeddings are aligned. See Fig. 1b.

3.2 How the SELI geometry changes with imbalances
For k > 3, R > 1, (SELI) /Ô⇒ (ETF) and geometry is determined in terms of the SVD
factors of the SEL matrix. Sec. A in the SM explicitly characterizes these SVD factors and
leads to explicit closed-form formulas for the norms, angles and alignment in terms of R,ρ
and k,nmin in Sec. B. For example, the following lemma gives a formula for the ratio of
majority and minority norms. For simplicity, assume equal majorities and minorities.
Lemma 3.1 (Norm ratios). Assume (R, 1/2)-STEP imbalance. Suppose (W,H) satisfies
the (SELI) property. Let wmaj,hmaj (resp. wminor,hminor) denote majority (resp. minority)
classifiers and embeddings, respectively. Then,

∥wmaj∥22
∥wminor∥22

=

(1 − 2/k)
√

R +
√
(R+1)/2
k

(1 − 2/k) +
√
(R+1)/2
k

and
∥hmaj∥22
∥hminor∥22

=

1√
R
(1 − 2/k) + 1

k
√
(R+1)/2

(1 − 2/k) + 1
k
√
(R+1)/2

.

Thus, ∥wmaj∥2 ≥ ∥wminor∥2 and ∥hmaj∥2 ≤ ∥hminor∥2, with equalities iff R = 1 or k = 2.
2We assume throughout that the regularization strength is same for embeddings and classifiers. For
completeness we treat the general case in Sec. C.3 in the SM, where it is shown that different
regularization values do not change the SELI geometry as per Definition 3 apart from introducing
a (global) relative scaling factor between the norms of the embeddings and classifiers.
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The fact that CE learns majority classifiers of larger norm has been empirically observed in the
imbalanced deep-learning literature [17, 18]. Lemma 3.1 provides a theoretical justification
and precisely quantifies the ratio, not only for classifiers, but also for the learned embeddings.
As another example of closed-form formulas, the angles between any two majority (resp.
minority) classifiers wmaj,w′

maj (resp. wminor,w′
minor) satisfy (see Sec. B.1.2):

Cos(wmaj, w′
maj) =

−2
√

R +
√

(R + 1)/2
(k − 2)

√

R +
√

(R + 1)/2
and Cos(wminor, w′

minor) =
−2 +

√

(R + 1)/2
k − 2 +

√

(R + 1)/2
. (4)

Both formulas evaluate to −1/(k − 1) for R = 1. Also, the first is strictly decreasing and the
second strictly increasing in R, i.e. with larger R majority classifiers go further away from
each other, while minority classifiers come closer; see Fig. 1 and Fig. 6 in the SM.
Remark 3.2 (Asymptotics). While we focus on finite values of R, computing limits for
our formulas gives asymptotic characterizations as R →∞. As an example, it is easy to see
from (4) that the angle between the minority classifiers collapses to zero in that limit. This
phenomenon is called “minority collapse” by Fang et al. [3]. Here, we recover it as a special
case of Theorem 1 and of SELI. Note also that the rate at which the minority angle collapses
is rather slow (see also Fig. 6c in the SM). Additional details are included in Sec. B.

3.3 Proof sketch

We start from the following standard convex relaxation of the UF-SVM [31, 8, 41, 3]:
min

Z∈Rk×n
∥Z∥∗ subj. to Z[yi, i] −Z[c, i] ≥ 1, ∀c ≠ yi, i ∈ [n]. (5)

The relaxation follows by setting Z = WTH, thus Z is the logit matrix (also, the end-to-
end model) of the non-convex UF-SVM. Our key technical innovation is proving that Ẑ
is the unique minimizer of (5). There are three key ingredients in this. First, is a clever
re-parameterization of the dual program to (5), introducing the SEL matrix Ẑ in the dual:

max
B∈Rn×k

tr(ẐB) sub. to ∥B∥2 ≤ 1, B1k = 0, B⊙ ẐT ≥ 0 . (6)

Second, we prove that B̂ = UVT is the unique maximizer of the re-parameterized dual
problem in (6). While it is not hard to check that B̂ optimizes a relaxation of (6), it is far
from obvious that B̂ is unique, and, even more that it satisfies the third constraint. The key
technical challenge here is that the third constraint acts entry-wise on B. In fact, to proceed
with the proof we need that the constraint is not active, i.e. B̂⊙ ẐT > 0, or equivalently, that
the sign pattern of the entries of B̂ agrees with the sign pattern of the transpose SEL matrix
ẐT . We prove this by an explicit construction of the singular factors U,V exploiting the
structure of the SEL matrix. Once we have shown that B̂ is the unique maximizer and is
strictly feasible, we use the KKT conditions to prove that Ẑ is the unique minimizer of the
nuclear-norm relaxation in (5). To do this, we leverage that strict feasibility of B̂ implies by
complementary slackness all constraints in the primal (5) must be active at the optimum.
The proof of the theorem completes by arguing that the relaxation (6) is tight when d ≥ k − 1
allowing us to connect the UF-SVM minimizers to the SEL matrix Ẑ. Sec. C.1 for details.
Remark 3.3 (Comparison to literature). The common analysis strategy in all other related
works is deriving tight bounds on the CE loss (or related quantities, such as the minimum
margin), and, then identifying the structure in the parameters that achieves those bounds.
For example, [41, 5, 3] lower bound the CE loss and [12] upper bounds the minimum margin,
all using a similar elegant argument based on Cauchy-Schwartz and Jensen inequalities. The
ETF geometry is then uncovered by recognizing that it uniquely achieves those bounds. It is
not clear how to employ such exercises in the presence of imbalances, due to the absence of
symmetry properties (e.g. alignment of classifiers with embeddings). Our proof of Theorem 1
is more direct and is in large enabled by identifying the key role played by the logit matrix.

4 The role of regularization

In this section, we study the geometry of solutions (Ŵλ, Ĥλ) of ridge-regularized CE
minimization in (1), as a function of both the imbalance and the regularization parameter λ.
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4.1 Global minimizers as solutions to a convex relaxation

The regularized CE minimization in (1) is non-convex. Yet, its landscape is benign and the
global solution can be described in terms of the solution to a convex relaxation program [41].
Theorem 2 (Reformulated from [41]). Let λ > 0, d > k − 1 and (R,ρ)-STEP imbalance. Let
Ẑλ ∈ Rk×n be the unique minimizer of the convex nuclear-norm-regularized loss minimization,

Ẑλ ∶= arg min
Z
L(Z) + λ∥Z∥∗ , (7)

and, denote Ẑλ = VλΛλUT
λ its SVD. Any stationary point of (1) satisfies exactly one of the

following two. Either it is a strict saddle, or, it is a global minimizer (Ŵλ, Ĥλ) and satisfies

[Ŵ
T
λ

ĤT
λ

] [Ŵλ Ĥλ] = [Vλ

Uλ
]Λλ [VT

λ UT
λ ] . (8)

This ensures that any first-order method escaping strict saddles finds a stationary point
that is a global minimizer [41]. Moreover, it describes the structure of the global minimizers
of (1) in terms of Ẑλ, the solution to the convex minimization in (7). Structurally, the
characterization in (8) resembles the characterization in Theorem 1 regarding the UF-SVM.
However, Theorem 1 goes a step further and gives an explicit form for the logit matrix,
namely the SEL matrix Ẑ. Instead, Ẑλ in Theorem 2 is given implicitly as the solution to a
convex program. In the remaining of this section, we ask: how does Ẑλ compare to Ẑ for
different values of the regularizer? Also, how does the answer depend on the imbalance level?
Remark 4.1. Although not stated explicitly in this form, Theorem 2 is essentially retrieved
from the proof of [41, Theorem 3.2] with two small adjustments. First, Zhu et al. [41] only
considers balanced data. Here, we realize their proof actually carries over to the imbalanced
setting. Second, we relax their assumption d > k to d > k − 1 thanks to a simple observation:
1Tk∇ZL(Z) = 0, hence the CE gradient drops rank (see Sec. E.1 for details).

4.2 Regularization matters

For balanced data, the minimizers Ŵλ, Ĥλ of (1) satisfy the (NC) and (ETF) properties
(up to scaling by a constant) for every value of the regularization parameter λ > 0 [41] (see
also [5, 3, 21].) In our language, for all λ > 0, there exists scalar αλ such that a scaling
(αλŴλ, αλĤλ) of any global solution of the regularized CE minimization in (1) satisfies
the ETF geometry. Thus, for balanced data, up to a global scaling, the geometry is: (i)
insensitive to λ > 0 and (ii) the same as that of the UF-SVM minimizers.
Here, we show that the situation changes drastically with imbalances: the regularization
now plays a critical role and the solution is never the same as that of UF-SVM for finite λ.
Proposition 1 (Imbalanced data: Regularization matters). Assume imbalanced data and
k > 2. There does not exist finite λ > 0 and corresponding scaling αλ such that the scaled
solution (αλŴλ, αλĤλ) of (1) follows the (SELI) geometry. Equivalently, there does not
exist λ > 0 and αλ such that a scaling of the UF-SVM solution solves (1).

Proof. The proof relies on Theorem 1 as follows. For the sake of contradiction assume there
exists λ > 0 and some αλ > 0 such that the scaled UF-SVM minimizer (αλŴ, αλĤ) solves (1).
Since then (αλŴ, αλĤ) is a stationary point, it satisfies ∇WL(α2

λŴT Ĥ) + λαλŴ = 0 Ô⇒
αλĤ (∇ZL(α2

λŴT Ĥ))T = −λŴ Ô⇒ αλŴT Ĥ (∇ZL(α2
λŴT Ĥ))T = −λŴTŴ. But, by

Theorem 1: ŴT Ĥ = Ẑ and ŴTŴ = VΛVT . Moreover, thanks to the special structure of
Ẑ we can check that ∇ZL(α2

λẐ) = −α′λẐ for α′λ ∶= k/(exp(α2
λ) + k − 1); see Lemma A.1(v).

With these, and denoting α′′λ ∶= αλα′λ, we arrive at the following about the singular values of
Ẑ: α′′λẐẐT = λŴTŴ Ô⇒ α′′λVΛ2VT = λVΛVT Ô⇒ α′′λΛ2 = λΛ Ô⇒ Λ = (λ/α′′λ)Ik−1.

Thus, all singular values of Ẑ must be the same. However, we show in Lemma A.3 that this
is not the case unless data are balanced or k = 2. Thus, we arrive at a contradiction.
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Figure 3: Numerical study of global solutions (Ŵλ, Ĥλ) of (1) across the regularization path.

4.3 Vanishing regularization
As λ vanishes, it is not hard to check that minimizers diverge in norm and the relevant
question becomes: where do they converge in direction? The following answers this.
Proposition 2 (Regularization path leads to UF-SVM). Suppose d > k−1 and (R,ρ)-STEP
imbalance. It then holds that limλ→0 ŴT

λ Ĥλ/(∥Ŵλ∥2
F /2+∥Ĥλ∥2

F /2) = Ẑ/∥Ẑ∥∗.

Put together with the content of the previous section: For balanced data, the solution is
always the same up to global scaling. However, for imbalanced data, the solution changes
with λ and only in the limit of λ→ 0 does it align with that of the UF-SVM. Regarding the
proof of the proposition: thanks to Theorems 1 and 2, it suffices that the solution Ẑλ of
(7) converges in direction to the SEL matrix Ẑ; see Proposition 3 in Sec. D. To show this,
we critically use from Theorem 1 that Ẑ is unique minimizer of (5) (see Sec. E.3). Closely
related results are [28, 16], who studied the regularization path of p-norm regularized CE.
4.4 Imbalance emphasizes the impact of non-convexity
Recall interpreting the UFM as a two-layer linear net trained on the standard basis ei ∈ Rn.
Suppose instead that we train a simple k-class linear classifier Ξk×n on the same data by
minimizing ridge regularized CE: minΞ L(Ξ)+ λ

2 ∥Ξ∥2
F . It is easy to check that (after scaling)

Ẑ satisfies first-order optimality conditions. Thus, the optimal linear classifier is such that for
all λ > 0, there exists αλ such that Ξ̂λ = αλẐ. Contrasting this to Proposition 1, we find that
the end-to-end models minimizing ridge-regularized CE for a linear versus a two-layer linear
network are the same (in direction) when data are balanced, but differ under imbalances.

5 Experiments
In the experiments, we choose (R, 1/2)-STEP imbalances with varying R and we measure
convergence to either the (SELI) or the (ETF), in terms of the three metrics below
corresponding to classifiers, embeddings, and logits, respectively. Denote A = A/∥A∥F the
Euclidean normalization and GA = ATA the Gram matrix of matrix A. Classifiers:
We measure ∥GW − ĜW∥F , where ĜETF

W = Ik − 1
k
1k1

T
k =∶ G⋆ and ĜSELI

W = VΛVT (see
Definition 3). Embeddings: Because of (NC), it suffices to work with the matrix M of
mean embeddings (see Sec. 3.1.) Specifically, we measure ∥GM − ĜM∥F , where ĜETF

M = G⋆

and ĜSELI
M is computed from the n-dimensional ĜSELI

H = UΛUT by only keeping the k
columns/rows corresponding to the first example of each class. In the deep-net experiments,
we employ an additional centering of the class means with their (balanced) global mean;
see Sec. G. Logits: We measure ∥WTM −G⋆∥F . Note that, when NC holds this metric is
essentially analogous to measuring ∥WTH − Ẑ∥F .
UFM: Global minimizers. Fig. 3 investigates the global minimizers of regularized CE
(1) for the UFM and k = 4 classes. Thanks to Theorem 2, we obtain such minimizers by
solving (7) with CVX [6], and then, using (8) to infer the Gram matrices GW,GM and
logits WTH. Fig. 3c shows that the distance to ETF is large and not approaching zero for
any value of λ. On the other hand, Fig. 3a numerically validates Propositions 1 and 2: the
distance to SELI for all three metrics is non-zero for any finite λ > 0, but converges to zero
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Figure 4: Geometry of SGD solutions on minimizing CE for the UFM; SELI(Solid)/ETF(Dashed).

as λ→ 0. However, this convergence is slow and the rate becomes even worse as R increases.
Finally, Fig. 3b depicts the minimum margins of solutions across λ. For all sufficiently small
λ, the minimum margin is strictly positive (see Lemma D.4 in Sec. D.2). As a byproduct,
this shows that “minority collapse” [3] can only possibly occur for large λ; see also Sec. H.
UFM: SGD solutions. Fig. 4 investigates whether the solutions found by SGD are
consistent with the prediction of Theorem 1 about global minimizers of the UF-SVM. We fix
k = 4 and, for each R, we select nmin so that n = ((R + 1)/2)knmin ≈ 400. The weights of the
UFM are optimized using SGD with constant learning rate 0.4, batch size 4 and no weight
decay. We train for 105 epochs, much beyond zero training error and plot the distance to
SELI and ETF over time. We observe the following: (i) SGD iterates favor the SELI, instead
of the ETF geometry. As a matter of fact, the distance to SELI is decreasing with epochs,
suggesting an implicit bias of SGD towards global minimizers of the UF-SVM. (ii) However,
convergence is rather slow and rates get worse with increasing imbalance. (iii) Also, the
embeddings convergence is more elusive compared to that of the classifiers. Interestingly,
the last two observations are reminiscent of the trends we observed in Fig. 3a, suggesting
connections between regularization path and (S)GD iterates, worth investigating further.
Refer to Sec. F for additional numerical results on the UFM.
Deep-learning experiments. We investigate convergence to SELI in deep-net training
of (R,ρ = 1/2)-STEP imbalanced MNIST, Fashion-MNIST and CIFAR10 datasets with
ResNet-18 [10] and VGG-13 [29]; see Sec. G.1.1 for implementation details. The convergence
to SELI and ETF for the classifiers, (centered) mean-embeddings, and logits is illustrated
in Fig. 2 for ResNet and Fig. 11 in the SM for VGG. The vertical dashed lines mark the
zero-training-error epoch; see Sec. G.1.3. In all plots, the distance to SELI decreases as
training evolves and convergence is consistently better compared to the ETF. However,
convergence slows down for increasing imbalance (see R = 100). Also, convergence is worse
for the embeddings compared to classifiers. See Sec. G in the SM for additional results.

6 Outlook: Imbalance troubles and opportunities
We propose (SELI) as the class-imbalance-invariant geometry of classifiers and embeddings
learnt by overparameterized models when trained beyond zero training error. We arrive at it
after showing that the UF-SVM global minimizers follow this geometry. Subsequently, we
conjecture and show experiments supporting that: (C1) GD on the UFM leads to solutions
approaching the SELI asymptotically in the number of epochs (Sec. I.2 for connection to
implicit bias); (C2) training of deep-nets learns models that approach the SELI geometry
(Sec. G for additional experiments). We hope our results motivate further theoretical
and experimental investigations, especially since data imbalances appear frequently across
applications. Beyond that, we believe that further similar studies on identifying geometric
structures of learned embeddings and classifiers could offer new perspectives on generalization.
Our results could pave that way since they uncover different geometries (aka SELI for different
R values), each leading to different generalization (worse for increasing R [1]). Relatedly,
we envision that further such studies lead to algorithmic contributions in imbalanced deep-
learning as they can facilitate studying the implicit-bias effect of CE adjustments and
post-hoc techniques tailored to imbalanced data [2, 23, 39, 18, 17, 19, 20].
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Roadmap to the Supplementary material

The SM contains the following. In Section A we derive several useful properties of the
simplex-encoded-label (SEL) matrix, which we then use in Section B to present closed-form
characterizations of the embeddings and classifiers geometries. Notably, these include explicit
expressions for the norms and angles of both majority and minority classes, which we
accompany with numerical illustrations shedding further light on the features of the proposed
(SELI) geometry. Next, in Section C, we use the derived properties of the SEL matrix
to prove our main Theorem 1 and its corollaries. In Section D we derive several useful
properties of the nuclear-norm penalized CE minimization, which we then use in Section E
to prove the statements of Section 4. Section F contains additional numerical results on the
UFM, such as experiments with varying weight-decay and regularization choices. Additional
experiments on real data (such as, isolated minority/majority geometry investigations, and
classifiers/embeddings norm ratios), as well as further implementation details, are included in
Section G. In Section H we show how results relate to minority collapse providing additional
theoretical justifications and novel perspectives to empirical observations reported by previous
work. Finally, an elaborate discussion on additional related works is contained in Section I.
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A Properties of the SEL matrix

A.1 Basic facts

We gather some basic properties about the SEL matrix below. These properties hold without
any assumptions on the number of examples n1, . . . , nk per class other than nc ≥ 1,∀c ∈ [k].
Lemma A.1 (SEL matrix — Basic Facts). The following statements are true.

(i) Let Y be the zero-one hot encoding label matrix, i.e. Y[c, i] = {1 , c = yi
0 , c ≠ yi

, ∀c ∈

[k], i ∈ [n]. Then, Ẑ = Y − 1
k
1k1

T
n .
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(ii) ẐT1k = 0 and rank(Ẑ) = k − 1.

(iii) ẐT admits a compact SVD ẐT = UΛVT , such that Λ is a (k − 1)-diagonal, and
U ∈ Rn×(k−1), V ∈ Rk×(k−1) are partial orthogonal matrices, i.e. UTU = VTV = Ik−1.
Moreover VT1k = 0, and the k − 1 columns of V span the subspace orthogonal to 1k,
i.e. VVT = Ik − 1

k
1k1

T
k .

(iv) ẐT Ẑ = YTY − 1
k
11T and ẐẐT = diag(n) + n

k21k1
T
k − 1

k
n1Tk − 1

k
1knT , where we

defined n = [n1, n2, . . . , nk]T

(v) Let L(Z) = ∑i∈[n] log (1 +∑c≠yi e−(Z[yi,i]−Z[c,i])). Then, ∇ZL(αẐ) = − k
eα+k−1 Ẑ, for

all α ∈ R.

Proof. Proof of (i): Follows directly from the definition.

Proof of (ii): The fact that ẐT1k = 0 is easy to check. Hence, the rank is at most k − 1. The
fact that the rank is exactly k − 1 follows by noting that the vectors ec − 1

k
1k, c ∈ [k − 1] are

linearly independent.
Proof of (iii): Follows directly from Statement (ii).

Proof of (iv): Follows easily by direct calculations.

Proof of (v): We show in Lemma A.2 below that −∇ZL(Z) = Y − A with A[c, i] ∶=
e−(Z[yi,i]−Z[c,i])

1+∑c′≠yi e
−(Z[yi,i]−Z[c′,i]) . It is easy to see that for Z = αẐ, the matrix A can be written

as A = eα−1
k−1+eαY + 1

k−1+eα1k1
T
n . The desired then follows by recalling Statement (i).

Lemma A.2 (Auxiliary result—Gradient of CE). The negative gradient of the cross-
entropy loss L(Z) = ∑ni=1 log (1 +∑c≠yi e−(Z[yi,i]−Z[c,i])) takes the form −∇ZL(Z) = Y − A
where Y is the one-hot encoding label matrix and for i ∈ [n], c ∈ [k] we denote A[c, i] ∶=

e−(Z[yi,i]−Z[c,i])

1+∑c′≠yi e
−(Z[yi,i]−Z[c′,i]) . Thus, for any Z ∈ Rk×n, it holds that 1Tk∇ZL(Z) = 0.

Proof. The proof is straightforward. Denote for convenience, Zci ∶= Z[c, i] and sci ∶=
Z[yi, i] −Z[c, i]. Taking derivatives with respect to Zci, c ∈ [k] we have for c = yi,

∂L
∂Zyii

= − ∑c′≠yi e−sc′i
1 +∑c′′≠yi e−sc′′i

∂sc′i
∂Zyii

= − ∑c′≠yi e−sc′i
1 +∑c′′≠yi e−sc′′i

= −(1− 1
1 +∑c′≠yi e−sc′i

) = −(1−A[yi, i])

and, for c ≠ yi,
∂L
∂Zci

= − e−sci

1 +∑c′≠yi e−sc′i
∂sci
∂Zci

= e−sci

1 +∑c′≠yi e−sc′i
= A[c, i].

Thus, ∑kc=1
∂L
∂Zci

= 0,∀i ∈ [n]. Hence, 1Tk∇ZL(Z) = 0 for every Z.

A.2 Eigen-structure

In this section, we explicitly compute the eigenstructure of the SEL matrix for (R,ρ)-STEP
imbalanced data. To simplify the expressions, we assume nmin = 1. 3 Also, we need the
following definitions. For m ∈ [k], let Pm ∈ Rm×(m−1) denote an orthonormal basis of the
subspace orthogonal to 1m, i.e. PmPTm = Im − 1

m
1m1

T
m and PTmPm = Im−1. We will also

denote Sm ∶= Im − 1
k
1m1

T
m ∈ Rm.

3It is rather easy to derive all formulas without this requirement. Concretely, the singular values in
(9) are multiplied by √

nmin, the (1, 1)– and (2, 3)– blocks of U in (11) are multiplied by 1/√nmin
and the dimensions of U also adjust appropriately. Nevertheless, this does not change the values of
UΛUT and of VΛVT aside from a global scaling. Besides, the assumption nmin = 1 is essentially
without loss of generality because the (NC) property holds under the SELI property.
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Lemma A.3 (SEL matrix — SVD for STEP imbalance). Assume (R,ρ)-STEP imbalanced
data and nmin = 1. Also, denote ρ = 1 − ρ and recall that the total number of examples is
n = (ρ +Rρ)k. Then, the SVD factors of Ẑ = VΛUT are given as follows:

Λ = diag ([
√
R1T(ρk−1)

√
ρ +Rρ 1T(ρk−1)]) (9)

V =
⎡⎢⎢⎢⎢⎣

Pρk −
√

ρ/ρ
k
1ρk 0(ρk)×(ρk−1)

0(ρk)×(ρk−1)

√
ρ/ρ
k
1ρk Pρk

⎤⎥⎥⎥⎥⎦
(10)

U =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
R
Pρk ⊗ 1R −

√
ρ/ρ

(ρ+Rρ)k1Rρk 0(Rρk)×(ρk−1)

0(ρk)×(ρk−1)

√
ρ/ρ

(ρ+Rρ)k1ρk Pρk

⎤⎥⎥⎥⎥⎥⎥⎦

. (11)

Proof. The challenging part is coming up with the formulas in (9), (10) and (11) for the
SVD factors. The lemma already does this for us. Hence, proving that the formulas are
correct involves a few tedious calculations, which we present below.
Let us define for convenience:

Vmaj ∶= [ Pρk
0(ρk)×(ρk−1)

] v = 1√
k

⎡⎢⎢⎢⎢⎣

−
√

ρ
ρ
1ρk√

ρ
ρ
1ρk

⎤⎥⎥⎥⎥⎦
Vmin ∶= [0(ρk)×(ρk−1)

Pρk
]

so that V = [Vmaj,v,Vmin]. Recalling for m = ρk or m = ρk that PTmPm = Im−1 and
PTm1m = 0 it is easy to check that VTV = Ik−1.

Similarly, let

Umaj ∶= [
1√
R
Pρk ⊗ 1R

0(ρk)×(ρk−1)
] u = 1√

(ρ +Rρ)k

⎡⎢⎢⎢⎢⎣

−
√

ρ
ρ
1Rρk√

ρ
ρ
1ρk

⎤⎥⎥⎥⎥⎦
Umin ∶= [0(Rρk)×(ρk−1)

Pρk
]

so that U = [Umaj,u,Umin]. With same argument as above, it is easy to check that
UTU = Ik−1. Here, we also use that

1
R

(Pρk ⊗ 1R)T (Pρk ⊗ 1R) =
1
R

(PTρk ⊗ 1TR)(Pρk ⊗ 1R) =
1
R
PTρkPρk ⊗ 1TR1R = Iρk

Thus, it suffices to show that VΛUT = Ẑ. The key observation here is that Ẑ can be written
in block-form as follows

Ẑ = [ Sρk ⊗ 1TR − 1
k
1ρk1

T
ρk

− 1
k
1ρk1

T
Rρk Sρk

] . (12)

With these, we have the following direct calculations:

VΛUT =
√
RVmajUT

maj + (
√
ρ +Rρ)vuT +VminUT

min

= [PρkP
T
ρk ⊗ 1TR 0
0 0] +

1
k
[
ρ
ρ
1ρk1

T
Rρk −1ρk1Tρk

−1ρk1TRρk
ρ
ρ
1ρk1

T
ρk

] + [0 0
0 PρkP

T
ρk

]

= [(Iρk −
1
ρk
1ρk1

T
ρk) ⊗ 1TR 0

0 0] +
1
k
[
ρ
ρ
1ρk1

T
ρk ⊗ 1TR −1ρk1Tρk

−1ρk1TRρk
ρ
ρ
1ρk1

T
ρk

] + [0 0
0 Iρk − 1

ρk
1ρk1

T
ρk

]

= [(Iρk −
1
k
1ρk1

T
ρk) ⊗ 1TR − 1

k
1ρk1

T
ρk

− 1
k
1ρk1

T
Rρk Iρk − 1

k
1ρk1

T
ρk

]

= Ẑ.
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A.2.1 Special case: Balanced data

When classes are balanced, i.e. R = 1, the following simple description of the SVD factors is
immediate to see from Lemma A.3.
Corollary 2.1. Assume balanced data and nmin = 1. Recall that Pk ∈ Rk×(k−1) denotes an
orthonormal basis of the subspace orthogonal to 1k. Then, Ẑ = PkPTk , that is

Λ = Ik−1, U = V = Pk.

A.2.2 Special case: Equal minorities / majorities (ρ = 1/2)

Another special case of interest is when the numbers of minorities and majorities are the
same, i.e. ρ = 1/2. In this case, we get the following simplification of Lemma A.3.
Corollary 2.2. Consider the setting of step imbalance with even number k = 2m,m ≥ 1 of
classes. Let nmin = 1. Then, the SVD of Ẑ is as follows:

Λ = diag ([
√
R1T(m−1)

√
(R + 1)/2 1T(m−1)]) ,

V =
⎡⎢⎢⎢⎣

Pm − 1√
k
1m 0m×(m−1)

0m×(m−1) + 1√
k
1m Pm

⎤⎥⎥⎥⎦

U =
⎡⎢⎢⎢⎣

1√
R
Pm ⊗ 1R − 1√

n
1Rm 0(Rm)×(m−1)

0m×(m−1) + 1√
n
1m Pm

⎤⎥⎥⎥⎦
.

A.3 A useful property of the singular spaces

The following result is particularly important for the proof of Theorem 1. It shows that the
singular spaces V,U of Ẑ are such that the matrix UVT has entries that agree on their sign
with the sign of the entries of ẐT .
Lemma A.4. Recall the setting of Lemma A.3 and the SVD Ẑ = VΛUT . The matrix
B̂ = UVT satisfies the following element-wise strict inequalities: B̂⊙ ẐT > 0.

Proof. From Lemma A.3, we have explicit expressions for the SVD factors U and V. From
these, we can directly compute that

[B̂11 B̂12
B̂21 B̂22

] ∶= B̂ = UVT = [
1√
R
PρkP

T
ρk ⊗ 1R 0

0 0] +
1

k
√
ρ +Rρ

[
ρ
ρ
1Rρk1

T
ρk −1Rρk1Tρk

−1ρk1Tρk
ρ
ρ
1ρk1

T
ρk

] + [0 0
0 PρkP

T
ρk

] .

To continue, recall again that for any integer m: PmPTm = Im − 1
m
1m1

T
m. Also note that

1Rρk1
T
ρk = (1ρk1Tρk) ⊗ 1R. Hence continuing from the display above we find that

B̂11 = ( 1√
R
Iρk − ( 1

ρk
√
R
− ρ/ρ
k
√
ρ +Rρ

)1ρk1ρk) ⊗ 1R = 1√
R

(Iρk −
1
ρk

(1 −
√

Rρ

R + ρ/ρ)1ρk1ρk) ⊗ 1R

B̂12 = −
1

k
√
ρ +Rρ

1Rρk1
T
ρk and B̂21 = −

1
k
√
ρ +Rρ

1ρk1
T
ρk

B̂22 = Iρk − ( 1
ρk

− ρ/ρ
k
√
ρ +Rρ

)1ρk1Tρk = Iρk −
1
ρk

(1 −
√

ρ

1 +R (ρ/ρ))1ρk1
T
ρk.

Finally, recall from (12) the block-form of Ẑ repeated here for convenience

ẐT ∶= [Ẑ
T
11 ẐT12

ẐT21 ẐT22
] = [ Sρk ⊗ 1R − 1

k
1Rρk1

T
ρk

− 1
k
1ρk1

T
ρk Sρk

] .

By inspection, the signs of B̂12, B̂21 are negative, same as the signs of ẐT21, ẐT12. To see
that the signs of the diagonal blocks also agree it suffices to check that the following strict
inequalities always hold

1 > 1 −
√

Rρ

R + ρ/ρ > 0 and 1 > 1 −
√

ρ

1 +R (ρ/ρ) > 0.

This completes the proof of the lemma.
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B The SELI geometry

As mentioned the SELI geometry is described in terms of the SVD of the SEL matrix Ẑ.
In this section, we show that it is in fact possible to get explicit closed-form expressions
describing the SELI geometry in terms of the parameters R,ρ, k. Key to this is the explicit
construction of the SVD factors in Sec. A.2.
For concreteness, we focus on the case of equal numbers of minorities and majorities (i.e.
ρ = 1/2) since the formulas are somewhat simpler and the setting is of sufficient interest to
convey main messages. Extension to the general case can be done in a similar fashion.
All results in this section hold under the following assumptions (assumed throughout without
further explicit reference):

• A (R,1/2)-STEP imbalanced setting.
• The classifiers wc, c ∈ [k] and the embeddings hi, i ∈ [n] follow the SELI geometry

in Definition 3.

B.1 Closed-form expressions

B.1.1 Norms

The following two lemmas are essentially restatements of Lemma 3.1.
Lemma B.1 (Norms of classifiers). The following statements are true about the norms of
the classifiers.

(i) The classifier norms across all majority / minority classes are all the same. That is,
∀c = 1, . . . , k/2 , ∥wc∥2 =∶ ∥wmaj∥2 and ∀c = k/2+1, . . . , k , ∥wc∥2 =∶ ∥wminor∥2

where we let ∥wmaj∥2 / ∥wminor∥2 denote the majority / minority norm of an arbitrary
class of the corresponding type.

(ii) It holds that

∥wmaj∥2
2 =

√
R(1 − 2/k) +

√
(R + 1)/2
k

and ∥wminor∥2
2 = (1 − 2/k) +

√
(R + 1)/2
k

.

(13)
Thus, ∥wmaj∥2 ≥ ∥wminor∥2 with equality if and only if R = 1 or k = 2.

Proof. Recall, since the classifiers follow the SELI geometry, it holds that WTW = VΛVT .
Hence, it suffices to compute the diagonal of the matrix VΛVT . We have

VΛVT =
√
R [PmP

T
m 0

0 0] +
√

(R + 1)/2
k

[ 1m1
T
m −1m1Tm

−1m1Tm 1m1
T
m

] + [0 0
0 PmP

T
m
]

=
⎡⎢⎢⎢⎢⎢⎣

√
RIk/2 − 1

k
(2

√
R −

√
(R + 1)/2)1k/21Tk/2 −

√
(R+1)/2
k

1k/21
T
k/2

−
√

(R+1)/2
k

1k/21
T
k/2 Ik/2 − 1

k
(2 −

√
(R + 1)/2)1k/21Tk/2

⎤⎥⎥⎥⎥⎥⎦
.

(14)
From this, the statements of the lemma follow readily.

Lemma B.2 (Norms of embeddings). The following statements are true about the norms
of the embeddings:

(i) The embedding norms across all majority / minority classes are all the same. That is,
∀j ∈ {i ∈ [n] ∶ yi = 1, . . . , k/2} , ∥hj∥2 =∶ ∥hmaj∥2, and

∀j ∈ {i ∈ [n] ∶ yi = k/2 + 1, . . . , k} , ∥hj∥2 =∶ ∥hminor∥2.

where we let ∥hmaj∥2 / ∥hminor∥2 denote the majority / minority norm of an arbitrary
example of the corresponding type.
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(ii) It holds that

∥hmaj∥2
2 =

1√
R

(1 − 2/k) + 1
k
√

(R + 1)/2
and ∥hminor∥2

2 = (1 − 2/k) + 1
k
√

(R + 1)/2
.

(15)

Thus, ∥hmaj∥2 ≤ ∥hminor∥2 with equality if and only if R = 1 or k = 2.

Proof. Recall, since the classifiers follow the SELI geometry, it holds that HTH = UΛUT .
Hence, it suffices to compute the diagonal of the matrix UΛUT . Recalling that n = k(R+1)/2
We have

UΛUT =
√
R [

1
R
PmP

T
m ⊗ 1R1TR 0
0 0] +

1
k
√

(R + 1)/2
[1Rm1

T
Rm −1Rm1Tm

−1m1TRm 1m1
T
m

] + [0 0
0 PmP

T
m
]

=

⎡⎢⎢⎢⎢⎢⎢⎣

( 1√
R
Ik/2 − 1

k
( 2√

R
− 1√

(R+1)/2
)1k/21Tk/2) ⊗ 1R1TR − 1

k
√

(R+1)/2
1k/21

T
k/2

− 1
k
√

(R+1)/2
1k/21

T
k/2 Ik/2 − 1

k
(2 − 1√

(R+1)/2
)1k/21Tk/2

⎤⎥⎥⎥⎥⎥⎥⎦

.

(16)

From this, the statements of the lemma follow readily by reading out the diagonal.

B.1.2 Angles

Lemma B.3 (Angles of classifiers). The following statements are true about the angles of
the classifiers.

(i) The classifiers’ angles across all majority / minority classes are all the same. That is,

∀c ≠ c′ ∈ {1, . . . , k/2} , Cos(wc,wc′) =∶ Cos(wmaj,w′
maj)

∀c ≠ c′ ∈ {k/2 + 1, . . . , k} , Cos(wc,wc′) =∶ Cos(wminor,w′
minor)

∀c ∈ {1, . . . , k/2}, c′ ∈ {k/2 + 1, . . . , k} , Cos(wc,wc′) =∶ Cos(wmaj,wminor) .

(ii) It holds that

Cos(wmaj,w′
maj) =

−2
√
R +

√
(R + 1)/2

(k − 2)
√
R +

√
(R + 1)/2

Cos(wminor,w′
minor) =

−2 +
√

(R + 1)/2
k − 2 +

√
(R + 1)/2

Cos(wmaj,wminor) = −
√

(R + 1)/2
k∥wmaj∥2∥wminor∥2

.

Proof. Recall under the SELI geometry that WTW = VΛVT . Hence, inspecting the off-
diagonal entries of the matrix computed in Equation (14) gives Statement (i) and the
following inner-product relations:

wT
majw′

maj = −
1
k
(2

√
R −

√
(R + 1)/2)

wT
minorw′

minor = −
1
k
(2 −

√
(R + 1)/2)

wT
minorwmaj = −

√
(R + 1)/2
k

.

Combine these with the norm calculations in Lemma B.1 to prove Statement (ii).

Lemma B.4 (Angles of classifiers). The following statements are true about the angles of
the embeddings.
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(i) The embeddings’ angles across all majority / minority classes are all the same. That
is,

∀c ≠ c′ ∈ {1, . . . , k/2} , Cos(hc,hc′) =∶ Cos(hmaj,h′maj)
∀c ≠ c′ ∈ {k/2 + 1, . . . , k} , Cos(hc,hc′) =∶ Cos(hminor,h′minor)

∀c ∈ {1, . . . , k/2}, c′ ∈ {k/2 + 1, . . . , k} , Cos(hc,hc′) =∶ Cos(hmaj,hminor) .

(ii) It holds that

Cos(hmaj,h′maj) =
−(R + 2)

−(R + 2) + k (R + 1 +
√
R
√

(R + 1)/2)

Cos(hminor,h′minor) =
1 −

√
2
√
R + 1

1 −
√

2
√
R + 1 + k

√
(R + 1)/2

Cos(hmaj,hminor) = −
1

∥hmaj∥2∥hminor∥2 k
√

(R + 1)/2
.

Proof. Recall under the SELI geometry that HTH = UΛUT . Hence, inspecting the off-
diagonal entries of the matrix computed in Equation (16) gives Statement (i) and the
following inner-product relations:

hTmajh′maj = −
1
k

⎛
⎝

2√
R
− 1√

(R + 1)/2
⎞
⎠

hTminorh′minor = −
1
k

⎛
⎝

2 − 1√
(R + 1)/2

⎞
⎠

hTminorhmaj = −
1

k
√

(R + 1)/2
.

Combine these with the norm calculations in Lemma B.2 to prove Statement (ii).

B.1.3 (Non)-alignment

In the previous lemmas we compute the angles between classifiers of different classes and
between embeddings of different classes. Here, we also also compute the angles between
classifiers and embeddings. Specifically, for each c ∈ [k], we compute the angle Cos(wc,hi)
for an example i ∶ yi = c that belongs to the same class. These values can be thought of as
the degree of alignment between classifiers and embeddings, as Cos(wc,hi) = 1 corresponds
to exact alignment between the two.
Lemma B.5 (Alignment of classifiers and embeddings). The following statements are true
about the degree of alignment between class-embeddings and their corresponding classifiers.

(i) The angles between majority- / minority- class embeddings and their corresponding
classifiers are all the same. That is,

∀c ∈ {1, . . . , k/2} and i ∶ yi = c, Cos(wc,hi) = Cos(wmaj,hmaj)
∀c ∈ {k/2 + 1, . . . , k} and i ∶ yi = c, Cos(wc,hi) = Cos(wminor,hminor).

(ii) It holds that

Cos(wmaj,hmaj) =
1 − 1/k

∥wmaj∥2∥hmaj∥2
(17)

Cos(wminor,hminor) =
1 − 1/k

∥wminor∥2∥hminor∥2
. (18)

Proof. The proof is immediate by recognizing that under the SELI geometry for all c ∈ [k]
and i ∶ yi = c it holds that wT

c hi = 1 − 1/k.
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B.1.4 Centering

It is easy to see that the classifiers wc, c ∈ [k] following the SELI geometry are centered,
i.e. ∑c∈[k] wc = 0. For example, we can see this from the facts that WTW = VΛVT and
VT1k = 0. See also Lemma E.1 for an alternative proof.
On the other hand, the embeddings hi, i ∈ [n] are not centered around zero in general.
Instead, it holds that

∑
i∈[n]

1
nyi

hi = 0. (19)

Note that this reduces to ∑i∈[n] hi for balanced data, but is not true otherwise. To see
(19) recall first that HTH = UΛUT . Second, check that ∑i∈[n] 1

nyi
ẑi = 0, i.e. Ẑω = 0 where

ω[i] = 1/nyi , i ∈ [n]. Thus, UTω = 0. Combining these two it follows that Hω = 0, which
gives the desired.
Now, suppose that the (NC) property also holds, i.e. the embeddings collapse to their class
means, that is,

∀i ∈ [n], hi = µyi ∶=
1
nyi

∑
j ∶yj=yi

hj .

Then, (19) implies the following about the class means:

0 = ∑
i∈[n]

1
nyi

hi = ∑
c∈[k]

1
nc
∑

i ∶yi=c
hi = ∑

c∈[k]
µc. (20)

Therefore, the class means are always centered around zero.

B.2 Illustrations and discussion on dependence on R and k

In the previous section, we derived closed-form expressions for the features describing the
SELI geometry. Here, we use these expressions to study how varying values of class-number
k and imbalance-ratio R change the geometry. We use the numerical illustration in Fig. 5 to
guide the discussion. Specifically, in Fig. 5 we compute and plot the norm ratios, alignment
and angles between embeddings and classifiers for k = 2, 4, 10, 20 classes and imbalance ratio
varying from 1 (aka balanced) to 100.

Norms. Fig. 5a shows the ratios of majority vs minority norms for both classifiers and
embeddings. The values are computed using Lemmas B.1 and B.2. For binary problems
(aka k = 2), the norm ratio is always equal to one irrespective of imbalance. For larger values
of k, the norm ratio is equal to one only for balanced classes (aka R = 1). Recall that equal
norm ratios is a feature of the ETF geometry [26]. On the other hand, for k ≠ 2 and R > 1,
the majorities have strictly larger norms for the classifiers and strictly smaller norms for the
embeddings. Thus, in general the SELI geometry is very different from the ETF geometry.
Interestingly, the difference is already evident when going from k = 2 to k = 4 classes. Also,
the change in the ratios for classifiers is more pronounced than that for embeddings, which
is changing progressively slower as k increases (see how close are the green and blue curves
in the right plot).

Alignment. Fig. 5b shows the degree to which the geometries of classifiers and embeddings
are aligned to each other. Specifically, we plot the cosine between any majority (left) /
minority (right) classifier and corresponding embeddings belonging to the same class; see
also Lemma B.5. For k = 2 and R = 1 the cosines are equal to one indicating that classifiers
and embeddings align for both majorities and minorities. This is consistent with the ETF
geometry. On the other hand, the alignment property breaks when k > 2 and R > 1. The
effect is more drastic for the minorities (right plot), while for majorities the alignment is
approximately preserved (note the y-axis scale is different in the two plots). Interestingly,
alignment is in fact favored for larger number of classes, but deteriorates with increasing R
consistently for all values of k.
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(a) Norms of classifiers and embeddings. (b) Alignment of classifiers and embeddings.

(c) Angles of classifiers and embeddings. Dashed lines are are at
−1/(k − 1).

Figure 5: Illustration of how norms and angles of the SELI geometry vary with the number of classes k
and the imbalance ratio R. The minorities fraction is set to ρ = 1/2. Unless R = 1 or k = 2, the geometry
differs from the ETF geometry. For example, majority classifiers have larger norms than minorities
(see Fig. 6a), minority classifiers are less aligned with their corresponding class mean-embeddings (see
Fig. 6b), and the angle between minority classifiers decreases (see Fig. 6c). The depicted values are
computed thanks to closed-form formulas.

Angles. Fig. 5c shows the angles between majority/majority (left), minority/minority
(center), and minority/majority (right) for both classifiers (top) and embeddings (bottom).
The values are computed using Lemmas B.3 and B.4. For binary problems (aka k = 2),
there is only one majority and one minority class. Thus, we only plot the minority/majority
cosines, which are always equal to −1/(k − 1) irrespective of imbalance. For larger values of
k, the cosines are equal to that same value −1/(k − 1) only for balanced classes (aka R = 1).
Recall that cosine value equal to −1/(k − 1) is a unique feature of the ETF geometry. On the
other hand, for k ≠ 2 and R > 1, the cosines are different. For reference, we plot the values
of −1/(k − 1) in dashed lines. For the classifiers, the majority angles increase, while the
minority angles decrease. The rate of change is more drastic for minorities. In both cases,
the rate of change across R is more pronounced for smaller k. The majority-minority angles
also increase with R. The trend is reversed for embeddings. For example, the angles between
minority embeddings become larger with increasing R. Again, the effect of imbalance (at
least for the values of R shown) is more pronounced here for smaller values of k.

B.3 Special cases

B.3.1 Balanced classes and binary classification

The following result follows directly by combining Lemmas B.1, B.2, B.3, B.4 and B.5.
Corollary 2.3 (k = 2 or R = 1: (SELI)≡(ETF)). Assume k = 2 or R = 1. The following
hold.
∥w1∥2 = . . . = ∥wk∥2 and ∥h1∥2 = . . . = ∥hn∥2 ,

∀c ≠ c′ ∈ [k], Cos(wc,w′
c) = −1/(k − 1) and ∀i ≠ i′ ∈ [n], Cos(hi,h′i) = −1/(k − 1) ,

∀c ∈ [k], i ∶ yi = c, Cos(wc,hi) = 1.
Thus, the SELI geometry is same as the ETF geometry in balanced and in binary classification.
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(a) Norms of classifiers and embeddings. (b) Alignment of classifiers and embeddings.

(c) Angles of classifiers and embeddings. Dashed lines show the value
−1/(k − 1) characterizing the ETF geometry.

Figure 6: Same setting as Figure 5. Here emphasizing asymptotic behaviors as R → ∞. For limit
calculations see Corollary 2.4.

B.3.2 Asymptotics

We can also use the results of Sec. B.1 to understand the SELI geometric features asymp-
totically as R increases. These are included in Corollary 2.4 below. See also Fig. 6 for a
numerical illustration of the limiting behavior for large imbalance ratios.
Corollary 2.4 (R →∞). Fix even k > 2. Then, the following limits hold.

(i) limR→∞
∥wmaj∥2

2
∥wminor∥2

2
= 1 + (k − 2)

√
2

(ii) limR→∞
∥hmaj∥2

2
∥hminor∥2

2
= 0

(iii) limR→∞ Cos(wmaj,w′
maj) = −4+

√
2√

2+2(k−2)

(iv) limR→∞ Cos(wminor,w′
minor) = 1

(v) limR→∞ Cos(wmaj,wminor) = − 1√√
2+2(k−2)

(vi) limR→∞ Cos(hmaj,h′maj) = 1
k(1+

√
2/2)−1

(vii) limR→∞ Cos(hminor,h′minor) = − 2
k−2

(viii) limR→∞ Cos(hmaj,hminor) = 0

(ix) limR→∞ Cos(wmaj,hmaj) = k−1√
k+

√
2−2

√
k+

√
2/2−2

(x) limR→∞ Cos(wminor,hminor) = 0

Proof. The expressions that appear in the lemmas in Sec. B.1 hold for any value of R. Take
the limit of R →∞ to yield the expressions above. We omit the details for brevity.
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Several interesting conclusions are immediate from the formulas above. For example, State-
ment (iv) shows that, asymptotically in R, the minority classes collapse to the same vector.
This is a manifestation of the minority collapse phenomenon discovered by Fang et al.
[3]. Asymptotic minority collapse had not been shown before for the UF-SVM. See also
Sec. H for an extended discussion. We note that beyond minority classifiers, Corollary 2.4
is further conclusive about the behavior of majority classifiers, as well as, minority and
majority embeddings. For example, Statement (viii) suggests that the minority and majority
embeddings become orthogonal to each other asymptotically. Further investigations of the
validity of such asymptotic conclusions in deep-net training is beyond our scope.

C Proofs for UF-SVM Section 3

C.1 Proof of Theorem 1

We consider a relaxation of the non-convex SVM in (2) by setting

X = [W
T

HT ] [W H] = [W
TW WTH

HTW HTH ] ∈ R(k+n)×(k+n). (21)

With this consider the following semidefinite program:

q∗ = min
X⪰0

1
2

tr (X) (22)

sub. to X[yi, k + i] −X[c, k + i] ≥ 1, ∀i ∈ [n], c ≠ yi.
It is not hard to see that q∗ ≤ p∗. In what follows, we will compute the optimal set of (22)
and use this to show that the relaxation is in fact tight. This will allow us to characterize
the solution of the original problem.

Dual of the convex relaxation: The optimization in (22) is convex and satisfies Slater’s con-
ditions. (Since constraints are affine, it suffices to check feasibility, which is easily verified.)
Hence, strong duality holds and KKT conditions are necessary and sufficient for optimality.
The dual of (22) is written as follows:

d∗ = max
{ai,c}i∈[n],c≠yi

∑
i∈[n]

∑
c≠yi

αic (23)

sub. to [Ik AT

A In
] ⪰ 0

αic ≥ 0, i ∈ [n], c ≠ yi, ∀i ∈ [n] ∶ A[i, c] = {−∑c′≠yi αic′ , yi = c,
αic, yi ≠ c.

Also, the complementary slackness conditions are

[Ik AT

A In
]X = 0 and ∀i ∈ [n], c ≠ yi ∶ αic(1 −X[yi, k + i] +X[c, k + i]) = 0. (24)

Instead of working with the dual in the above standard form, it is convenient to work with
an alternative representation by (re)-defining dual variables βic, i ∈ [n], c ∈ [k] such that 4

βic = {∑c′≠yi αic′ , yi = c,
−αic, yi ≠ c.

(25)

Specifically, arrange these new dual variable representations in a matrix B ∈ Rn×k with
entries B[i, c] = βic, i ∈ [n], c ∈ [k] and recall the SEL matrix Ẑ ∈ Rk×n in Definition 2. With

4The same re-parameterization trick, but for a simpler (convex) max-margin program was used by
Wang et al. [35].
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these, we can rewrite the dual in (23) in the following more convenient form:

d∗ = max
B∈Rn×k

tr(ẐB) (26)

sub. to [ Ik −BT

−B In
] ⪰ 0

∀i ∈ [n] ∶ B[i, yi] = − ∑
c≠yi

B[i, c]

B⊙ ẐT ≥ 0 . (27)
Analogously, the complementary slackness conditions in (24) are equivalent to the following:

[ Ik −BT

−B In
]X = 0 and ∀i ∈ [n], c ≠ yi ∶ B[i, c] (1 −X[yi, k + i] +X[c, k + i]) = 0. (28)

To see the equivalence of the objective of (26) denote A = ∑i∈[n]∑c≠yi αic the objective in
(23) and note that we get simultaneously A = ∑i∈[n] βiyi = ∑i∈[n]∑c≠yi ( − βic) following the
definition in Equation (25). Then, we have A = k−1

k
A + 1

k
A = ∑i∈[n]∑c∈[k] ẑicβic = tr (ẐB).

Solution to the dual: To continue, we consider the following relaxation of the dual problem
(26) (by removing the constraint in Equation (27)):

d̂ = max
B∈Rn×k

tr(ẐB) sub. to ∥B∥2 ≤ 1 and B1k = 0. (29)

Here, recall that ∥B∥2 denotes the spectral norm, hence the first constraint is equivalent
to the first constraint in the maximization in (26) by Schur-complement argument. Using
standard arguments, it can be shown that d̂ ≤ ∥Ẑ∥∗ and equality holds by setting

B̂ = UVT , (30)

where we recalled the compact SVD Ẑ = VΛUT . It is also not hard to see that B̂ is feasible
in (29) (recall here that VT1k = 0). Hence, B̂ is a maximizer and d̂ = ∥Ẑ∥∗. The following
lemma, the proof of which we defer to the end of this section, proves something stronger: B̂
is in fact the only maximizer in (29).
Lemma C.1. The optimal cost of the maximization in (29) is ∥Ẑ∥∗ and B̂ = UVT is its
unique maximizer.

Next, we use Lemma C.1 to show that B̂ also satisfies the inequality constraints in (27).
To do this, we use an explicit construction of the singular factors U and V presented in
Sec. A.2, which is possible thanks to the special structure of Ẑ. Specifically, we prove in
Lemma A.3 that

B̂⊙ ẐT = (UVT ) ⊙ ẐT > 0. (31)

Hence, B̂ is feasible in (26). In fact, the feasibility inequalities are strict, which we will use
soon. For now, note that feasibility of B̂ in (26) guarantees that it is its unique maximizer
(since it is the unique maximizer of the program’s relaxation, as established in Lemma C.1.)
Therefore,

d∗ = d̂ = ∥Ẑ∥∗ , (32)

and B̂ in (30) is dual optimal for the semidefinite program in (22).

Solution to the primal relaxation: By strong duality, this implies q∗ = d∗ = ∥Ẑ∥∗ and that

any primal minimizer X̂ = [X̂11 X̂12
X̂T

12 X̂22
] satisfies the complementary slackness conditions in

(28) with B = B̂, i.e.,

∀i ∈ [n], c ≠ yi ∶ X̂12[yi, i] − X̂12[c, i] − 1 = 0 (33)
X̂11 − B̂T X̂T

12 = X̂12 − B̂T X̂22 = −B̂X̂12 + X̂22 = 0 . (34)
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In (33) we used from (31) that inequalities are strict; thus, βic > 0 for all i ∈ [n], c ≠ yi. Now,
from (34) it follows that

X̂11 = B̂T X̂T
12, X̂22 = B̂X̂12, X̂12 = B̂T X̂22 .

Combining the last two equations shows
(In − B̂B̂T )X̂22 = 0 Ô⇒ (In −UUT )X̂22 = 0 Ô⇒ X̂22 = UDUT ,

Ô⇒ X̂12 = B̂T X̂22 = VDUT and X̂11 = B̂T X̂T
12 = VDVT

for some (k-1)–dimensional matrix D ∈ R(k−1)×(k−1).

Next, we will use X̂12 = VDUT in (33) to compute D. For convenience denote ek,c ∈ Rk the
c-th standard basis vector in Rk and en,i ∈ Rn the i-th standard basis vector in Rn. Then,
starting with (33), we get the following chain of implications:

∀i ∈ [n], c ≠ yi ∶ (ek,yi − ek,c)TVDUTen,i = 1 (35)
(∑c≠yi ⋅)Ô⇒ ∀i ∈ [n] ∶ ((k − 1)ek,yi − (1k − ek,yi))

TVDUTen,i = k − 1

Ô⇒ ∀i ∈ [n] ∶ (kek,yi − 1k)
TVDUTen,i = k − 1

(VT 1k=0)
Ô⇒ ∀i ∈ [n] ∶ eTk,yiVDUTen,i = 1 − 1/k

(35)
Ô⇒ ∀i ∈ [n] ∶ eTk,yiVDUTen,i = 1 − 1/k and eTk,cVDUTen,i = −1/k, c ≠ yi

Specifically, the last equation written in matrix form gives 5

VDUT = Ẑ Ô⇒ D = VT ẐU Ô⇒ D = Λ, (36)
where the second and third equalities used VTV = UTU = Ik−1.

To conclude, we have shown that any optimal point X̂ of (22) satisfies

X̂ = [VU]Λ [VT UT ] . (37)

Solving the original problem: Now, we show that the convex relaxation in (22) is tight. For
some partial orthonormal matrix R ∈ R(k−1)×d (recall that d ≥ k − 1) with RRT = Ik−1, let

Ŵ = RTΛ1/2VT and Ĥ = RTΛ1/2UT . (38)

By construnction ŴT Ĥ = X̂12. Hence, (Ŵ, Ĥ) is feasible in (2). Thus, p∗ ≤ 1
2∥Ŵ∥2

F +
1
2∥Ĥ∥2

F = 1
2 tr(X̂) = q∗. But, we have already argued that p∗ ≥ q∗. Hence, p∗ = q∗.

Take now any minimizer (Ŵ, Ĥ) of the original problem (2). By feasibility of (Ŵ, Ĥ), the

matrix Ω ∶= [Ŵ
T

ĤT ] [Ŵ Ĥ] is feasible in (22). Also, 1
2 tr(Ω) = 1

2∥Ŵ∥2
F + 1

2∥Ĥ∥2
F = p∗. But,

p∗ = q∗. Hence, 1
2 tr(Ω) = q∗, which implies that Ω is optimal. It must then be from (37)

that
[Ŵ

T

ĤT ] [Ŵ Ĥ] = Ω = X̂ = [VU]Λ [VT UT ] .

This completes the proof of the theorem.

Proof of Lemma C.1: It only remains to prove Lemma C.1, which we do here. Any feasible
B satisfies ∥B∥2 ≤ 1. Hence, also recalling that Ẑ has rank k − 1 (because VT1k = 0):

tr(ẐB) =
k−1
∑
i=1

Λ[i, i](uTi Bvi) ≤
k−1
∑
i=1

Λ[i, i] = ∥Ẑ∥∗. (39)

5Note that the derivation and conclusion following (35) is general. Specifically, the display above
shows that Ẑ is the only k × n matrix for which it holds simultaneously that Z[yi, i] − Z[c, i] =

1,∀i ∈ [n], c ≠ yi and 1TkZ = 0.
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The inequality above is tight if and only if

∀i ∈ [k − 1] ∶ εi ∶= uTi Bvi = 1, (40)

which is indeed satisfied by B̂ = UVT . Clearly, B̂ is also feasible. Hence, B̂ is a maximizer
of (29).

Next, we will show that there is no other maximizer, say B̃. Indeed, since B̃ is optimal, it
must satisfy (40). Hence, it has rank at least k−1. But since B̃1k = 0, we find that B̃ has rank
exactly k − 1. Let B̃ = UBΣBVT

B be its compact SVD and denote σi ∶= ΣB[i, i], i ∈ [k − 1]
its singular values. Finally, define (k − 1) × (k − 1) matrices

P = UT
BU and Q = VT

BV (41)

with columns pi,qi, i ∈ [k − 1]. By Equation (40) we have the following chain of inequalities
for all i ∈ [k − 1]:

1 = uTi Bvi = pTi ΣBqi = ∑
j∈[k−1]

σjpi[j]qi[j] ≤ ∑
j∈[k−1]

σj ∣pi[j]qi[j]∣

≤ ∑
j∈[k−1]

∣pi[j]qi[j]∣ ≤ ∥pi∥2∥qi∥2 ≤ 1.

Inspecting this, we note that all inequalities must be equalities. The first inequality in the
second line follows because ∥B̃∥2 ≤ 1 Ô⇒ ∀j ∈ [k−1] ∶ σj ≤ 1. Hence, σj = 1 for all j ∈ [k−1].
Equivalently ΣB = Ik−1. The second inequality in that same line is Cauchy-Schwarz and
equality implies

∀i ∈ [k − 1] ∶ pi = ±qi. (42)

The last inequality follows because

∥pi∥2 = ∥UT
Bui∥2 ≤ ∥UB∥2∥ui∥2 ≤ 1 and ∥qi∥2 = ∥VT

Bvi∥2 ≤ ∥VB∥2∥vi∥2 ≤ 1. (43)

Since UB (resp. VB) has orthonormal columns, equality in (43) holds if and only if for all
i ∈ [k − 1], ui (resp. vi) is a column of UB (resp. VB). Then, it must be that P and Q are
permutation matrices. Combined with (42) this gives

P = Q = Π Ô⇒ UT
BU = VT

BV = Π (44)

for some permutation matrix Π. Continuing from this,

UT
BUΠT = VT

BVΠT = Ik−1 Ô⇒ UB = UΠT and VB = VΠT .

Putting things together, we conclude that

B̃ = UBΣBVT
B = UBVT

B = UΠTΠVT = UVT = B̂.

This concludes the proof of the lemma.

C.2 Proofs of Corollaries 1.1, 1.2, 1.3 and of Lemma 3.1

The proofs of the rest of the results of Sec. 3 are presented in the following sections.

• Corollary 1.1: See paragraph below the statement of the corollary in Sec. 3.1.
• Corollary 1.2: As already mentioned in Sec. 3.1 this is nothing but a reformulation

of Theorem1(i)–(ii) in view of Definition 3 of the SELI property.
• Corollary 1.3: See Corollary 2.3 in Sec. B.
• Lemma 3.1: See Lemma B.1 in Sec. B.
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C.3 On different regularization hyperparameters between embeddings and
classifiers

Thus far in our analysis of the UFM, we assumed same regularization strength λ for the
embeddings and classifiers; see Eqn. (1). Here, we discuss a slight generalization allowing
different regularizations λW and λH for the classifiers and embeddings, respectively. This
is motivated by previous studies of the UFM in the literature, e.g. [41]. As we show, this
modification does not change the SELI geometry modulo a relative scaling factor between
the embeddings and classifiers.
Concretely, consider the following slight generalization version of Eqn. (1):

(Ŵ(λW ,λH), Ĥ(λW ,λH)) ∶= arg min
W,H

L(WTH) + λW
2

∥W∥2
F +

λH
2

∥H∥2
F ,

which can be more conveniently reparameterized as follows:

(Ŵ(λW ,λH), Ĥ(λW ,λH)) ∶= arg min
W,H

L(WTH) +
√
λWλH ( 1

2β
∥W∥2

F +
β

2
∥H∥2

F) ,

where β ∶=
√

λH
λW

and λH , λW > 0. Now, consider the limit of vanishing regularization
λW → 0, λH → 0, with a fixed finite and non-zero ratio β2 = λH/λW . Entirely analogous to
Eqn. (2), this leads to the a β-parameterized UF-SVM as follows:

(Ŵβ , Ĥβ) ∈ arg min
W,H

1
2β

∥W∥2
F +

β

2
∥H∥2

F sub. to (wyi −wc)Thi ≥ 1, i ∈ [n], c ≠ yi.
(45)

Note that the UF-SVM we study in Eqn. (2) is a special case of the above for β = 1. For
general values of β > 0, it is not hard to see that there is a one-to-one mapping of global
solutions (Ŵβ , Ĥβ) of (45) to global solutions (Ŵβ , Ĥβ) of (2) as follows:

(Ŵβ , Ĥβ) = (
√
βŴ,

1√
β

Ĥβ).

Hence, from Theorem 1, it follows that the solutions of (45) satisfy for any β > 0 the following:

ŴT
β Ĥβ = Ẑ, ĤT

β Ĥβ =
1
β

UΛUT , and ŴT
β Ŵβ = βVΛVT .

Therefore, different regularization between embeddings and classifiers only affects the geom-
etry of global minimizers of the corresponding UF-SVM (i.e., at vanishing regularization)
up to introducing an extra scaling factor between the Gram matrices of embeddings and
classifiers. Specifically, this only affects the relative scaling between the norms of embeddings
and classifiers.

D Nuclear-norm relaxations of the UFM

In this section, we gather useful properties of the nuclear-norm-regularized CE minimization
(7), repeated here for convenience:

Ẑλ = arg min
Z
L(Z) + λ∥Z∥∗ .

These properties are useful in the proof of the results that appear in Sec. 4. As a reminder,
the nuclear-norm-regularized CE minimization is relevant to us because of Theorem 2, i.e. it
forms a tight convex relaxation of the non-convex ridge-regularized CE-minimization for the
UFM.
The following lemma gathers some basic properties, which we use later to study the behavior
of the solutions to (7) for different regularization strengths.
Lemma D.1 (Basic properties of (7)). The following statements are true.

(i) There is a unique minimizer Ẑλ.
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(ii) Ẑλ satisfies the following necessary and sufficient first-order optimality conditions:

∇ZL(Ẑλ)Uλ = −λVλ, (∇ZL(Ẑλ))
T

Vλ = −λUλ, ∥∇ZL(Ẑλ)∥2 ≤ λ. (46)

where, Ẑλ = VλΛλUT
λ is its compact SVD.

(iii) It holds 1TkVλ = 0. Thus also, 1Tk Ẑλ = 0.

Proof. We prove each statement separately below.

Proof of (ii): This is straightforward from first-order optimality of the convex program (7).
For example, see [41, Lemma C.3] for details.

Proof of (iii): Start from Statement (ii) and use from Lemma A.2 that 1Tk∇ZL(Ẑλ) = 0.
Then, it must then be that 1TkVλ = 1

λ
1Tk∇ZL(Ẑλ)Uλ = 0, which in turn implies 1Tk Ẑλ = 0.

Proof of (i): Now, we prove that Ẑλ is unique. This is a consequence of Lemma D.2 stated
below and the fact that L(Z) = L(Z) = ∑i∈[n] log (1 +∑c≠yi e−(Z[yi,i]−Z[c,i])) = ∑i∈[n] `yi(zi)
where zi are the columns of Z. Specifically, suppose there were two minimizers Ẑλ =
[z1, . . . ,zn] and Ẑλ + ∆ for ∆ = [δ1, . . . ,δn] ≠ 0. From Statement (iii), it must be that
1Tk∆ = 0. Thus, there exists j ∈ [n] such that (Ik − 1

k
1k1

T
k )δj ≠ 0. With these, we have from

Lemma D.2 that

L(Ẑλ +∆) = `yj(zj + δj) +∑
i≠j
`yi(zi + δi)

> `yj(zj) + (∇z`yj(zj))
T
δj +∑

i≠j
`yi(zi) +∑

i≠j
(∇z`yi(zi))

T
δi

= L(Ẑλ) + tr ((∇ZL(Ẑλ))
T∆) = L(Ẑλ),

where the last equality uses optimality of Ẑλ. The above display contradicts optimality of
Ẑλ +∆ and completes the proof.

Lemma D.2 (Auxiliary result—Strict convexity of CE). For some y ∈ [k] and z =
[z1, . . . , zk], let `y(z) ∶= log (1 +∑c≠y e−(z[y]−z[c])). The function `y is strictly convex along
any direction on the (k − 1)-dimensional subspace orthogonal to 1k. That is, for all non-zero
v ∈ Rk such that (Ik− 1

k
1k1

T
k )v ≠ 0, it holds for all z ∈ Rk that `y(z+v) > `y(z)+(∇z`y(z))

Tv.

Proof. Define univariate function g(t) = `y(z + tv). From Taylor’s expansion, for some
θ ∈ (0,1)

`y(z + v) = `y(z) + (∇z`y(z))
Tv + 1

2
vT∇2

z`y(z + θv)v.

Hence, it will suffice showing that vT∇2
z`y(z)v > 0 for any z. Denote for convenience

vector a ∈ Rk with a[c] ∶= e−(z[y]−z[c])

1+∑c′≠y e−(z[y]−z[c′]) for all c ∈ [k]. From Lemma A.2, we have
∇z`y(z) = −ey + a. Thus, a straightforward calculation yields ∇2

z`y(z) = diag(a) − aaT . For
the sake of contradiction assume vT∇2

z`y(z)v = 0. Then, since ∑c∈[k] a[c] = 1 and a[c] ≥ 0,
it must be from Cauchy-Schwartz:

∑
c

v[c]2a[c] = (∑
c

v[c]a[c])
2
≤ (∑

c

v[c]2a[c])
2
(∑
c

a[c])
2
= ∑

c

v[c]2a[c]

that v = Ca. But then, vT1k = 0, which violates the lemma’s assumption.
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D.1 Large λ

Lemma D.3 (Large λ behavior of (7)). The minimizer is zero, i.e. Ẑλ = 0, if and only if
λ ≥ ∥Ẑ∥2, where Ẑ is the SEL matrix.

Proof. From the KKT conditions in Lemma D.1(ii), Ẑλ = 0 is optimal if and only if
∥∇ZL(0)∥2 ≤ λ. The key observation here is that ∇ZL(0) = Y − 1

k
1k1

T
n = Ẑ. (See Lemma

A.2 for a formula evaluating the gradient.) Thus, ∥∇ZL(0)∥2 = ∥Ẑ∥2, which completes the
proof.

We note that, for (R,ρ)-STEP imbalance the necessary and sufficient condition of the lemma
for Ẑλ = 0 becomes λ ≥ ∥Ẑ∥2 =

√
R (see Lemma A.3.)

D.2 Small λ

Lemma D.4 (Small λ behavior of (7)). If λ < 1
2 , then Ẑλ is such that it linearly separates

the data, i.e. it holds Ẑλ[yi, i] − Ẑλ[c, i] > 0 for all i ∈ [n], c ≠ yi.

Proof. For the sake of contradiction assume λ < 1/2 and there exists j ∈ [n] and c ≠ yj such
that Ẑλ[yj , j] − Ẑλ[c, j] ≤ 0. Denote G = ∇ZL(Ẑλ) the gradient. From KKT conditions in
Lemma D.1(ii), it must be that

∥G∥2 ≤ λ < 1/2. (47)
A simple calculation (e.g., see Lemma A.2) gives ∣G[yj , j]∣ = 1 − 1

1+∑c′≠yj e
−(Ẑλ[yj,j]−Ẑλ[c′,j])

.

But, from assumption on j, c:

1 + ∑
c′≠yj

e−(Ẑλ[yj ,j]−Ẑλ[c′,j]) = 1 + e−(Ẑλ[yj ,j]−Ẑλ[c,j]) + ∑
c′/∈{yj ,c}

e−(Ẑλ[yj ,j]−Ẑλ[c′,j]) ≥ 2.

Hence, ∣G[yj , j]∣ ≥ 1/2. Since ∥G∥2 ≥ ∣G[yj , j]∣, this in turn implies that ∥G∥2 ≥ 1/2, which
contradicts (47).

In Sec. H we combine Theorem 2 with Lemma D.4 above to show that the solution (Ŵλ, Ĥλ)
of (1) cannot satisfy the minority collapse property.

D.3 Vanishing λ

Proposition 3 (Vanishing λ behavior of (7)). Assume (R,ρ)-STEP imbalance. Then

lim
λ→0

Ẑλ
∥Ẑλ∥∗

= Ẑ
∥Ẑ∥∗

, (48)

where Ẑ is the SEL matrix.

The proposition is an extension of [28, Theorem 3.1] to nuclear-norm regularization. Its
proof follows the exact same steps as in Rosset et al. [28] who studied `p-regularization. The
critical observation allowing this is that Ẑ is the unique minimizer of (2) thanks to Theorem
1. Because of that, we can get the following max-margin formulation for (the normalized) Ẑ,
which is key in the proof of Proposition 3.
Lemma D.5. Assume (R,ρ)-STEP imbalance so that Ẑ is the unique solution of (2) (see
Theorem 1). Then, it holds that

Ẑ
∥Ẑ∥∗

∶= arg max
∥Z∥∗≤1

min
i∈[n],c≠yi

Z[yi, i] −Z[c, i]. (49)

We present the proof of Proposition 3 together with the proof of Lemma D.5 in the next
section.
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D.3.1 Proof of Proposition 3

First, by KKT conditions (see Lemma D.1(ii)), as λ → 0, we have ∥∇L(Ẑλ)∥2 → 0. This,
in turn, implies ∥∇L(Ẑλ)∥∗ → 0 since ∥∇L(Ẑλ)∥∗ ≤ (k − 1)∥∇L(Ẑλ)∥2. Moreover, it implies
that

mλ ∶= min
i∈[n],c≠yi

Ẑλ[yi, i] − Ẑλ[c, i]

diverges. To see this, denote Gλ ∶= ∇L(Ẑλ) and note from Lemma A.2 that for all i ∈ [n]
Gλ[yi, i] ∶= −(1 + 1/∑c≠yi e−(Ẑλ[yi,i]−Ẑλ[c,i]))−1. But,

∥∇L(Ẑλ)∥2 ≥ max
i∈[n]

∣Gλ[yi, i]∣ = max
i∈[n]

(1 + 1/ ∑
c≠yi

e−(Ẑλ[yi,i]−Ẑλ[c,i]))−1 ≥ (1 + emλ)−1

Ô⇒ mλ ≥ log (∥∇L(Ẑλ)∥−1
2 − 1).

Thus, ∥∇L(Ẑλ)∥2 → 0 Ô⇒ mλ → +∞.

Assume for the sake of contradiction that limλ→0
Ẑλ

∥Ẑλ∥∗
= Z̃ for Z̃ ≠ Ẑ/∥Ẑ∥∗. Then, by Lemma

D.5, it must be that

m = min
i∈[n],c≠yi

Z̃[yi, i] − Z̃[c, i] < 1
∥Ẑ∥∗

min
i∈[n],c≠yi

Ẑ[yi, i] − Ẑ[c, i] =∶m∗.

Moreover, since mλ → +∞, we also have that m > 0. The rest of the argument follows mutatis-
mutandis the proof of [28, Theorem 2.1]. We repeat here for completeness. By continuity of
the minimum margin in Z, there exists open neighborhood of Z̃ on the nuclear-norm sphere:

NZ̃ ∶= {Z ∶ ∥Z∥∗ = 1, ∥Z − Z̃∥2 ≤ δ}

and an ε > 0 such that mini∈[n],c≠yi Z[yi, i] −Z[c, i] <m∗ − ε for all Z ∈ NZ̃. To continue, we
use the following lemma
Lemma D.6. Assume Z1,Z2 such that ∥Z1∥∗ = ∥Z2∥∗ = 1 and

0 <m2 = min
i∈[n],c≠yi

Z2[yi, i] −Z2[c, i] < min
i∈[n],c≠yi

Z1[yi, i] −Z1[c, i] =m1.

Then, there exists T ∶= T (m1,m2) such that

∀t > T ∶ L(tZ1) < L(tZ2).

By Lemma D.6, there exists T ∶= T (m∗,m∗ − ε) such that for all t > T and all Z ∈ NZ̃,
L(tẐ/∥Ẑ∥∗) < L(tZ). Therefore, Z̃ cannot be a convergence point of Ẑλ/∥Ẑλ∥∗.
We finish the proof by showing how to get Lemmas D.5 and D.6.

Proof of Lemma D.5. Clearly, Ẑ
∥Ẑ∥∗

is feasible in (49). Thus,

max∥Z∥∗≤1 mini∈[n],c≠yi Z[yi, i] − Z[c, i] ≥ 1/∥Ẑ∥∗. Now, suppose there exists Z̃ ≠ Ẑ
∥Ẑ∥∗

such that ∥Z̃∥∗ ≤ 1 and is a maximizer in the max-min problem in (49). Then,
mini∈[n],c≠yi Z̃[yi, i] − Z̃[c, i] ≥ 1/∥Ẑ∥∗. This means, ∥Ẑ∥∗Z̃ is feasible in (2). But then it
must be optimal therein since ∥∥Ẑ∥∗Z̃∥∗ = ∥Ẑ∥∗∥Z̃∥∗ ≤ ∥Ẑ∥∗. From Theorem 1, Ẑ is the
unique minimizer of (49). Thus, we have shown that ∥Ẑ∥∗Z̃ = Ẑ, which contradicts the
assumption on Z̃ and completes the proof.
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Proof of Lemma D.6. Define ε ∶= m1/m2 − 1 > 0 and let T large enough such that
e−Tεm2n(k − 1) < 1/2. We then have the following chain of inequalities for t > T

L(tZ1) = ∑
i∈[n]

log
⎛
⎝

1 + ∑
c≠yi

e−t(Z1[yi,i]−Z1[c,i])⎞
⎠
≤ n log(1 + (k − 1)e−tm1)

≤ n(k − 1)e−tm1 = n(k − 1)e−t
m1
m2

m2 = n(k − 1)e−t εm2e−tm2

< n(k − 1)e−T εm2e−tm2

< e
−tm2

2
≤ e−tm2

1 + e−tm2

≤ log(1 + e−tm2)
≤ L(tZ2).

The inequality in the third line used that t > T and ε > 0,m2 > 0. The next inequality follows
by our choice of T . Throughout, we also used both sides of the inequality x

1+x ≤ log(1 + x) ≤
x,x ≥ 0.

E Proofs for Regularized CE Section 4

E.1 Proof of Theorem 2

As mentioned in Remark 4.1 the theorem is drawn from [41, Theorem 3.2] with the following
three small adjustments. Since the main proof argument remains essentially unaltered, we
refer the reader to [41, Sec. C] for detailed derivations. Instead here, we only overview the
necessary adjustments.
First, Theorem 2 holds for imbalanced classes. Technically, Zhu et al. [41] only consider
balanced data. However, a close inspection of their proof shows that such a restriction is not
necessary.
Second, Theorem 2 further shows that the nuclear-norm CE minimization in (7) has a unique
solution. We prove this in Lemma D.1(i) in Sec. D.
Finally, Theorem 2 relaxes an assumption d > k in [41, Theorem 3.2] to d > k − 1. (In fact,
Zhu et al. [41] conjecture that this relaxation is possible. We close the gap.) The assumption
d > k is only used by Zhu et al. [41] to show there exists nonzero a ∈ Rd such that ŴT

λa = 0
for a stationary point (Ŵλ, Ĥλ) of (1). (This step is necessary to construct a negative
curvature direction at stationary points for which ∥∇ZL(ŴT

λ Ĥλ)∥2 > λ; see [41, Sec. C.1].)
Indeed, if d > k, then existence of a is guaranteed because Ŵλ has k columns implying
rank(Ŵλ) ≤ k. To relax this requirement to d > k − 1, we show in Lemma E.1 below that
Ŵλ1k = 0. Hence, rank(Ŵλ) ≤ k − 1.
Lemma E.1. Let Ŵλ, Ĥλ be a stationary point of (1). Then, Ŵλ1k = 0. Similarly, any
global minimizer (Ŵ, Ĥ) of (2) is such that Ŵ1k = 0.

Proof. If (Ŵλ, Ĥλ) is a stationary point of (1) and we denote Ẑλ = ŴT
λ Ĥλ, then by

stationarity condition and Lemma A.2:

∇WL(ŴT
λ Ĥλ) = −λŴλ Ô⇒ Ĥλ (∇ZL(Ẑλ))

T = −λŴλ

(Lem. A.2)
Ô⇒ Ŵλ1 = 0. (50)

Next, consider any global minimizer of (2). For the sake of contradiction assume that
w̄ ∶= 1

k ∑c∈[k] ŵc ≠ 0, that is ∥w̄∥2 > 0. Consider the pair (V, Ĥ) where the columns of V
are defined each such that vc = ŵc − w̄. Clearly, the new pair is feasible, since (Ŵ, Ĥ) is
feasible. But,

∑
c∈[k]

∥vc∥2 = ∑
c∈[k]

∥wc∥2 + k∥w̄∥2 − ⟨w̄, ∑
c∈[k]

wc⟩ = ∑
c∈[k]

∥wc∥2 − k∥w̄∥2 < ∑
c∈[k]

∥wc∥2,

which contradicts optimality of (Ŵ, Ĥ). Hence, it must be that w̄ = 0.
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E.2 Proof of Proposition 1

We prove the proposition right below its statement in Sec. 4.2. The only remaining thing to
show is that for R > 1 and k > 2, not all eigenvalues of the SEL matrix are same. This follows
immediately from Lemma A.3 in Sec. A.2. Specifically, we show in (9), that if R > 1 and
k > 2, then the maximum eigenvalue of Λ is

√
R and the minimum one is 1 (thus, different).

E.3 Proof of Proposition 2

The proposition follows by combining Propisition 3 and Theorem 2. First, thanks to Theorem
2, for all λ > 0:

ŴT
λ Ĥλ

∥Ŵλ∥2
F /2 + ∥Ĥλ∥2

F /2
= Ẑλ

∥Ẑλ∥∗
,

where Ẑλ is the solution to (7). Here, we used the fact from Equation (8) that

∥Ŵλ∥2
F+∥Ĥλ∥2

F = tr(ŴT
λŴλ)+tr(ĤT

λ Ĥλ) = tr(VλΛλVT
λ )+tr(UλΛλUT

λ ) = 2 tr(Λλ) = 2∥Ẑλ∥∗.
Next, from Proposition 3

lim
λ→0

Ẑλ
∥Ẑλ∥∗

= Ẑ
∥Ẑ∥∗

.

The desired follows by combining the above two displays.

E.4 Comparison to one-layer linear model

In Sec. 4.4, we compared the solution to the non-convex minimization (1), corresponding to
a two-layer linear model, to the solution found by an one-layer linear model. Specifically, the
one-layer linear model trains k-class linear classifier Ξk×n by solving the following convex
ridge-regularized CE:

min
Ξ
L(Ξ) + λ

2
∥Ξ∥2

F . (51)

The following lemma computes the solution of this minimization.
Lemma E.2 (Linear model: Ridge-regularized CE). Let Ξ̂λ denote the solution of the convex
ridge-regularized CE minimization. Irrespective of imbalances, for all λ > 0, there exists
αλ > 0 such that Ξ̂λ = αλẐ. Moreover, in the limit of λ→ 0, limλ→0 Ξ̂λ/∥Ξ̂λ∥F = Ξ̂0/∥Ξ̂0∥F ,
where

Ξ̂0 ∶= arg min
Ξ

∥Ξ∥2 sub. to Ξ[yi, i] −Ξ[c, i] ≥ 1, ∀i ∈ [n], c ≠ yi. (52)

In fact, the solution to (52) is the SEL matrix, i.e., Ξ̂0 = Ẑ.

According to the lemma above, the one-layer linear model always finds the SEL matrix:
irrespective of imbalances and for any value of λ (including vanishing ones). On the other
hand, by Proposition 1, we know that the end-to-end models minimizing ridge-regularized
CE for a two-layer linear network correspond to the SEL matrix only if data are balanced,
or there is two classes, or regularization is vanishing. Specifically, the solution is different
when k > 2, R = 1 and λ > 0.
It is also worth noting the following connection between the one- and two-layer models.
Thanks to the convex relaxation of Theorem 2 the end-to-end model WTH found by the
two-layer model solves CE minimization with nuclear norm minimization (cf. (7)) compared
to the ridge regularization in (51). Correspondingly, for vanishing regularization, the two-
layer model corresponds to the “nuclear-norm SVM” in (5) compared to the vanilla SVM in
(52). Notably, Theorem 1 proves that the solution to the former is always Ẑ, i.e., the same
as that of the latter.

Proof of Lemma E.2. The minimization in (51) is convex. Hence, it suffices to prove there
exists αλ such that that ∇ZL(αλẐ) + λαλẐ = 0. Thanks to Lemma A.1(v), it suffices that
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Figure 7: SGD solution with ridge-regularized CE converging to (Ẑλ,Ŵλ, Ĥλ) for R = 10 and
λ/n = 10−3. The iterates clearly converge towards λ-SELI (see Eqn. (8) in Theorem 2) and are far
away from ETF. The distance to SELI also stays large as training progresses. However, note that it
tracks the curves measuring distance to λ-SELI until ∼ 5e3 epochs.

∃αλ such that λαλ = k
eαλ+k−1 . It is easy to check that this equation always has a positive

solution αλ > 0 since the LHS is increasing in (0,∞), the RHS is decreasing in the same
interval, and they both take values in (1,∞). The fact that following the regularization path
λ→ 0 leads (in direction) to the SVM solution follows from [28]. These two combined also
show that the solution to (52) is Ẑ.

F Additional results on UFM

F.1 Experiments with weight-decay

In this section, we show experiments on the UFM supporting the claim of Theorem 2: the
global solution (Wλ,Hλ) of ridge-regularized CE in (1), call it “λ-SELI” for convenience
(with some abuse of the term SELI, as the logit matrix does not represent the simplex
encoding anymore for λ > 0), satisfies (8). Moreover any first-order method that avoids strict
saddles converges to that global optimum [41].
Fig. 7 investigates the above claims in a setting of (R = 10, ρ = 1/2)-STEP imbalance, k = 4
classes and nmin = 1, where we ran SGD on the ridge-regularized CE with λ/n = 10−3. We
set learning rate to 1 and implement ridge-regularization as weight-decay on the parameters.
We observe the following. Fig. 7b, 7c, and 7d verify convergence to λ-SELI, while Fig. 7a
verifies that the (NC) property also holds. Also, the solution is clearly away from ETF
geometry (see green lines in Fig. 7). This is a noteworthy difference of the behavior of
learning with imbalanced data, compared to that with balanced data. With balanced data,
the geometry with ridge-regularization λ > 0 is always ETF. On the contrary, the geometry
for learning from imbalanced data is sensitive to λ, as discussed in Sec. 4.2. While the
distance from λ-SELI is the least, the distance to SELI is smaller compared to ETF. Thus,
while SELI is not the “true” characterization when training with finite ridge-regularization,
it is nevertheless a significantly better approximation than the ETF. In addition, compared
to the λ-SELI solution, the SELI one admits explicit closed-form expressions (see Sec. B),
rather than requiring numerical solution to a nuclear-norm CE minimization. Finally, note
that, up to a certain point of time during the training, the distances from SELI and λ-SELI
are comparable. Interestingly, the divergence between the two distances becomes more
prominent at epoch count that also corresponds to a sharp fall of the NC error-curve in
Fig. 7a.

Remark F.1 (A note on λ scaling). In Equation (1), the CE loss is not normalized by the
number of examples. On the other hand, in all our experiments, we normalize the CE loss
by 1/n. This is why, when denoting the regularization used in experiments, we write λ/n in
the axis-labels of all figures.
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Figure 8: GD iterates on logit-regularized CE without ridge-regularization favor yielding logit matrix
in the direction of SEL matrix Ẑ.
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Figure 9: Geometry of SGD solutions minimizing logit-regularized CE with ridge-decay on UFM;
SELI(Solid)/ETF(Dashed), R = 10(Red)/R = 100(Blue); See Sec. F.2 for details.

F.2 Logit regularization and Ridge-decay

Our Proposition 2 proves that the optimal logits of CE minimization for the UFM with
vanishing ridge-regularization is the SEL matrix. However, we also find in Fig. 4 that the
convergence of SGD to the SEL matrix is rather slow. Motivated by this slow convergence we
discuss here logit-regularized CE minimization, i.e., the solution to the following (non-convex)
program:

min
W,H

L(WTH) + λ
2
∥W∥2

F +
λ

2
∥H∥2

F + λL∥WTH∥2
F . (53)

Note that when λ = 0, the global solutions of the above minimization give a logit matrix that
aligns with the SEL matrix Ẑ. This is easy to see by noting the resemblance to the convex
program in (51) and invoking Lemma E.2.
Empirically, we observe that the above logit regularization helps achieve SGD convergence
to solutions with SEL matrix as logits converge much faster, even without additional ridge-
regularization. Specifically, for (R = 10, ρ = 1/2)-STEP imbalance, k = 4 classes and nmin = 1,
we run SGD on the logit-regularized CE with λL/n = 10−3 and with zero ridge-regularization
(λ = 0). We also set the learning rate to 1. Fig. 8 depicts convergence of the logit-matrix Z in
the direction of the SEL matrix Ẑ. However, we find that this does not ensure of convergence
for the individual geometries of W and H towards SELI, although their inner product WTH
aligns well to the SEL matrix.
On the other hand, we also find that logit-regularized ERM on the UFM yields the SELI
geometry simultaneously for logits, classifiers and embeddings when we follow a specific
decaying schedule for the ridge-regularization parameter. Specifically, in the experiments
shown in Fig. 9 and 10 below, we start with a large initial value λ/n = 10−2 and progressively
decay λ by a factor of 10 after every few epochs. We also set a finite strength of logit-
regularization λL/n = 10−3, although the convergence direction is not sensitive to that choice.
We term this scheduling “ridge-decay”. While the exact dynamics followed by the SGD with
such a scheme require further analysis, “ridge-decay” can be thought of as emulating the
regularization path of ridge-regularization with λ→ 0.
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Figure 10: Average Margins for 4 classes corresponding to the experiments of R = 10 (top row) and
R = 100 (bottom row) from Fig. 9. We run GD on logit-regularized (λL/n = 10−3) CE with ridge-decay
λinitial/n = 10−2 (see Sec. F.2 for details).

Fig. 9 show convergence of the GD solution with the above described ridge-decay to the
SELI geometry. Here, we choose k = 4 classes, with (R = 10,100, ρ = 1/2)-STEP imbalance
and nmin = 1. The learning rate is again fixed to 1. In this experiment, we use GD instead of
SGD since the number of examples is small. This is also useful as it shows that GD is able
to drive the solution towards the SELI geometry without stochastic updates being necessary.
In summary, we make the following observations from Fig. 9. First, GD iterates favor the
SELI, instead of the ETF geometry, suggesting an implicit bias towards global minimizers
of the UF-SVM. Second, with logit-regularization and ridge-decay, convergence towards
SELI is achieved at a faster rate than in the case of unregularized CE. Third, while Fig. 8
showed that the logit matrix converges fast in direction of the SEL matrix Ẑ with only
logit-regularization, Fig. 9b and 9c show that ridge-decay promotes convergence of classifiers
and embeddings to their respective SELI geometries as well. Finally, for completeness, we
also present the NC convergence in Fig. 9a. The metric used to measure NC is as described
in Sec. G.1.4.
The corresponding margins for the 4 classes are shown in Fig. 10. For examples belonging to
class y, we define average margin with respect to another class c ≠ y as follows:

marginy(c) ∶= (wy −wc)Tµy.
Note that this is an average over examples from the class y since by NC property hi ≈
µy,∀i ∶ yi = c.
We make the following remarks regarding Fig. 10. First, as training progresses, the (average)
margins are positive, thus zero training error is achieved for all classes. Second, the average
margins for a class y with respect to classes c ∶ c ≠ y converge to a common value, even though
their initial values differ. This can be seen from the convergence of the four different colored
curves within a plot (e.g. Fig. 10a). Third, all margins for all pairs of classes converge to the
same quantity, irrespective of being majority or minority classes. Note, for instance, from
Fig. 10a,10b,10c, and 10d that the final value of all graphs is the same. Finally, the value of
margins stagnates to a level that is governed by the strength of the logit-regularization λL.

G Additional results on real data

This section complements Sec. 5 with additional deep-net experiments.
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G.1 Missing details on experiments of Section 5

G.1.1 Implementation details

We investigate convergence to the proposed SELI geometry in deep-net training of (R,ρ)-
STEP imbalanced MNIST, Fashion-MNIST and CIFAR10 datasets. No data augmentation
was used following [26]. We train two deep architectures, ResNet-18 [10] and VGG-13 [29],
and optimize the models using CE loss with SGD over 350 epochs. Models are trained on a
single GPU with a dataloader batchsize of 128.
Specifically, our experiments build on the code provided by [26]6. Following [26], we use
batch normalization in place of the dropout layers in VGG-13. For both models, we disable
the biases of all the fully-connected layers, similar to the experiments on UFM. We adopt the
same training strategy as [26], namely SGD on CE loss, with momentum (0.9), small weight
decay (5×10−4), and learning rate 0.1 decayed at two stages (epochs 120 and 240) by a factor
of 10. We train the network on a (R, 1/2)-STEP imbalance setting. (Additional experimental
results for other values of the minority ratio are deferred to Sec. G.3.) To create imbalanced
data, we use the data sampler provided by Cao et al. [2] 7. Following [26] we do not use any
data augmentation. In all the experiments, we fix the first 5 classes to be majorities, and the
rest as minorities. To have a fair comparison between the models with different imbalance
ratios R = 1,5,10 and 100, we sample the datasets to have n = 100 × 50 × 5 + 50 × 5 = 25250
training images in all cases. While the training set is imbalanced, when measuring test
performance of a trained model we do so on a balanced test set, e.g. just like [1, 2]. We
measure the metrics at certain epochs, and similar to [26], we sample epochs more frequently
at the start of the training as the network parameters change more quickly in the beginning.
Centering for deep-net experiments. In the deep-net experiments, when investigating
the embeddings’ geometry, we employ an additional centering of the class means with
their (balanced) global mean. Specifically, we compute for each c ∈ [k] ∶ µc = µc − µG
with µG = 1

k ∑c∈[k]µc. Thus, at each epoch, we compute M = [µ1,µ2, ...,µk] ∈ Rd×k

and compare, after normalization, GM = MTM to ĜM, which we calculate as described
above for the ETF and SELI geometries, respectively. On the other hand, for the logits
calculations, we compute Z = WTM without centering. The discrepancy between the
UFM solutions being already centered, while deep-net embeddings require centering before
computation of geometric measures is a common denominator in all previous works on the
UFM, e.g. [41, 12, 3, 9, 21, 24, 5, 40]. Here, the chosen centering µG = 1

k ∑i∈[n]
1
nyi

hi is in
general different (and the same only when classes are balanced) from the global centering
hG ∶= 1

n ∑i∈[n] hi used by Papyan et al. [26]. Our choice of the former is motivated by the
fact that the SELI geometry (as predicted by the UFM) satisfies ∑c∈[k]µc = 0 (see Eqn. (20)
in Sec. B.1.4), but not always 1

n ∑i∈[n] hi = 0.

G.1.2 SELI vs ETF

The convergence to SELI and ETF for the classifiers, (centered) mean-embeddings, and logits
are illustrated in Fig. 2 and 11 for ResNet and VGG models, respectively. The vertical dashed
lines mark the epoch at which the model reaches zero training error under all imbalance
ratios; see Sec. G.1.3 for details. Note that in all plots, the distance to SELI geometry
decreases as training evolves. Also, convergence to the SELI geometry is consistently better
compared to the ETF geometry. However, convergence slows down for increasing imbalance
(see R = 100). Another interesting observation is that convergence is worse for the embeddings
compared to classifiers. In Sec. G.1.7 we compare individual quadrants of the (normalized)
GW and GH matrices, which facilitates understanding the individual behavior of majorities
and minorities.

6https://colab.research.google.com/github/neuralcollapse/neuralcollapse/blob/main/
neuralcollapse.ipynb

7https://github.com/kaidic/LDAM-DRW
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Figure 11: Same setup as Fig. 2 only now training with a VGG-13 model.

G.1.3 Model accuracies

Consistent with the requirements of the neural collapse phenomenon by Papyan et al. [26],
all models are trained well beyond zero error. Specifically, as illustrated in Fig. 2 and 11,
most of the models achieve zero error around epoch 120, while training continues until epoch
350. Table 2 presents the first epochs at which each model achieves 100 percent accuracy for
each value of the imbalance ratio R. For practical purposes, the minimal requirement for
majority classes to be declared having achieved zero training error is set to 0.2% error. For
minority classes nmin ≤ 500 we set 0.00% for the same requirements.

Zero Error Epoch R = 1 R = 5 R = 10 R = 100
ResNet (VGG)

CIFAR10 118 (121) 117 (119) 119 (119) 120 (176)
MNIST 10 (117) 8 (125) 11 (127) 7 (117)

Fashion-MNIST 117 (119) 117 (119) 118 (120) 117 (141)
Table 2: First epoch that zero training error is achieved in deep-net eperiments of Sec. G.

Balanced test errors are reported in Table 3. Majority and minority errors are calculated
by averaging the per-class majority and minority errors respectively. The total error is
calculated by averaging all per-class accuracies. The averaging is done with equal weights.
The test error for the balanced case (R = 1) is larger than errors reported in [26] since the
model is not trained on the whole dataset, but on n = 25250 samples.

G.1.4 NC property

From the (NC) property, we expect that the embeddings collapse to their class means. In
order to quantify validity of this property, we follow [26]. Specifically, we compute the within-
class covariance (ΣW ) and between-class covariance (ΣB) as, ΣW = ∑i∈[n](hi −µyi)(hi −
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Test Error R = 1 R = 5 R = 10 R = 100
CIFAR10 - ResNet (VGG)

Total 16.47% (17.27%) 26.17% (21.08%) 34.68% (30.03%) 53.89% (53.21%)
Majority 19.18% (20.60%) 11.26% (12.64%) 10.58% (11.30%) 9.68% (10.28%)
Minority 13.76% (13.94%) 41.08% (30.96%) 58.78% (48.76%) 98.1% (96.14%)

MNIST - ResNet (VGG)
Total 0.55% (0.52%) 0.78% (0.70%) 0.96% (0.81%) 3.04% (4.75%)

Majority 0.38% (0.35%) 0.18% (0.25%) 0.06% (0.06%) 0.02% (0.08%)
Minority 0.73% (0.70%) 1.41% (1.16%) 1.87% (1.60%) 6.18% (9.62%)

Fashion-MNIST - ResNet (VGG)
Total 7.64% (7.54%) 10.27% (9.26%) 11.63% (10.35%) 16.68% (16.67%)

Majority 8.56% (8.40%) 5.72% (5.50%) 5.12% (4.58%) 4.78% (4.94%)
Minority 6.72% (6.68%) 14.82% (13.02%) 18.14% (16.12%) 28.58% (28.40%)

Table 3: Balanced test error of deep-net experiments in Sec. G.
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Figure 12: NC property for different imbalance levels R.

µyi)T ∈ Rd×d, and ΣB = ∑c∈[k](µc −µG)(µc −µG)T ∈ Rd×d, where µc = 1
nc
∑i ∶yi∈[c] hi is the

mean embedding of class c and µG = 1
k ∑c∈[k]µc is their (blanaced) global mean. We can

now measure NC by computing tr(ΣWΣ†
B)/k. Fig. 12 illustrates how this quantity indeed

decreases as training evolves. This confirms that feature embeddings converge to their class
means, regardless of the imbalance ratio R.

G.1.5 Norms of classifiers / embeddings

Here, we further investigate the geometry of learned embeddings and classifiers, by focusing
on their norms. In particular, we study the ratios τh ∶= ∥hmaj∥2/∥hminor∥2 and τw ∶=
∥wmaj∥2/∥wminor∥2. Assuming the classifiers and embeddings follow the SELI geometry,
those ratios admit explicit closed-form expressions thanks to Lemmas B.1 and B.2. To
determine deviations of the measured norm-ratios τw and τh compared to those reference
closed-form expressions, we calculate and report the following quantity:

Averagec,c′(∣τw(c, c′) − τ̂w∣/τ̂w),

where τ̂w is given by Lemma B.1 for SELI and is equal to 1 for ETF, and, τw(c, c′) =
∥wc∥2/∥wc′∥2 with c being a majority and c′ a minority class. Similarly, we compute
distances for the norm-ratios of centered mean embeddings µc. Fig. 13 and 14 depict these
metrics during training of the ResNet and VGG networks. The results confirm once more that
the SELI geometry accurately captures features of the learned geometries. On the contrary,
this is not the case for ETF when data are imbalanced. We observe that convergence to SELI

41



0

1

2

3

4

5

R=1
R=5
R=10
R=100

0 50 100 150 200 250 300 350
0

1

2

3

4

5

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

EpochsEpochsEpochs

R
es
N
et

V
G
GD

ist
an

ce
to

SE
LI
/E

T
F

CIFAR10 MNIST Fashion-MNIST

Figure 13: Convergence of classifier norm ratio (∥wmaj∥2/∥wminor∥2) to SELI (solid) vs ETF (dashed)
for different imbalance levels R. The SELI geometry values are computed as per Lemma 3.1.
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Figure 14: Convergence of embeddings norm ratio (∥µmaj∥2/∥µminor∥2) to SELI (solid) vs ETF
(dashed) for different imbalance levels R.

geometry (and respective deviation from ETF) is more pronounced for the classifier weights
and becomes elusive for the embeddings particularly for large imbalance ratios (R = 100.)

G.1.6 Non-alignment of classifiers and embeddings

While from previous empirical results on balanced datasets [26], we expect an alignment
between the classifiers and embeddings, Lemma B.5 suggests these two geometries deviate as
data becomes more imbalanced. To verify this property, we compute the angle between mean
embeddings and their corresponding classifiers, and measure the deviation from the SELI
geometry. Namely, let θc = Cos(wc,hc). Then, similar to the previous section, we compute,

Averagec(∣θc − θ̂∣/θ̂),

where c ranges over minority classes and θ̂ is given by (18). Fig. 15 shows how this quantity
evolves during training. From Fig. 5b, we know that the embeddings and classifiers of the
majority classes remain aligned even for highly imbalanced data, thus we only analyze the
impact of imbalance ratio on the minority classes.
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Figure 15: Alignment of minority embeddings and classifiers. Convergence of angles to SELI (solid)
and ETF (dashed) for different imbalance levels R.

G.1.7 Majority vs minority geometry

In order to better understand the individual behavior of majorities and minorities, we now
compare individual quadrants of the (normalized) GW and GH matrices. Concretely, let

GW = [
GW

maj−maj GW
maj−minor

(GW
maj−minor)T GW

minor−minor]

be a partition of the normalized GW = GW/∥GW∥F to (k/2)×(k/2) sub-blocks. Comparing
quadrants GW

maj−maj,GW
maj−minor and GW

minor−minor to the corresponding quadrants of
the reference SELI/ETF matrix ĜW allows us to “zoom-in” the majority-majority, majority-
minority and minority-minority structures. Entirely analogous calculations allow the same
for the embeddings.

Classifiers Geometry. Fig. 16 confirms that both majority and minority geometries
converge to SELI properly. Interestingly, we see that the minorities diverge the most from
the equiangular structure of ETF geometry.

Embeddings Geometry. We find thanks to Fig. 17 that the “error” in convergence of
embeddings to SELI geometry (compare to the better convergence for classifiers) shown
previously in Fig. 2 and 11 is primarily due to the minority class geometries. However, an
overall inspection of the subfigures shows that embeddings also tend to align better to SELI
compared to ETF. This alignment property is pronounced in the case of majority geometries
(see GM

maj−maj).

G.2 Capturing weight-decay with regularized UFM

In Fig. 18 we compare for R = 10 the distances of GW and GM matrices to various λ-SELI
geometries for different values of regularization λ. Specifically, for the λ-SELI geometries,
we obtained the reference matrices Ĝλ

W, Ĝλ
M as follows. For each value of λ, we solve the

nuclear-norm CE minimization in (7) to find Ẑλ for k = 10 and R = 10 (to match the CIFAR10
settings). We then form Ĝλ

W, Ĝλ
M as described in the first paragraph of Sec. 5 only now

using Ẑλ instead of the SELI Ẑ. For comparison, we also plot the distances to the SELI and
ETF geometries.
Note that we have experimented with a wide range of values for the regularization λ. Among
those is the value 5e − 4 that matches with the choice of weight-decay parameters in the
deep-net experiments. Recall also from the discussion in Sec. 4 that Ẑλ is sensitive to λ in
this setting where R = 10, k = 10.
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Figure 16: Convergence of learned classifiers’ majority and minority individual geometries to the
SELI (solid lines) vs ETF (dashed lines) geometries.
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Figure 17: Convergence of learned classifiers’ majority and minority individual geometries to the
SELI (solid lines) vs ETF (dashed lines) geometries.
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Figure 18: Distances of ResNet learned classifiers and mean-embeddings trained on CIFAR10 data
with imbalance ratio R = 10 from the λ-SELI geometry (aka solution to (7) as defined in Theorem 2)
for different values of λ, as well as, from the SELI and ETF geometries.

We make the following interesting observations from Fig. 18. First, note that for classifiers
the minimum distance is that to SELI. The distance of the embeddings’ geometry to SELI is
also among the lowest ones. Specifically, despite being slightly larger than that from λ-SELI
for a few values of λ, the difference is very small. This suggests that SELI is indeed a good
approximation for the learned geometry even when training with finite weight-decay. Besides,
there are two key advantages of the SELI over the λ-SELI geometry. First, it is unclear what
the mapping ought to be (if such a mapping exists) between training-implementation choices
(such as weight-decay) and λ. Second, even if such a mapping was known, the SELI geometry
has the unique advantage of being expressed simply in terms of the (SVD of the) SEL matrix.
In fact, as we show in Sec. B it is possible to get closed-form expressions for the norms and
angles describing the geometry. This not only makes calculations much easier, but also it
allows further analysis of the properties (e.g. quantifying norm-ratios as in Fig. 13).

G.3 Additional experiments for minority ratios ρ ≠ 1/2

Thus far, in our previous experiments we considered imbalanced data with minority ratio
ρ = 1/2, i.e. same number of minorities and majorities. However, note that our theoretical
results hold for any value of ρ. Specifically, Theorem 1 shows that the solution of the UF-SVM
follows the SELI geometry irrespective of ρ. Here, we empirically study convergence to
the SELI geometry for a ResNet-18 model on (R,ρ)-STEP imbalanced CIFAR10 data, for
two values of minority ratio ρ = 0.3 and 0.7. These experiments complement our previous
demonstrations for ρ = 0.5. Specifically, we create training set of the same size of n = 15350
in all experiments for a fair comparison.8 All other experimental settings are as described in
Section G.1.1. Figs. 19, 20 and 21 demonstrate how classifiers and embeddings converge to
the proposed SELI geometry. Consistent with the previous experiments, the learnt geometries
of deep networks are well-captured by the SELI. We also observe empirically that larger
values of ρ exhibit slightly faster convergence.

H Implications on minority collapse

In this section, we further elaborate on how our results relate to the minority collapse
phenomenon, which is defined by Fang et al. [3] as the phenomenon during which minority
classifiers become completely indistinguishable. Notably, Fang et al. [3] discover its occurrence
both in the UFM and in real datasets trained with deep-nets. Below, we first state their
concrete findings and then we discuss how our results extend them.

Summary of findings by Fang et al. [3]. Fang et al. [3] make the following key findings.

8This is smaller than the total number n = 25250 of examples used previously in our experiments for
ρ = 1/2. The reason is that there is a limited number of 5000 images per class in CIFAR-10 making
it impossible to have (R = 100, ρ = 0.7)-STEP imbalanced CIFAR-10 data.
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Figure 19: Impact of ρ on the convergence of ResNet geometry to the SELI, trained on CIFAR10.
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Figure 20: Impact of ρ on the convergence of majority/minority classifiers of ResNet model trained
on CIFAR10.

FHLS(1) In [3, Theorem 5] they prove for a constrained UFM, that
limR→∞ Cos(wminor,w′

minor) = 1 (here, wminor,w′
minor are any two distinct minority

classifiers.)
FHLS(2) They also find numerically that the solution to the same constrained
UFM gives Cos(wminor,w′

minor) = 1 for any R > R0 for some finite threshold R0.
FHLS(3) Their experiments, specifically [3, Fig. 3], suggest that for fixed number
of classes k, the value of the threshold R0 increases as the constraint parameter gets
relaxed and also as the ratio ρ of minority classes increases.
FHLS(4) Finally, they validate the minority collapse phenomenon on real imbal-
anced datasets trained with deep-nets. Their real-data experiments (e.g. [3, Fig. 2,4])
suggest the following.
(a) Consistently, as R increases, the cosine similarity between minority classes

increases until it reaches one.
(b) The value of R after which the cosine becomes one (i.e. minority collapse

is reached) depends critically on the weight-decay. For small weight decay
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Figure 21: Impact of ρ on the convergence of majority/minority embeddings of ResNet model trained
on CIFAR10.

(∼ 5e − 4), it takes R > 1000 to reach minority collapse. It is only for larger
weight decay (∼ 5e − 3) that minority collapse occurs for R ∼ 100.

Our novelties. Before discussing implications of our results for minority collapse, we
highlight the following key features of our study.

• Entire geometry: We describe the entire geometry of classifiers and embeddings
for both majority and minority classes (not only the geometry of minority classes.)

• Finite imbalance levels: Our geometric characterizations (aka SELI geometry)
hold for all finite values of the imbalance ratio R (not only asymptotically.)

• Vanishing regularization: We focus on CE training with vanishing regularization.
(As such, our geometry characterizations result from analyzing the UF-SVM.)

Contact points: What do our results say about minority collapse?

• For zero regularization (aka UF-SVM), there is no minority collapse for
any finite value of R. Specifically, we show in Lemma B.3 that for (R,1/2)-
STEP imbalance Cos(wminor,w′

minor) = (R−7)/(R−7+2k(2+
√

(R+1)/2)) < 1. This does not
contradict Finding FHLS(2) since here we consider zero regularization; all their
numerical evaluations are with finite regularization.

• Minority collapse occurs (only) asymptotically in R for the UF-SVM.
Specifically, we show in Corollary 2.4 that limR→∞ Cos(wminor,w′

minor) = 1; see also
Fig. 6c. This can be seen as a different manifestation of the Finding FHLS(1), this
time for the UF-SVM, instead of constrained CE minimization.

• There is no minority collapse for small regularization strength when train-
ing the UFM with regularized CE minimization. Specifically, we show in
Lemma D.4 that for any finite imbalance values R,ρ, there is no minority collapse in
the solutions of Eqn. (1) when λ < 1/2. Instead, the CE solution perfectly separates
the training data. Our result theoretical justifies the numerical Findings FHLS(3)
and FHLS(4)(b). To establish the connection to the setting of Fang et al. [3], we
need to normalize the CE loss in (1) by a factor of 1/n (see [3, Eqn. (15)]). For this
normalized minimization, Lemma D.4 ensures no minority collapse provided that

2λ < 1
n
= 1

(ρ +Rρ)k = 1
(R − ρ(R − 1))k . (54)
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Put in terms of imbalance ratio, we prove that

Minority collapse requires R > f(λ, ρ) ∶=
1

2kλ − ρ
1 − ρ . (55)

It is straightforward to check that f(λ, ρ) is increasing in ρ and decreasing in λ.
Thus, we show that the minority collapse threshold R0 (see Finding FHLS(3))
increases with the minority ratio ρ and with the inverse regularization parameter
1/λ. This finding explains the behavior reported empirically in [3, Fig. 3] for the
UFM and in [3, Fig. 2,4] for real data. 9

• The angle between minority classifiers decreases monotonically with the
imbalance ratio R for the UF-SVM. Specifically, it can be checked easily by
direct differentiation that the formula in Lemma B.3 giving Cos(wminor,w′

minor)
is increasing in R. This can be seen as a theoretical justification of the empirical
Finding FHLS(4)(a).

I Additional related work

As discussed in Sec. 1.1, our work is inspired and is most closely related to the recent
literature on Neural Collapse. In Sec. 1.1 we reviewed the most closely related of these
works. A few others are referenced in Sec. I.1 below. Beyond Neural collapse, our results
and analysis tools are also related to the literatures on implicit bias, matrix factorization
and imbalanced deep-learning. We elaborate on these connections below.

I.1 Additional works on Neural Collapse

Beyond CE minimization, a series of recent works study and analyze the neural collapse
phenomenon when training with square loss. Interestingly, Graf et al. [5], Fang et al. [3]
discover and analyze neural collapse for similarity-type losses, such as the self-supervised
contrastive loss, which trains only for embeddings. To the best of our knowledge, all these
works restrict attention to balanced classification. Our work shows that it is possible to
obtain explicit geometric characterizations in class-imbalanced settings when training with
CE. Hence, it also opens the way to extending the analysis to square-loss minimization.
Potential connections of neural collapse to generalization and transferability is a less well-
understood topic. Some initial investigations appear in the recent works [11, 4, 9]. Our
results are not immediately conclusive about generalization. However, as mentioned in Sec. 6
our results have the potential to offer new perspectives on generalization, since they uncover
different geometries (aka SELI for different R values), each leading to different generalization
(worse for increasing R [1, 2]).
Remark I.1 (Last-layer peeled model (LPM)). Around the same time that the UFM was
proposed by Mixon et al. [24] (see also Lu and Steinerberger [21], Graf et al. [5]), the same
model was independently formulated and analyzed by Fang et al. [3] under the alternative
name of “last-layer peeled model (LPM)".
Remark I.2 ((NC) and (ETF) properties in [26]). The formalization of Neural collapse
by Papyan et al. [26] involved four NC properties. The first property concerns the collapse
of class embeddings to their corresponding means. Properties two and three concern the
geometry of class-means and classifier-weights, specifically their alignment and convergence
to a simplex ETF geometry. Property four is a consequence of the other three properties,
hence is less important in the formalization and we do not discuss it further. Motivated by
our findings, we propose and use here a regrouping/renaming of the aforementioned three
properties. We refer to the first property as the (NC) property, and, to the second and
third properties as the (ETF) property. We argue that this distinction is important towards
a formulation that is invariant across class-imbalances, by showing that the ETF property
is not invariant and replacing it with the (SELI) property. For balanced data, the latter
simplifies to the ETF property.
9When referring to [3, Fig. 3] keep in mind that they simulate constrained, rather than regularized,
CE minimization. Hence, larger constraint parameters mean larger inverse regularization parameter
1/λ.
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I.2 Implicit bias

Neural collapse is intimately related to the recent literature on implicit bias, which started
from a series of influential works [30, 13, 7, 14, 25]. (This connection is already recognized
by the seminal work of Papyan et al. [26].) For example, [7, Theorem 7, Remark 2] concerns
a bilinear non-convex SVM-type minimization that bears similarities to the UF-SVM and
establishes a connection to a convex nuclear-norm minimization problem. However, the two
factors in their bilinear formulation are the same (unlike the UF-SVM) and also they restrict
attention to binary classification. Another very closely related work is that by Lyu and Li [22]
who show that gradient descent on deep homogeneous networks converges (in direction) to a
KKT point of a corresponding non-convex max-margin classifier. While their focus is again
on binary classification, they briefly discuss extension to multiclass settings in their appendix.
Recently, Ji et al. [12] leveraged their results and formally showed that gradient descent on
(1) with zero regularization converges to a KKT point of the UF-SVM. The max-margin
classifiers corresponding to multi-layer linear networks (with the UF-SVM being a special
case) are non-convex. Hence there is no guarantee that the KKT point where gradient
descent converges to is a global optimum. Whether this is the case or not is investigated for
various settings by Vardi et al. [33]. Specifically for linear fully-connected networks, which
are of interest to us, they show that, when trained on binary data, the point of convergence is
always a global optimum [33, Theorem 3.1]. Their proof uses another nice result on implicit
bias by Ji and Telgarsky [15]. In fact, their results are more intimately connected to neural
collapse as it can be checked that [15, Proposition 4.4] provides a direct proof that gradient
descent on unregularized CE for the UFM and binary data finds embeddings and a classifier
that satisfy the NC and ETF properties (irrespective of imbalance). Note here that all these
works focus almost exclusively on binary settings. A salient message of our results is that
rich and possibly complicated behaviors can occur in multiclass (k > 2) settings. There are
several findings supporting this. For example, we show that regularization in the UFM only
matters when data are multiclass and imbalanced. Similarly, it is only then that the model
found by the two-layer UFM can differ from what a one-layer convex network would find. We
also show empirically for the UFM that convergence rates in the absence of regularization
can be heavily impacted by imbalances. Related to this, we highlight a missing piece in
our analysis: we characterize the global optimum of the UF-SVM, but we do not prove, or
are aware of a proof, that gradient descent converges to this global optimum. Proving or
disproving this can be of great interest in its own way. On the one hand, if the conjecture
holds, then our results warn that imbalance levels can severely impact convergence rates.
On the other hand, if the conjecture is refuted, then this would be the simplest model to
have been discovered where convergence to global optimum fails.

I.3 Matrix factorization and low-rank recovery

The connection between the study of the UFM for the purpose of neural collapse analysis
and the literatures on matrix factorization and low-rank matrix recovery (see for example
[36]) is uncovered and first exploited by Zhu et al. [41] and Fang et al. [3]. Thus, we
refer the interested reader to those papers for a list of references and detailed discussion
(specifically see Zhu et al. [41, Sec. 3.2]). Specializing this discussion to the UF-SVM that is
of main interest to us, we note its close ties to the formulation of the hard-margin matrix
factorization problem as studied by Srebro et al. [31]. The author formulated the problem of
fitting a binary target matrix Y (ie. with entries ±1) with a low-rank matrix WTH as the
minimization

min
W,H

∥WTH∥∗ sub. to (Y⊙WTH)[c, i] ≥ 1, ∀(c, i) ∈ S, (56)

where S is a given subset of observed entries of Y. Despite being non-convex, they derived
a convex reformulation based on duality and a corresponding procedure for finding a
solution to (56) via essentially solving an SDP and an appropriate system of linear equations
corresponding to the active constraints. The non-convex max-margin problem (2) that
we investigate bears similarities to (56). Specifically, for an one-hot encoding and fully
observed Y, (56) is essentially the binary analogue of (2). Importantly in our setting, we
are able to calculate the solution to (2) in closed form, that is without requiring numerically
solving an SDP. Finally, as mentioned in Sec. E.4 a byproduct of Theorem 1 is that the
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nuclear-norm max-margin minimization (5) has the same solution as the vanilla max-margin
with Frobenius norm. Although different, somewhat related settings were frobenius-norm
penalized problems give same solutions as nuclear-norm penalized ones have been studied in
the low-rank representation literature, e.g. [34, 27].

I.4 Class-imbalanced deep learning

The past few years have seen a surge of research activity towards substituting the vanilla
CE empirical risk minimization, which leads to poor accuracy for minorities, with better
alternatives that are particularly suited for training large models, e.g. [17, 18, 2, 23, 39].
Among the many solutions suggested in the recent literature, most closely related to the
topic of neural collapse are [17, 18]. Interestingly (as it happened chronologically before
the conception of Neural collapse by Papyan et al. [26]), Kang et al. [17] and Kim and
Kim [18] observed that the classifier weights found by deep-nets when trained with CE on
class-imbalanced data yield larger norms for majority rather than minority classes. This
empirical observation led them to propose post-hoc schemes that normalize the logits before
deciding on the correct class, thus leading to better performance on the minorities. Our
Lemma B.1, not only proves this behavior for the unconstrained feature model, but it also
precisely quantifies the norm-ratio between minorities and majorities. Interestingly, our
deep-net experiments in Fig. 13 confirm the predicted behavior. Evidently then, Lemma 3.1
offers a plausible theoretical justification of the empirical findings by Kang et al. [17], Kim
and Kim [18] and also quantifies the norm ratio. It is conceivable, that this characterization
in terms of a simple formula that only involves the imbalance ratio and number of classes,
can be used to turn some of the heuristic post-hoc normalizations of Kang et al. [17], Kim
and Kim [18] to principled methods. Beyond that, our results are conclusive not only about
classifiers and norms, but also about embeddings and angles. It is exciting to investigate
leveraging these findings to design better techniques for class-imbalanced deep learning (see
also discussion by the end of Sec. 6.)
Related ideas appeared very recently in the contemporaneous works [38, 37], where the
authors design loss functions for class-imbalanced learning in an attempt to enforce a geometry
that is alike the ETF geometry for balanced data. However, they do not characterize the
joint geometry of classifiers and embeddings under class imbalances as we do here.

I.5 On the Simplex-encoding interpolation

Our analysis of the UF-SVM uncovers the unique role played by the SEL matrix. Specifically,
Theorem 1 shows that the global minimizers (Ŵ, Ĥ) of the non-convex UF-SVM are such
that the resulting logit matrix ŴT Ĥ satisfies all constraints with equality and also it equals
the SEL matrix Ẑ. Our finding is related to (in fact, can be seen as an extension of) a
recent result by Wang et al. [35]. In a different context and with different research objective,
Wang et al. [35] derived a deterministic condition under which the solution to the (convex)
vanilla SVM (like the one in (52) but with general inputs, not necessarily the basis vectors ei
resulting in the UFM) finds logits that interpolate a simplex encoding of the labels. Theorem
1 goes far beyond: it studies a non-convex SVM and since it applies directly to the UFM, it
does not involve deterministic input conditions for the result to hold. That said, it might
be interesting future work to derive similar conditions on the inputs of the non-convex
max-margin problem such that it gives optimal logits interpolating the simplex encoding of
the labels.
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