
A Algorithms

Algorithm 1: MAP Propagation - Monte-Carlo Policy-Gradient Control

1 Input: differentiable policy function: πl(h
l−1, hl;W l) for l ∈ {1, 2, ..., L};

2 Algorithm Parameter: step size α > 0, αh > 0; update step N ≥ 1;
3 discount rate γ ∈ [0, 1];
4 Initialize policy parameter: W l for l ∈ {1, 2, ..., L};
5 Loop forever (for each episode):
6 Generate an episode S0, H0, A0, R1, ..., ST−1, HT−1, AT−1, RT following πl(·, ·;W l) for

l ∈ {1, 2, ..., L};
7 Loop for each step of the episode, t = 0, 1, ..., T − 1:
8 G←

∑T
k=t+1 γ

k−t−1Rk ;
/* MAP Gradient Ascent */

9 for n := 1, 2, ..., N do
10 H l

t ← H l
t + αh(∇Hl

t
log πl(H

l−1
t , H l

t ;W
l) +∇Hl

t
log πl+1(H

l
t , H

l+1
t ;W l+1)) for

l ∈ {1, 2, ..., L− 1};
11 end

/* Apply REINFORCE */
12 W l ←W l + αG∇W l log πl(H

l−1
t , H l

t ;W
l) for l ∈ {1, 2, ..., L};

Algorithm 2: MAP Propagation - Actor Network with Eligibility Trace

1 Input: differentiable policy function: πl(h
l−1, hl;W l) for l ∈ {1, 2, ..., L};

2 Algorithm Parameter: step size α > 0, αh > 0; update step N ≥ 1;
3 trace decay rate λ ∈ [0, 1]; discount rate γ ∈ [0, 1];
4 Initialize policy parameter: W l for l ∈ {1, 2, ..., L};
5 Loop forever (for each episode):
6 Initialize S (first state of episode) ;
7 Initialize zero eligibility trace zl for l ∈ {1, 2, ..., L} ;
8 Loop while S is not terminal (for each time step):
9 H0 ← S ;

/* 1. Feedforward phase */
10 Sample H l from πl(H

l−1, ·;W l) for l ∈ {1, 2, ..., L} ;
11 A← HL;

/* 2. REINFORCE phase */
12 if episode not in first time step then
13 Receive TD error δ from the critic network;
14 W l ←W l + αδzl for l ∈ {1, 2, ..., L};
15 end

/* 3. Minimize energy phase */
16 for n := 1, 2, ..., N do
17 H l ← H l + αh(∇Hl log πl(H

l−1, H l;W l) +∇Hl log πl+1(H
l, H l+1;W l+1)) for

l ∈ {1, 2, ..., L− 1} ;
18 end

/* 4. Trace accumluation phase */
19 zl ← γλzl +∇W l log πl(H

l−1, H l;W l) for l ∈ {1, 2, ..., L};
20 Take action A, observe S,R ;

B Proof

In the proofs below, we may omit the subscript t whenever it is unnecessary. In addition to the
notation in Section 2, we define Dxf as the Jacobian matrix of f w.r.t. x.
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B.1 Proof of Theorem 1

E[G∇W l log Pr(A|S;W )] (12)

=E[
G

Pr(A|S;W )
∇W l Pr(A|S;W )] (13)

=E[
G

Pr(A|S;W )
∇W l

∑
h

πL(h
L−1, A;WL)πL−1(h

L−2, hL−1;WL−1)...

π2(h
1, h2;W 2)π1(S, h

1;W 1)] (14)

=E[
G

Pr(A|S;W )

∑
hl,hl−1

Pr(A,H l = hl, H l−1 = hl−1|S)∇W l log πl(h
l−1, hl;W l)] (15)

=E[G
∑

hl−1,hl

Pr(H l−1 = hl−1, H l = hl|S,A)∇W l log πl(h
l−1, hl;W l)] (16)

=E[GE[∇W l log πl(H
l−1, H l;W l)|S,A]] (17)

=E[E[G|S,A]E[∇W l log πl(H
l−1, H l;W l)|S,A]] (18)

=E[E[G∇W l log πl(H
l−1, H l;W l)|S,A]] (19)

=E[G∇W l log πl(H
l−1, H l;W l)]. (20)

(17) to (18) uses the fact that, for any random variables Z and Y , E[E[Z|Y ]f(Y )] = E[Zf(Y )].
(18) to (19) uses the fact that G is conditional independent of H l, H l−1 given S,A.
(19) to (20) uses the law of total expectation.

Note that (17) to (20) also shows the steps for (4).

B.2 Proof of Theorem 2

Using∇hE(ĥ; s, a) = 0, ĥL−1 can be expressed as:

∇hE(ĥ; s, a) = 0, (21)

−∇hL−1 log π(ĥL−2, ĥL−1;WL−1) = ∇hL−1 log π(ĥL−1, a;WL), (22)
1

(σL−1)2
(ĥL−1 − gL−1(ĥL−2;WL−1)) = ∇hL−1 log π(ĥL−1, a;WL), (23)

ĥL−1 = gL−1(ĥL−2;WL−1)+(σL−1)2∇hL−1 log π(ĥL−1, a;WL). (24)

And for l = 1, 2, ..., L− 2, we have:

∇hE(ĥ; s, a) = 0, (25)

−∇hl log π(ĥl−1, ĥl;W l) = ∇hl log π(ĥl, ĥl+1;W l+1), (26)
1

(σl)2
(ĥl − gl(ĥl−1;W l)) =

1

(σl+1)2
Dhlgl+1(ĥl;W l+1)T (ĥl+1 − gl+1(ĥl;W l+1)), (27)

ĥl = gl(ĥl−1;W l) +

(
σl

σl+1

)2

Dhlgl+1(ĥl;W l+1)T (ĥl+1 − gl+1(ĥl;W l+1)), (28)

ĥl = gl(ĥl−1;W l) +

(
σl

σl+2

)2

Dhlgl+1(ĥl;W l+1)TDhl+1gl+2(ĥl+1;W l+2)T

(ĥl+2 − gl+2(ĥl+1;W l+2)), (29)

ĥl = gl(ĥl−1;W l) + (σl)2Dhlgl+1(ĥl;W l+1)TDhl+1gl+2(ĥl+1;W l+2)T

...DhL−2gL−1(ĥL−2;WL−1)T∇hL−1 log πL(ĥ
L−1, a;WL). (30)
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Substituting back to the REINFORCE update, we have:

∇W l log πl(ĥ
l−1, ĥl;W l) (31)

=
1

(σl)2
DW lgl(ĥl−1;W l)T (ĥl − gl(ĥl−1;W l)) (32)

=DW lgl(ĥl−1;W l)TDhlgl+1(ĥl;W l+1)TDhl+1gl+2(ĥl+1;W l+2)T ...

DhL−2gL−1(ĥL−2;WL−1)T∇hL−1 log πL(ĥ
L−1, a;WL). (33)

We will show that the R.H.S. also equals (33). Consider the re-parameterization of H l by Zl

conditioned on H l−1 using gl(H l−1;W l) + σlZl and Zl are independent standard Gaussian noises
for l ∈ {1, 2, ..., L− 1}. Then by re-parameterizing all hidden layers, we can find h(Z;W,S) that
is the re-parameterization of H by Z := {Z1, Z2, ..., ZL−1} conditioned on S. To be concrete,
hl(Z;W,S) = gl(hl−1(Z;W,S);W l) + σlZl for l ∈ {1, 2, ..., L− 1}, and h0(Z;W,S) := S.

Then, for l ∈ {1, 2, ..., L− 2}, we have:

∇W l log πL(h
L−1(z;W, s), a;WL) (34)

=DW l(hL−1(z;W, s))T∇hL−1 log πL(h
L−1(z;W, s), a;WL) (35)

=DW l(gL−1(hL−2(z;W, s);WL−1) + σL−1zL−1)T∇hL−1 log πL(h
L−1(z;W, s), A;WL) (36)

=DW l(hL−2(z;W, s))TDhL−2gL−1(hL−2(z;W, s);WL−1)T

∇hL−1 log πL(h
L−1(z;W, s), a;WL) (37)

=DW lgl(hl−1(z;W, s);W l)TDhlgl+1(hl(z;W, s);W l+1)TDhl+1gl+2(hl+1(z;W, s);W l+2)T ...

DhL−2gL−1(hL−2(z;W, s);WL−1)T∇hL−1 log πL(h
L−1(z;W, s), a;WL). (38)

If we evaluate (34) at z = ẑ, then (38) becomes (33), which completes the proof for l ∈ {1, 2, ..., L−
1}. The proof for l = L is similar and is omitted here.

B.3 Proof of Theorem 3

Similar to the proof of Theorem 2, for l ∈ {1, 2, ..., L− 1}, the L.H.S. can be expressed as:

A∗(s)− µ̂L

a− µ̂L
∇W l log πl(ĥ

l−1, ĥl;W l) (39)

=
A∗(s)− µ̂L

a− µ̂L
DW lgl(ĥl−1;W l)TDhlgl+1(ĥl;W l+1)TDhl+1gl+2(ĥl+1;W l+2)T ...

DhL−2gL−1(ĥL−2;WL−1)T∇hL−1 log πL(ĥ
L−1, a;WL) (40)

=
A∗(s)− µ̂L

(σL)2
DW lgl(ĥl−1;W l)TDhlgl+1(ĥl;W l+1)TDhl+1gl+2(ĥl+1;W l+2)T ...

DhL−2gL−1(ĥL−2;WL−1)T∇hL−1gL(ĥL−1;WL). (41)

We then prove that the R.H.S. also equals (41). Consider the same re-parameterization of H by
Z := {Z1, Z2, ..., ZL−1} conditioned on S, denoted by h(Z;W,S), as in the proof of Theorem 2.
Then, for l ∈ {1, 2, ..., L− 1},

∇W l −
(
A∗(s)− gL(hL−1(z;W, s);WL)

)2
(42)

=2(A∗(s)− gL(hL−1(z;W, s);WL))∇W lgL(hL−1(z;W, s);WL) (43)

=2(A∗(s)− gL(hL−1(z;W,S);WL))DW l(hL−1(z;W, s))T∇hL−1gL(hL−1(z;W, s);WL)
(44)

=2(A∗(s)− gL(hL−1(z;W,S);WL))DW lgl(hl−1(z;W, s);W l)TDhlgl+1(hl(z;W, s);W l+1)T

Dhl+1gl+2(hl+1(z;W, s);W l+2)T ... ∇hL−1gL(hL−1(z;W, s);WL). (45)

If we evaluate (42) at z = ẑ, then (45) becomes proportional to (41) with a ratio 2(σL)2, which
completes the proof for l ∈ {1, 2, ..., L− 1}. The proof for l = L is similar and is omitted here.
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B.4 Details of (7) to (8)

∇Hl
t
log Pr(Ht|St, At) (46)

=∇Hl
t
(log Pr(Ht, At|St)− log Pr(At|St)) (47)

=∇Hl
t
log Pr(Ht, At|St) (48)

=∇Hl
t
log

(
L−1∏
i=0

πi(H
i
t , H

i+1
t ;W i+1)

)
(49)

=∇Hl
t
log πl+1(H

l
t , H

l+1
t ;W l+1) +∇Hl

t
log πl(H

l−1
t , H l

t ;W
l). (50)

B.5 (10) Follows the Gradient of Return in Expectation

We will show that the learning rule given by (10) follows the gradient of return in expectation. For
l ∈ {1, 2, ..., L− 1}:

∇W l E[G] (51)
=E[G∇W l log Pr(A|S;W )] (52)

=E[
G

Pr(A|S;W )
∇W l Pr(A|S;W )] (53)

=E[
G

Pr(A|S;W )
∇W l

∑
z

Pr(A|Z = z, S;W )Pr(Z = z|S)] (54)

=E[
G

Pr(A|S;W )

∑
z

Pr(A|Z = z, S;W )Pr(Z = z|S)∇W l log Pr(A|Z = z, S;W )] (55)

=E[G
∑
z

Pr(Z = z|S,A;W )∇W l log Pr(A|Z = z, S;W )] (56)

=E[GE[∇W l log Pr(A|Z, S;W )|S,A]] (57)
=E[G∇W l log Pr(A|Z, S;W )] (58)

=E[G∇W l log πL(h
L−1(Z;W,S), A;WL)]. (59)

(51) to (52) uses REINFORCE and other steps are similar to those in the proof of Theorem 1.

B.6 Variance Reduction of (4)

We will show that for l ∈ {1, 2, ..., L}:

Var[GE[∇W l log πl(H
l−1, H l;W l)|S,A]] ≤ Var[G∇W l log πl(H

l−1, H l;W l)]. (60)

The proof is as follows:

Var[G∇W l log πl(H
l−1, H l;W l)] (61)

=Var[E[G∇W l log πl(H
l−1, H l;W l)|S,A,G]]

+ E[Var[G∇W l log πl(H
l−1, H l;W l)|S,A,G]] (62)

≥Var[E[G∇W l log πl(H
l−1, H l;W l)|S,A,G]] (63)

=Var[GE[∇W l log πl(H
l−1, H l;W l)|S,A,G]] (64)

=Var[GE[∇W l log πl(H
l−1, H l;W l)|S,A]]. (65)

(61) to (62) uses the law of total variance.
(62) to (63) uses the fact that the second term must be non-negative.
(64) to (65) uses the fact that G is conditional independent with H given S and A.

4



C MAP Propagation for Critic Networks

We consider how to apply MAP propagation to a critic network. As the function of a critic network
can be seen as approximating the scalar value Rt + γv̂(St+1), we first consider how to learn a scalar
regression task by MAP propagation in general.

A scalar regression task can be converted into a single-time-step MDP with the appropriate reward
and R as the action set. For example, we can set the reward function to be R(S,A) = −(A−A∗(S))2

(we drop the subscript t as it only has a single time step), where A ∈ R denotes the output of the
network and A∗(S) ∈ R denotes the target output given input S. The maximization of rewards in
this MDP is equivalent to the minimization of the L2 distance between the predicted value and the
target value.

But this conversion is inefficient since the information of the reward function is lost. In the following
discussion, we restrict our attention to a network of stochastic units where all hidden layers and the
output layer are normally distributed as defined in Section 2. Let µL be the conditional mean of the
output layer; that is, µL = g(HL−1;WL). For this network, we propose an alternative learning rule
that is similar to REINFORCE but with the return G replaced by (A∗(S)− µL)/(A− µL); that is,
for l ∈ {1, 2, ..., L}:

W l ←W l + α
A∗(S)− µL

A− µL
∇W l log πl(H

l−1, H l;W l). (66)

It can be shown that after minimizing the energy function, the learning rule (66) for the network is
equivalent to gradient descent on the L2 error by backprop with the re-parameterization trick:
Theorem 3. Let the policy be a multi-layer network of stochastic units with all hidden layers
normally distributed as defined in Section 2 and the output layer has a single unit. There exists a re-
parameterization of H by Z conditioned on S, denoted by h(Z;W,S), such that for any A∗ : S → R,
l ∈ {1, 2, ..., L}, s ∈ S , ĥ, ẑ ∈ Rn(1) × Rn(2) × ...× Rn(L−1) and a ∈ R, if ∇hE(ĥ; s, a) = 0 and
ẑ = h−1(ĥ;W, s), then

A∗(s)− µ̂L

a− µ̂L
∇W l log πl(ĥ

l−1, ĥl;W l) ∝ −∇W l

(
A∗(s)− µ̃L

)2
, (67)

where µ̂L := gL(ĥL−1;WL) and µ̃L := gL(hL−1(ẑ;W, s);WL).

Therefore, we apply the learning rule (66) after minimizing the energy function by (8). The pseudo-
code is the same as Algorithm 1 in Appendix A, but with G replaced by (A∗(S)− µL)/(A− µL) in
line 12.

We apply the above method to train a critic network, where the output of the network, At ∈ R, is
an estimation of the current value. In a critic network, the target output is Rt + γAt+1. However, a
more stable estimate of target output is Rt + γµL

t+1 since the difference between At+1 and µL
t+1 is

an independent Gaussian noise that can be removed. Therefore, we define the target output, denoted
by A∗(S), to be Rt + γµL

t+1 and the TD error, denoted by δt, to be Rt + γµL
t+1 − µL

t . Substituting
back into (66), the learning rule for the critic network becomes:

W l ←W l + α
δt

At − µL
t

∇W l log πl(H
l−1
t , H l

t ;W
l), (68)

which is almost the same as the update rule for the actor network except the additional denominator
At − µL

t . The pseudo-code of training a critic network with eligibility trace using MAP propagation
is the same as Algorithm 2 in Appendix A, except (i) line 13 is replaced with δ ← γµ + R − µ′

where µ = gL(HL−1;WL) and µ′ is µ in the previous time step, and (ii) the gradient term in line 19
is multiplied by (A− µ)−1.

Both the critic and the actor network can be trained together, and the TD error δ computed by the
critic network can be passed to the actor network in line 13 of Algorithm 2.

D Details of Experiments

In the multiplexer task, there are k + 2k binary inputs, where the first k bits represent the address
and the last 2k bits represent the data, each of which is associated with an address. The output of
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Figure 3: Illustration of MountainCar.
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Figure 4: Running average rewards over the last
100 episodes of the selected runs in MountainCar.

the multiplexer is given by the value of data associated with the address. This is similar to the 2-bit
multiplexer considered by Barto [1].

We used Algorithm 1 in the multiplexer and the scalar regression experiment, and the hyperparameters
can be found in Table 2. We used a different learning rate α for each layer of the network, and we
denote the learning rate for the lth layer as αl. We denote the variance of the Gaussian distribution
for the lth layer as σ2

l . The step size of hidden units when minimizing energy, αh, is selected to
be 0.5 times the variance of the unit. For the learning rule in line 12 of the pseudo-code, we used
Adam optimizer [2] instead, with β1 = 0.9 and β2 = 0.999. We used batch update in both tasks,
which means that we compute the parameter update for each sample in a batch, then we update the
parameter using the average of these parameter updates. These hyperparameters are selected based
on manual tuning to optimize the learning curve. We did the same manual tuning for the baseline
models.

We used Algorithm 2 to train both the critic and the actor network in the experiments on RL tasks,
and the hyperparameters can be found in Table 3. We did not use any batch update in our experiments,
and we used a discount rate of 0.98 for all tasks. The step size of hidden units when minimizing
energy, αh, is selected to be 0.5 times the variance of the unit. We used Acrobot-v1, CartPole-v1,
LunarLander-v2, and MountainCarContinuous-v0 in OpenAI’s Gym for the implementation of the
RL tasks.

For the update rules in line 14 of Algorithm 2, we used Adam optimizer instead, with β1 = 0.9 and
β2 = 0.999. Again, these hyperparameters are selected based on manual tuning to maximize the
average return across all episodes. We did the same manual tuning for the baseline models.

For the ANNs in the baseline models, the architecture is similar to the team of agents: 64 units on
the first hidden layer and 32 units on the second hidden layer. If the output range is continuous, the
output layer is a linear layer. If the output range is discrete, the output layer is a softmax layer. We
used the softplus function as the activation function in the ANNs, which performed similarly to the
ReLu function in our experiments.

We annealed the learning rate linearly such that the learning rate is reduced to 1
10 of the initial learning

rate at 50000 and 100000 steps in CartPole and Acrobot respectively, and the learning rate remains
unchanged afterward. We also annealed the learning rate linearly for the baseline models. We found
that this can make the final performance more stable. For LunarLander and MountainCar, we did not
anneal the learning rate. For MountainCar, we bounded the reward by ±5 to stabilize learning.

E Experiments on MountainCar

In the continuous version of MountainCar, the state is composed of two scalar values, which are the
position and the velocity of the car, and the action is a scalar value corresponding to the force applied
to the car. The goal is to reach the peak of the mountain on the right, where a large positive reward
is given. However, to reach the peak, the agent has to first push the car to the left in order to gain
enough momentum to overcome the slope. A small negative reward that is proportional to the force
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Figure 5: State trajectories of the 1st, 50th and 100th episode of the selected runs. If the position
is larger than 0.45, then the agent reaches the goal. Although the team of agents trained by MAP
propagation did not reach the goal in both the 1st and 50th episode, the team was still exploring a large
portion of the state space, which is in contrast to the failed baseline that stayed at the center. For the
baseline, if it does not reach the goal in the first several episodes, it will be stuck in the local optima.

applied is given on every time step to encourage the agent to reach the goal with minimum force. An
illustration of MountainCar is shown in Fig 3.

One locally optimal policy is to apply zero force at every time step so that the car always stays at
the bottom. In this way, the return is zero since no force is applied. We found that in many runs,
the ANN trained by backprop was stuck in this locally optimal policy. However, in a few runs, the
ANN can accidentally reach the goal in early episodes, which makes the ANN able to learn quickly
and achieve an asymptotic reward of over +90, slightly higher than that of a team of agents trained
by MAP propagation. The learning curve of a successful and a failed run of the agent trained by
backprop is shown in Fig 4.

In contrast, for teams of agents trained by MAP propagation, the teams in all runs can learn a policy
that reaches the goal successfully. However, this comes at the expense of slower learning and a
slightly worse asymptotic performance, as seen from the learning curve of a typical run of the team
of agents trained by MAP propagation shown in Fig 4. This is likely due to the larger degree of
exploration in MAP propagation, which can be illustrated by the state trajectories shown in Fig 5.

We used the same variance for the output unit in both MAP propagation and the baseline models. We
found that even using a larger variance or adding entropy regularization cannot prevent the baseline
models from being stuck in the local optima. This suggests that MAP propagation allows more
sophisticated exploration instead of merely more exploration. In a team of agents, each agent in the
team is exploring its own action space, thus allowing exploration in different levels of the hierarchy.
This may explain the difference in the exploration behavior observed in a team of agents trained by
MAP propagation compared to an ANN trained by backprop.

F Biological Plausibility of MAP Propagation

As discussed in the paper, backprop has three major problems with biological plausibility due to the
requirement of 1. non-local information in the learning rule, 2. precise coordination between the
feedforward and feedback phase, and 3. symmetry of feedforward and feedback weights. However,
REINFORCE does not have any of these issues. Other than the global reinforcement signal, the
learning rule of REINFORCE does not depend on non-local information. Also, since REINFORCE
does not require any feedback connections, the second and third issues do not exist for REINFORCE.
We refer readers to chapter 15 of the book of Sutton and Barto [3] for a review and discussion of the
connection between REINFORCE and neuroscience.

Compared to backprop, REINFORCE is more consistent with biologically-observed forms of synaptic
plasticity. When applied to a Bernoulli-logistic unit, REINFORCE gives a three-factor learning
rule which depends on a reinforcement signal, input, and output of the unit. This is similar to
R-STDP observed biologically, which depends on a neuromodulatory input, presynaptic spikes,
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and postsynaptic spikes. It has been proposed that dopamine, a neurotransmitter, plays the role of
neuromodulatory input in R-STDP and corresponds to the TD error from RL.

Despite the elegance of REINFORCE, its learning speed is far lower than backprop and scales poorly
with the number of units in the network since only a scalar feedback is used to assign credit to all
units in the network. It can be argued that learning speed may not be the issue for the biological
plausibility of REINFORCE, given that evolution already equips the brain with prior knowledge,
and the brain can learn from experience accumulated over the entire lifetime. However, the learning
speed of REINFORCE may not explain many remarkable learning behaviors of humans, such as
mastering Go, despite the fact that the ability to play Go likely does not come from prior knowledge
shaped by evolution. Given billions of neurons in the brain, it is likely that the brain employs some
forms of structural credit assignment to speed up learning.

MAP propagation presents one possible solution for structural credit assignment. Essentially, MAP
propagation is equivalent to applying REINFORCE after minimizing the energy function. The idea
of minimizing the energy function is to nudge the values of hidden units towards those that are more
consistent with the values of units on the first and last layer, i.e. the state and the action. In this
process, feedback connections are required to drive the value of units, so as to propagate information
from the layers above.

Although the purpose of feedback connections in the brain is still not completely understood, there
has been evidence showing that feedback connections can drive the activity of neurons [4, 5, 6]. For
example, in the visual system, the activity of neurons that is responsible for the selected action will
be enhanced by feedback connection [4]. This is analogous to the updates of hidden units in MAP
propagation. The general idea that feedback connection drives the activity of units in lower layers to
facilitate local learning rules underlies many proposals for biological learning and machine learning
algorithms [7]. This idea is also fundamental to the NGRAD hypothesis [7], which will be discussed
next.

NGRAD hypothesis is a recently proposed hypothesis that unifies many biologically plausible
alternatives to backprop with local learning rules [8, 9, 10, 11, 12, 13, 14, 15, 16]. It hypothesizes
that the cortex uses the differences in activity states to drive learning, and the induced differences
are brought by the nudging of lower-level activities towards those values that are more consistent
with the high-level activities. In this way, local learning rules can yield an approximation to backprop
without storing units’ values and error signals at the same time.

MAP propagation fits well into the NGRAD hypothesis. When normally distributed hidden units
are settled to the minima of the energy function, REINFORCE, a local learning rule except for the
global reinforcement signal, yields the same parameter update given by backprop. Therefore, MAP
propagation can be seen as an approximation of backprop by changing the values of hidden units.
However, MAP propagation has major differences with many other algorithms based on the NGRAD
hypothesis (NGRAD algorithms). First, most NGRAD algorithms require storage of past units’
values (e.g. in target propagation [16], the unit has to store its past value to compute the reconstruction
error) or separate phases of learning (e.g. the positive and negative phase in contrastive divergence
[11]), but MAP propagation requires neither of them. Second, most NGRAD algorithms require
precise coordination between feedforward and feedback connections (e.g. in target propagation, the
unit has to coordinate between computing the reconstruction error and adding it to the uncorrelated
target). In contrast, the updates for all layers can be done in parallel without any coordination between
feedforward and feedback connections in MAP propagation. Third, MAP propagation is derived
based on RL, while NGRAD algorithms are derived based on either supervised or unsupervised
learning. Given the observation of R-STDP in biological systems and the correspondence between
R-STDP and REINFORCE, MAP propagation presents a new paradigm of explaining biological
learning in NGRAD algorithms. However, a major limitation of MAP propagation is that it requires a
different value to be propagated through feedforward and backward connections.

To see this, we will closely examine the update rule (8) for minimizing energy function in MAP
propagation. Assuming all units are normally distributed with a fixed variance; i.e. πl(H

l−1, ·;W l) =
N(f(W lH l−1), σ2) for l ∈ {1, 2, ..., L} and f is a non-linear activation function, then the update
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Figure 6: Illustration of minimizing the energy function in MAP propagation. The mean value of
units on the layer l, denoted by µl, is computed as a function of the value of units on the previous
layer, denoted by H l−1. The difference between the current and the mean value of units, denoted
by el, is then used to drive the value of units on the same layer (H l) and the value of units on the
previous layer (H l−1).

rule (8) and the learning rule (3) becomes 1:

∆H l =
1

σ2

(
−el + (W l+1)T (el+1 ⊙ δl+1)

)
, (69)

∆W l =
1

σ2

(
G · el(HL−1)T

)
, (70)

where µl = f(W lH l−1), δl = f ′(W lH l−1), el = H l − µl for l ∈ {1, 2, ..., L}.

Both the update rule (8) and the learning rule (3) are local and can be applied to all hidden layers
in parallel. There are two components in the update rule: i. the feedforward signal −el and ii. the
feedback signal (W l+1)T (el+1 ⊙ δl+1). The feedforward signal nudges the value of the unit, H l,
closer to the mean value of the unit, µl, which only depends on feedforward signals. However,
it is not yet clear how the feedback signal can be implemented with biological systems. First, it
requires information to be propagated through the feedback weight (W l+1)T that is symmetric of the
feedforward weight in the next layer, which may not be biologically plausible. Nonetheless, recent
work has shown that symmetric weights may not be necessary for backprop due to the phenomenon
of ‘feedback alignment’ [17, 18, 19], and similar phenomenons may also exist for MAP propagation.
Second, the information to be propagated backward is el+1 ⊙ δl+1, which is different from the
information to be propagated forward (H l). An illustration of this is shown in Fig 6.

The issue of propagating two different values also exists for backprop since error signals, instead of
units’ values, are propagated backward in backprop. However, in backprop, the backpropagated error
signals have to be stored separately from the units’ values, so as to compute the next error signals to
be passed to the lower layers. In contrast, the feedback signal in MAP propagation is only used to
nudge the value of units and does not need to be stored separately. In other words, backprop requires
non-local information in the computation of feedback signal, but not MAP propagation.

1We ignore the subscript t here since it does not affect our discussion, and ⊙ denotes element-wise multipli-
cation.
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It is not yet clear how a neuron can propagate two different values at the same time, even if both
values are locally available. But there are many possible solutions to avoid propagating different
values in MAP propagation. For instance, since the feedback signal (W l+1)T (el+1 ⊙ δl+1) can
be expressed as a function of H l and H l+1, it might be possible to approximate this term based
on feedback connections (for H l+1) and recurrent connections (for H l), and learn the weights in
these connections, such that all units are propagating the same value. Another possible solution is to
minimize the energy function by hill-climbing methods instead of gradient ascent, such that only the
scalar energy, instead of feedback connection, is required to guide the minimization of the energy
function. Further work can be done on these possible solutions.

Despite the limitations of MAP propagation, we argue that MAP propagation is more biologically
plausible than backprop. The two major limitations of MAP propagation also exist in backprop, but
MAP propagation does not require non-local information in both the learning rule or the computation
of feedback signals. Also, the update of all layers can be done in parallel in MAP propagation,
removing the requirement of precise coordination between feedforward and feedback connections
that is required in backprop.

Table 2: Hyperparameters used in multiplexer and scalar regression experiments.

Multiplexer Scalar Regression

Batch Size 128 128
N 20 20
α1 4e-2 6e-2
α2 4e-5 6e-5
α3 4e-6 6e-6
σ2
1 0.3 0.0075

σ2
2 1 0.025

σ2
3 n.a. 0.025

T 1 n.a.

Table 3: Hyperparameters used in Acrobot, Cartpole, Lunarlander and MountainCar experiments.

Acrobot CartPole LunarLander MountainCar

Critic Actor Critic Actor Critic Actor Critic Actor

N 20 20 20 20 20 20 20 20
α1 2e-2 1e-2 2e-2 1e-2 1e-2 4e-3 1e-2 4e-3
α2 2e-5 1e-5 2e-5 1e-5 1e-5 4e-6 1e-5 4e-6
α3 2e-6 1e-6 2e-6 1e-6 1e-6 4e-7 1e-6 4e-7
σ2
1 0.06 0.03 0.03 0.03 0.003 0.06 0.003 0.03

σ2
2 0.2 0.1 0.1 0.1 0.01 0.2 0.01 0.1

σ2
3 0.2 n.a. 0.1 n.a. 0.01 n.a. 0.05 0.5

T n.a. 4 n.a. 2 n.a. 8 n.a. n.a.
λ .97 .97 .95 .95 .97 .97 .97 .97
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