
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE CURVATURE STEP SIZE: A PATH
GEOMETRY BASED APPROACH TO OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the Adaptive Curvature Step Size (ACSS) method, which dynami-
cally adjusts the step size based on the local geometry of the optimization path.
Our approach computes the normalized radius of curvature using consecutive gra-
dients along the iterate path and sets the step-size equal to this radius. The ef-
fectiveness of ACSS stems from its ability to adapt to the local landscape of the
optimization problem. In regions of low curvature, where consecutive gradient
steps are nearly identical, ACSS allows for larger steps. Conversely, in areas of
high curvature, where gradient steps differ significantly in direction, ACSS re-
duces the step size. This adaptive behavior enables more efficient navigation of
complex loss landscapes. A key advantage of ACSS is its adaptive behavior based
on local curvature information, which implicitly captures aspects of the function’s
second-order geometry without requiring additional memory. We provide a gen-
eralized framework for incorporating ACSS into various optimization algorithms,
including SGD, Adam, AdaGrad, and RMSProp. Through extensive empirical
evaluation on 20 diverse datasets, we compare ACSS variants against 12 popular
optimization methods. Our results consistently show that ACSS provides perfor-
mance benefits. Our results consistently show that ACSS provides performance
benefits. We provide PyTorch implementations of ACSS versions for popular op-
timizers at our anonymized code repository.

1 INTRODUCTION

Optimization algorithms are the canonical work-horses of machine learning, driving the process of
finding optimal parameters for deep learning models (Soydaner, 2020; Kochenderfer & Wheeler,
2019; Beck, 2017). As model architectures grow in size and complexity, the efficiency of these al-
gorithms becomes paramount. A key challenge is that the objective in many learning problems are
inherently non-convex, often due to structural or data-related constraints that impose non-convexity
(Jain et al., 2017). Such learning problems may induce intricate loss landscapes characterized by
large tracts of low gradients interspersed with areas of steep gradients, presenting significant navi-
gational challenges for optimization algorithms. Effective optimization methods must not only find
good solutions but do so efficiently in terms of computation and memory usage, especially when
dealing with large-scale models and datasets, where navigation on the loss landscape is likely to
follow an intricate path (Anil et al., 2019).

In light of this, we propose a geometric path based solution to optimization: the Adaptive Curvature
Step Size (ACSS) method. Our approach is motivated by the observation that the curvature of the
optimization path itself contains information about the local geometry of the loss landscape. By
utilizing this curvature information, we can incorporate second order information adaptively into
the step size — without the need for explicit computation or storage of second-order derivatives,
and without the need for careful tuning of learning rates.

The intuition behind ACSS is rooted in differential geometry. Specifically, the curvature of a path
provides insight into how rapidly the gradient is changing, which is indicative of the local shape
of the loss surface. In fact, the iterate path can be viewed as a finite-difference approximation to
the gradient flow manifold. We note that the curvature of this manifold is a powerful proxy for the
local geometry of the loss landscape. Our method, ACSS, implicitly captures information about the
changing gradient, which is related to the Hessian. This provides some of the benefits of second-
order methods while maintaining the computational efficiency of first-order approaches.

1

https://anonymous.4open.science/r/curvatureStep-2a79/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

SimpleSGD
SimpleSGD
Global Optimum

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

HeavyBall
HeavyBall
Global Optimum

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

NAG
NAG
Global Optimum

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

SimpleSGD-ACSS

SimpleSGDCurvature
Global Optimum

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

HeavyBall-ACSS

HeavyBallCurvature
Global Optimum

2.5 0.0 2.5 5.0
y

2.5
0.0
2.5

NAG-ACSS

NAGCurvature
Global Optimum

Optimization Paths on the Beale Function

Figure 1: We plot the optimization paths of various optimizers on the Beale function which is
characterized by steep valleys and a small area containing the global minimum. All optimizers start
at (−1.5, 2.5) with a learning rate of 1× 10−3. The function has a global minimum at (3, 0.5); The
ACSS versions of the optimizers converge here, without the use of any additional memory to store
higher order moments.

1.1 RELATED WORKS:

First Order Methods: While first-order methods like Stochastic Gradient Descent (SGD) have low
memory requirements, they converge slowly, particularly in ill-conditioned problems (Tian et al.,
2023). Momentum based methods such as HeavyBall and NAG dampen oscillations to a certain
degree (Sra et al., 2012; Nesterov, 2013), yet have limited ability to adapt when the loss landscape
requires a change in direction of iterate (as seen in Figure 1).

Variance of Gradient: To address the limitations of basic SGD, several adaptive methods that ad-
just learning rates based on gradient statistics have been proposed. Adagrad accumulates squared
gradients to adaptively tune learning rates, but it suffers from an ever-decreasing learning rate (Duchi
et al., 2011). RMSProp improves upon this by using an exponentially decaying average of squared
gradients, maintaining a more stable learning rate over time (Hinton et al., 2012). Adam and its
variants (Kingma & Ba, 2014) further incorporate momentum, combining the benefits of adaptive
learning rates and momentum to achieve better performance in various scenarios. AdamW en-
ables better generalization through through weight decay regularization Loshchilov & Hutter (2017).
AMSGrad addresses the convergence issues of Adam by ensuring that the learning rate does not
increase, thereby providing better theoretical guarantees and more stable convergence in practice
(Reddi et al., 2019). Nadam, and its weight decay variant NAdamW, integrate Nesterov momen-
tum into the Adam framework, leading to faster convergence by anticipating the future position of

Optimizer Weights Gradients Momentum
Accumulated

Squared
Gradients

Exp. Avg.
of Gradients

Exp. Avg. of
Squared

Gradients
SimpleSGD ✓ ✓ × × × ×
HeavyBall ✓ ✓ ✓ × × ×
NAG ✓ ✓ ✓ × × ×
Adagrad ✓ ✓ × ✓ × ×
RMSProp ✓ ✓ × ✓ × ×
Adadelta ✓ ✓ × × × ✓
Adam ✓ ✓ × × ✓ ✓
AdamW ✓ ✓ × × ✓ ✓
AMSGrad ✓ ✓ × × ✓ ✓
NAdam ✓ ✓ × × ✓ ✓
NAdamW ✓ ✓ × × ✓ ✓
RMSPropMomentum ✓ ✓ ✓ ✓ × ×

Table 1: Memory requirements for different optimizers during backpropagation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the parameters (Dozat, 2016). However, these adaptive methods are not without drawbacks. They
can sometimes lead to poor generalization (Wilson et al., 2017), and the implicit learning rate de-
cay inherent in their designs can cause convergence issues in some scenarios (Reddi et al., 2019).
Moreover, lack the ability to fully capture and utilize the local geometric information of the loss
landscape, and often require careful tuning of hyper-parameters. We provide a study on the memory
requirements of various optimizers in terms of the number of parameters in the model, in Table 1.

Second Order Methods: Second-order optimization methods typically offer better convergence
properties, but Hessian based methods can get prohibitively expensive (Anil et al., 2020). Works
like Gupta et al. (2018); Goldfarb et al. (2020); Singh et al. (2023) exploit the structure of the neural
architecture that is being optimized (using factoring over layers) to reduce the computational cost,
but these can face numerical instabilities. Subsequent works like Sophia (Liu et al., 2023) and AGD
(Yue et al., 2023) address these issues, and yet have memory overhead. Recent works like Feinberg
et al. (2024); Yen et al. (2024) address the memory issue to a certain degree, but they are essentially
approximating the preconditioning tensor, which has a computation cost. Still other methods like
VeLO (Metz et al., 2022) are frameworks that decide the optimization parameters using a small
neural network — which has a wall-clock time overhead.

1.2 OUR CONTRIBUTIONS

1. Novel Optimization Approach: We introduce the Adaptive Curvature Step Size (ACSS) method,
a new optimization algorithm that leverages the geometric properties of the optimization path to dy-
namically adjust step sizes. ACSS incorporates local curvature information derived from consecutive
gradients, providing benefits typically associated with higher-order methods while maintaining the
computational efficiency of first-order approaches. This approach allows ACSS to adapt to the local
landscape of the optimization problem automatically, eliminating the need for careful manual tuning
of step sizes typically required in traditional optimization methods.

2. Low Memory Footprint with Performance Benefits: Unlike many optimization methods that
require significant additional memory for storing pre-conditioners or momentum terms, ACSS of-
fers second-order benefits while maintaining the memory footprint of the base optimizer. Our ex-
periments demonstrate that ACSS variants, particularly for optimizers like SGD, HeavyBall, and
NAG that do not store squared gradients, show significant performance improvements across diverse
datasets. For instance, SimpleSGD-ACSS often outperforms more complex methods like AdamW
and AMSGrad, despite its lower memory requirements. This makes ACSS particularly suitable for
large-scale optimization problems, where the reduced memory footprint can be leveraged to increase
the number of parameters being optimized.

3. Theoretical Foundation: We provide a comprehensive theoretical analysis of ACSS, proving
bounds on effective step size, stability under perturbations, convergence rates for strongly convex
functions, and scale invariance properties. This analysis demonstrates ACSS’s adaptive behavior
to local curvature and offers insights into its relationship with both first-order and second-order
optimization techniques.

4. PyTorch Implementation: To facilitate adoption and further research, we provide efficient
PyTorch implementations of the ACSS variants for popular optimizers, at our anonymized GitHub
repository, making it easy to incorporate our method into existing machine learning workflows and
reproduce our results.

In the next section, we provide the necessary notations and theoretical machinery for ACSS.

2 NOTATIONS AND METHOD

Consider a function f : Rn × D → R that we wish to minimize with respect to its first argument
w ∈ Rn. The optimization path traced by iterates {wt} can be viewed as a discrete approximation
of a continuous curve in parameter space. Let wt ∈ Rn be the parameter at iteration t, and gt =
∇wf(wt,Bt) be the gradient computed using a batch Bt ⊂ D.

In differential geometry, the curvature κ(s) of a curve w(s) parameterized by arc length s is defined
as:

κ(s) =

∥∥∥∥dT (s)ds

∥∥∥∥ , (1)

3

https://anonymous.4open.science/r/curvatureStep-2a79/README.md
https://anonymous.4open.science/r/curvatureStep-2a79/README.md

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where T (s) = dw(s)
ds is the unit tangent vector. The radius of curvature is given by ρ(s) = 1

κ(s) .

To relate this to our discrete optimization steps, we approximate the curvature using finite differ-
ences. Let η be the base learning rate, and g′t = ∇wf(wt − ηgt,Bt) be the gradient at a tentative
next point. We define the normalized radius of curvature as:

rt :=
∥gt∥

∥gt − g′t∥
. (2)

This approximation allows us to estimate the local curvature of the loss landscape without explicitly
computing second-order derivatives.

To ensure numerical stability, we introduce a cap on the normalized radius of curvature:

r̂t := min{rmax, rt}, (3)

where rmax is the maximum allowed curvature.

Update Rule: Incorporating this adaptive curvature step size, we define the update rule as:

wt+1 := wt − η × r̂t ×
gt
∥gt∥

(Eq. 1) (4)

This update can be interpreted as moving in the direction of the negative gradient gt
∥gt∥ with a step

size dynamically adjusted by η × r̂t based on the local curvature of the loss landscape.

The proposed Adaptive Curvature Step Size (ACSS) method aims to balance the trade-off between
convergence speed and stability by adapting the step size according to the geometry of the opti-
mization path. In regions of low curvature, it allows for larger steps to accelerate progress, while in
highly curved areas, it reduces the step size to maintain stability.

2.1 ALGORITHM

We now provide this update rule in the form of an Algorithm.

Algorithm 1: Stochastic gradient descent with adaptive curvature step size (SGD-ACSS)
Input: Function fw : D → R, initial parameters w0 ∈ Rn, base learning rate η, maximum

radius rmax, number of iterations T , batch size B
Output: Optimized parameters wT

for t = 0 to T − 1 do
Sample a mini-batch Bt from D;
Compute gradient gt = ∇fw(wt;Bt);
Compute tentative next point gradient g′t = ∇fw(wt − ηgt;Bt);
Compute normalized radius of curvature rt =

||gt||
||gt−g′

t||
;

Compute capped radius r̂t = min{rmax, rt};
Update parameters wt+1 = wt − η × r̂t × gt

||gt|| ;
end
return wT

3 THEORETICAL ANALYSIS

We provide theoretical guarantees for the Adaptive Curvature Step Size (ACSS) method. Our anal-
ysis focuses on the method’s convergence properties, step size bounds, and adaptive behavior. De-
tailed proofs for all theorems can be found in the Appendix Section B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 STEP SIZE BOUNDS AND CONVERGENCE

We begin by establishing bounds on the effective step size of ACSS and proving its convergence for
strongly convex functions.

Theorem 1 (Bounded Step Size of ACSS). Let f : Rn → R be an L-smooth and µ-strongly
convex function. Consider the ACSS update rule with rmax ≤ 2

η(µ+L) . Then, the effective step size
ηeff = ηr̂t is bounded as follows:

1

L
≤ ηeff ≤

2

µ+ L

for all iterations t.

This theorem ensures that ACSS maintains step sizes within a range that promotes stable conver-
gence. Building on this result, we establish the convergence rate for ACSS:

Theorem 2 (Convergence Rate for ACSS on Strongly Convex Functions). Let f : Rn → R be an
L-smooth and µ-strongly convex function. Under the ACSS update rule, for all t ≥ 0:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2.

This theorem indicates that ACSS achieves linear convergence for strongly convex functions, with a
rate comparable to standard gradient descent methods.

It is important to note that while the theoretical results presented in this section are derived for the
deterministic gradient setting, the empirical results of ACSS, as discussed in Section 4, involves its
use in stochastic settings with mini-batch optimization. The extension of these theoretical guarantees
to the stochastic case is a potential area for future work. Nevertheless, our analysis does extend to
scenarios involving bounded gradient perturbations, as detailed in the following subsection.

3.2 STABILITY UNDER PERTURBATION

Next, we present results on the stability of ACSS under gradient perturbations and its convergence
guarantees for L-smooth and µ-strongly convex functions.

Theorem 3 (Stability of ACSS Under Gradient Perturbations). Let f : Rn → R be an L-smooth
and µ-strongly convex function. Assume the gradients are perturbed such that g̃t = gt + δt and
g̃′t = g′t + δ′t, where ∥δt∥ ≤ ε and ∥δ′t∥ ≤ ε for some ε > 0. Then, the difference between the
updates using exact and perturbed gradients satisfies:

∥w̃t+1 − wt+1∥ ≤ 4ηmaxε

m− ε
,

where ηmax = 2
L+µ and m is a lower bound on the gradient norm.

While this theoretical result provides partial insights under specific assumptions, it may not fully
capture ACSS’s behavior in complex, non-convex landscapes. However, our extensive experiments
in Section 4 may provide further evidence of ACSS stability properties across several difficult-to-
optimize problems and diverse common machine learning datasets.

3.3 ADAPTIVE BEHAVIOR AND SCALE INVARIANCE

Finally, we examine the scale invariance property of ACSS.

Theorem 4 (Scale Invariance of ACSS Effective Step Size). For any scalar α > 0, scaling the base
step size η by α results in the same parameter updates for quadratic functions and approximately the
same updates for general L-smooth and µ-strongly convex functions, assuming r′t ≤ rmax.

This scale invariance property suggests that ACSS is not sensitive to the choice of base step size
— a significant practical advantage. ACSS automatically adapts its effective step size to the lo-
cal geometry of the loss landscape, taking larger steps in low-curvature regions and smaller steps
in high-curvature areas. This behavior mitigates the need for manual step size tuning and allows
ACSS to maintain near-optimal convergence rates across varying landscapes without requiring prior
knowledge of function-specific parameters. In contrast, SGD often requires careful manual tuning
of step sizes to achieve similar convergence rate guarantees, which is challenging, particularly when
optimizing functions with varying curvature across the parameter space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 CROSS-DATASET PERFORMANCE ANALYSIS OF ACSS

im
db

 re
vie

ws
CoLA

fm
nis

t

cifa
r-1

0

fm
nis

t.1

cal
tec

h 1
01

reu
ter

s

ag
-ne

ws

Flo
wers

10
2

cifa
r-1

00 stl1
0

eu
ros

at

cal
tec

h 1
01

 re
sne

t
ye

lp

am
azo

n f
ull

sog
ou

am
azo

n r
ev

iew
s p

ola
rity mnis

t

oxf
ord

 pe
t

db
pe

dia

Datasets

SimpleSGD

HeavyBall

Adadelta

RMSProp

NAG

Adagrad

NAdam

NAdamW

Adam

AdamW

AMSGrad

RMSPropMomentum

Op
tim

ize
rs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0

1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0

1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1

1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0

0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0

1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1

Effectiveness of ACSS Across Optimizers and Datasets

0.0

0.2

0.4

0.6

0.8

1.0

AC
SS

 E
ffe

ct
iv

en
es

s

Figure 2: Binary representation of ACSS effectiveness across datasets and optimizers. Values indi-
cate improvement (1) or no improvement (0) in training loss after a fixed number of epochs.
Figures 2 and 3 present a comprehensive evaluation of ACSS across 12 optimizers and 20 diverse
datasets. ACSS demonstrates consistent performance improvements for most optimizer-dataset
combinations. Significantly, SimpleSGD exhibits the most robust improvement across all datasets.

Optimizers that do not inherently use second-order information show the highest improvements, sug-
gesting that ACSS effectively incorporates second-order information through loss landscape topol-
ogy. SGD, HeavyBall, and NAG demonstrated mean training loss improvements of approximately
0.5 across 20 datasets using their respective ACSS versions.

Vision-related benchmarks, including Caltech 101, CIFAR-100, Flowers102, and STL10, showed
the most significant improvements. The 18-layer ResNet variant exhibited the best performance,
while the MNIST dataset with a simple neural network showed less pronounced improvements,
likely due to the inherent effectiveness of most optimizers on simpler models.

Key Takeaways: ACSS provides improvements for most optimizers across various datasets. In
cases where regular versions outperform ACSS, the difference in training loss is typically minimal.

cal
tec

h 1
01

 re
sne

t

cifa
r-1

00

Flo
wers

10
2

oxf
ord

 pe
t

cal
tec

h 1
01 stl1

0

cifa
r-1

0
reu

ter
s

ag
-ne

ws
CoLA

stl1
0 r

esn
et

fm
nis

t

db
pe

dia

fm
nis

t.1

am
azo

n f
ull

sog
ou

eu
ros

at ye
lp

im
db

 re
vie

ws
mnis

t

am
azo

n r
ev

iew
s p

ola
rity

Datasets

SimpleSGD

HeavyBall

NAG

NAdamW

Adadelta

Adagrad

RMSProp

AdamW

RMSPropMomentum

Adam

AMSGrad

NAdam

Op
tim

ize
rs

3.30 3.16 2.05 2.01 2.77 1.76 1.71 0.40 0.18 0.02 0.83 0.47 2.30 0.40 0.29 0.08 0.47 0.17 0.15 0.07 0.27

2.33 1.37 1.81 1.84 0.95 0.87 0.89 0.45 0.27 0.03 0.39 0.29 -0.61 0.22 -0.05 0.08 -0.09 0.06 0.01 0.14 0.13

2.32 1.40 1.77 1.90 0.96 0.87 0.89 0.44 0.29 0.03 0.33 0.29 -0.62 0.22 -0.06 0.08 -0.15-0.08 0.01 0.14 -1.84

0.02 0.01 -0.00-0.00-0.01-0.02 0.00 -0.31 1.40 0.28 0.00 0.00 0.17 -0.00-0.03 0.95 0.03 -0.00 0.00 -0.00 0.00

0.27 0.02 0.05 0.06 0.03 0.14 0.11 0.14 0.13 -0.04 0.17 0.10 -0.01 0.01 0.10 -0.14 0.17 0.01 0.07 -0.29 0.13

-0.46 0.26 0.00 -0.02 0.26 0.24 -0.00 0.25 -0.00-0.04-0.01 0.07 0.01 0.00 0.22 0.02 0.02 0.08 0.00 0.00 0.23

0.06 0.01 0.04 0.01 0.01 0.09 0.01 0.25 0.19 0.36 -0.01-0.03-0.00 0.00 -0.00 0.02 0.00 0.05 0.00 0.00 0.01

-0.01-0.00 0.04 0.03 0.01 -0.01 0.00 0.78 -0.13 0.26 -0.01 0.00 -0.01 0.00 0.05 -0.02-0.01 0.04 -0.00-0.00-0.06

-0.01-0.01 0.01 -0.02-0.00 0.10 -0.00-0.17-0.02 0.36 -0.02 0.00 0.00 0.00 0.09 -0.00-0.03-0.06-0.00 0.00 0.13

-0.02-0.01-0.01-0.12 0.01 -0.01-0.00 0.05 -0.00 0.26 0.00 0.00 -0.05-0.00 0.06 0.02 0.02 0.09 0.00 -0.00-0.01

0.01 -0.02-0.03-0.04-0.00-0.01 0.00 -0.10 0.16 0.26 0.02 0.00 -0.03-0.00-0.05-0.03 0.01 0.01 0.00 -0.00-0.01

0.01 0.04 -0.01-0.02 0.06 -0.00 0.00 0.35 0.08 0.28 0.02 0.01 -0.14 0.00 0.03 -0.60 0.01 -0.00 0.01 -0.00-0.10

Optimizer Improvement by Using ACSS Across Datasets

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pe
rfo

rm
an

ce

Figure 3: Quantitative improvement in training loss using ACSS across datasets and optimizers after
a fixed number of epochs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Training Loss over 5 Epochs for Yelp Reviews Polarity Dataset (560,000 reviews) using a
Simplified RNN Model. The model consists of embedding, RNN, and fully connected layers. ACSS
versions of optimizers generally outperform their traditional counterparts.

Optimizer Name Regular Optimizer ACSS Version of Optimizer
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Adadelta 0.680 ±0.00 0.674 ±0.00 0.671 ±0.00 0.669 ±0.00 0.668 ±0.00 0.679 ±0.01 0.670 ±0.00 0.666 ±0.00 0.663 ±0.00 0.659 ±0.00

Adagrad 0.558 ±0.01 0.521 ±0.01 0.510 ±0.01 0.501 ±0.01 0.493 ±0.01 0.569 ±0.07 0.498 ±0.07 0.452 ±0.06 0.429 ±0.06 0.410 ±0.07

Adam 0.627 ±0.01 0.584 ±0.01 0.587 ±0.00 0.568 ±0.04 0.575 ±0.02 0.542 ±0.04 0.541 ±0.16 0.530 ±0.17 0.457 ±0.20 0.489 ±0.14

AdamW 0.581 ±0.02 0.567 ±0.03 0.478 ±0.01 0.499 ±0.08 0.419 ±0.11 0.599 ±0.04 0.589 ±0.12 0.555 ±0.10 0.413 ±0.05 0.376 ±0.12

AMSGrad 0.537 ±0.00 0.548 ±0.01 0.569 ±0.11 0.481 ±0.05 0.589 ±0.07 0.616 ±0.04 0.596 ±0.02 0.625 ±0.08 0.625 ±0.03 0.578 ±0.03

HeavyBall 0.666 ±0.00 0.652 ±0.00 0.604 ±0.01 0.529 ±0.01 0.512 ±0.01 0.572 ±0.01 0.517 ±0.01 0.491 ±0.01 0.474 ±0.01 0.455 ±0.01

NAdam 0.637 ±0.01 0.612 ±0.00 0.589 ±0.00 0.580 ±0.04 0.537 ±0.09 0.609 ±0.02 0.543 ±0.05 0.543 ±0.01 0.531 ±0.04 0.538 ±0.02

NAdamW 0.601 ±0.01 0.531 ±0.00 0.495 ±0.05 0.498 ±0.05 0.523 ±0.03 0.632 ±0.00 0.594 ±0.02 0.585 ±0.02 0.541 ±0.04 0.528 ±0.02

NAG 0.666 ±0.00 0.652 ±0.00 0.604 ±0.01 0.529 ±0.01 0.510 ±0.02 0.630 ±0.02 0.616 ±0.00 0.604 ±0.01 0.604 ±0.03 0.591 ±0.02

RMSProp 0.650 ±0.04 0.538 ±0.07 0.495 ±0.13 0.425 ±0.09 0.447 ±0.03 0.624 ±0.02 0.493 ±0.03 0.432 ±0.03 0.407 ±0.06 0.394 ±0.06

RMSPropMomentum 0.652 ±0.02 0.578 ±0.04 0.561 ±0.03 0.491 ±0.05 0.467 ±0.03 0.633 ±0.06 0.601 ±0.03 0.581 ±0.00 0.551 ±0.04 0.524 ±0.04

SimpleSGD 0.676 ±0.00 0.671 ±0.00 0.669 ±0.00 0.667 ±0.00 0.665 ±0.00 0.596 ±0.01 0.535 ±0.01 0.519 ±0.01 0.506 ±0.01 0.493 ±0.02

4.2 PERFORMANCE ON THE YELP REVIEWS DATASET

We evaluated various optimizers with and without ACSS on the Yelp Reviews Polarity Dataset
(560,000 reviews) using a simplified RNN model. The ACSS variants generally outperformed their
standard counterparts over five epochs. AdamW-ACSS showed the most significant improvement,
with loss decreasing from 0.5994 to 0.3756 across epochs, outperforming the traditional AdamW’s
final loss. SimpleSGD-ACSS demonstrated remarkable improvement, matching top performers like
AdamW-ACSS by the first epoch.
Key Takeaways: The best performing non-ACSS optimizer after Epoch 5 reaches a training loss
of only 0.419 (AdamW), which is reached at Epoch 4 for two of the ACSS versions. All the best-
performing optimizers after Epoch 2 are ACSS versions of the optimizers.

4.3 TRAINING LOSS IMPROVEMENTS AVERAGED OVER ALL DATASETS

We evaluated the performance of Adaptive Curvature Step Size (ACSS) variants of SimpleSGD,
HeavyBall, and NAG (Nesterov Accelerated Gradient) across diverse datasets in vision and lan-
guage domains. Our evaluation encompassed various model architectures, including CNNs (such as
ResNet), RNNs, and simple neural networks. The results, as illustrated in Figure 4, demonstrate
consistent improvements in training performance for ACSS variants compared to their standard
counterparts. These improvements were observed across all five epochs and increased over time,
indicating that ACSS provides sustained benefits throughout the training process.
Key Takeaways: Optimizers that do not store square-gradient terms (SGD, HeavyBall, NAG) ex-
hibit significant outperformance through the use of ACSS. The improvement in mean training loss,
averaged across all datasets, is evident across all the epochs.

4.4 PERFORMANCE ON VISION BENCHMARKS

Figure 5 presents a heatmap of optimizer rankings across five vision datasets: Caltech101, CIFAR10,
Flowers102, MNIST, and STL10. The analysis reveals that Adadelta and RMSProp variants con-
sistently underperform, with ACSS showing minimal impact on their effectiveness. In contrast,
Adam, AdamW, and AMSGrad perform well initially, with ACSS offering marginal improvements.
Adagrad demonstrates high performance variance across datasets.

1 2 3 4 5
Epoch

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
ea

n
Tr

ai
ni

ng
 L

os
s

SGD
SimpleSGD
SimpleSGDCurvature

1 2 3 4 5
Epoch

1.2

1.4

1.6

1.8

2.0

2.2

M
ea

n
Tr

ai
ni

ng
 L

os
s

HeavyBall
HeavyBall
HeavyBallCurvature

1 2 3 4 5
Epoch

1.2

1.4

1.6

1.8

2.0

2.2

M
ea

n
Tr

ai
ni

ng
 L

os
s

NAG
NAG
NAGCurvature

Figure 4: Mean training loss across epochs for different optimizers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

C101 epoch5 C101 epoch10 C-10 epoch5 C-10 epoch10 F102 epoch5 F102 epoch10 MNI epoch5 MNI epoch10 STL10 epoch5 STL10 epoch10
Dataset and Epoch

Adadelta-ACSS
Adagrad-ACSS

Adam-ACSS
AdamW-ACSS

AMSGrad-ACSS
HeavyBall-ACSS

NAdam-ACSS
NAdamW-ACSS

NAG-ACSS
RMSProp-ACSS

RMSProp-mom-ACSS
SimpleSGD-ACSS

Adadelta
Adagrad

Adam
AdamW

AMSGrad
HeavyBall

NAdam
NAdamW

NAG
RMSProp

RMSProp-mom
SimpleSGD

Op
tim

ize
r

23 22 22 23 23 23 24 24 22 22
14 19 20 21 2 1 20 20 16 18
5 7 7 5 8 8 7 7 9 9
4 8 11 6 3 3 8 9 13 8
2 4 9 1 4 6 5 5 14 7
10 1 5 9 9 9 2 2 18 15
8 10 1 15 15 13 14 15 2 1
7 9 4 14 13 15 17 17 1 10
11 2 6 8 10 10 1 3 19 14
16 14 15 10 16 16 11 10 5 12
18 17 14 12 18 18 12 12 7 13
17 13 17 3 11 11 3 1 15 11
24 24 24 24 24 24 23 23 24 24
13 16 21 20 1 2 21 21 17 19
1 3 8 4 5 5 6 6 12 5
6 6 12 7 7 7 9 8 11 6
3 5 10 2 6 4 4 4 10 4
20 20 18 19 20 21 18 18 21 20
12 11 2 17 14 12 15 14 4 3
9 12 3 16 12 14 16 16 3 2
21 21 18 18 21 20 18 19 20 21
19 18 16 13 17 17 10 11 6 16
15 15 13 11 19 19 13 13 8 17
22 23 23 22 22 22 22 22 23 23

Optimizer Rankings Across Datasets and Epochs

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ra
nk

Figure 5: Heatmap of optimizer rankings across various computer vision datasets. The heatmap
displays the performance ranks of 24 optimizers, including both standard versions and their Adaptive
Curvature Step Size (ACSS) variants, on five different datasets (Caltech101, CIFAR10, Flowers102,
MNIST, and STL10) at epochs 5 and 10. Rankings range from 1 (best performing) to 24 (worst
performing), with lower numbers and cooler colors indicating better performance. This visualization
highlights the impact of ACSS on various optimizers across different datasets.

Notably, optimizers that do not incorporate squared gradients (SimpleSGD, HeavyBall, NAG) ben-
efit most from ACSS. These optimizers achieve performance boosts comparable to methods using
squared gradients, but without the associated memory overhead.
Key Takeaways: ACSS versions generally outperform their traditional counterparts on these vision
benchmarks for both ResNet-18 and simple CNN architectures. The most significant improvements
are observed in optimizers that do not initially use squared gradients.

4.5 OVERALL RANK IMPROVEMENTS FOR DIFFERENT OPTIMIZERS

Figure 6 illustrates the performance improvement of optimizers with ACSS across multiple datasets.
Optimizers with lower memory requirements benefit most from ACSS. SimpleSGD, with the small-
est memory footprint, shows the highest average rank improvement of 12.5. HeavyBall and NAG
also demonstrate significant enhancements, with average improvements of 7.9 and 6.7 respectively.

M
EA

N

IM
D

CO
L

AG
N

M
NI

C1
01

C1
01

R

C-
10

R-
LB OP AR

F

AR
P

RE
U

F1
02

ST
L1

0R

C-
10

0

F-
LB

ye
lp

FM
NI

ST
L1

0

SO
G

DB
P

EU
R

Datasets

SGD

HeavyBall

NAG

RMSProp

Adagrad

NAdam

NAdamW

Adadelta

RMSProp-Mom.

AMSGrad

Adam

AdamW

Op
tim

ize
rs

12 19 6 9 22 20 10 20 11 13 17 18 11 11 8 19 6 13 6 12 6 15 3

7.9 18 4 11 17 8 19 10 10 16 -3 7 9 12 11 6 7 6 7 5 3.5 -3.5 -6

6.7 18 4 12 17 10 19 10 9.5 18 -3 -4 9 10 11 6 8 -10 7 7 4.5 -4.5 -12

2.9 6 20 7 1 4 4 3 6 1 -1 2 9 1 -1 1 -8 3 1 4 1 -1 1

1.5 1 -7 -1 1 3 -3 -1 3 -1 7 13 2 1 -1 1 3 6 6 1 3 1 1

1.3 5 6 1 -1 3 1 2 7 -1 6 -6 3 -1 3 3 2 -1 1 -1 -2 -3 2

0.8 1 6 21 -1 -1 3 2 -6 -1 -2 1 -6 -1 1 1 -2 1 -1 -9 3 5 2

0.8 1 -9 2 -1 1 2 1 3 2 5 6 -1 1 2 1 2 2 2 1 2 -6 -2

0.5 -4 18 -1 1 -1 -2 -1 -3 -1 7 10 -7 1 -3 -1 5 -7 1 4 -1 1 -4

0.3 2 5 7 -1 -1.5 1 1 -3 -2 -5 -4 9 -2 4 -1 -7 1 -1 -3 -2 -1 3

0.2 6 7 -1.5 -1 2 -4 -1 3 -6 5 -3 -1 -3 1 1 10 -1 -1 -4 2 -7 -3

-0.1 -5 6 -7.5 -1 3 -2 1 3 2 5 -4 -1 4 -2 -1 2 3 1 -2 -2 -2 -3

Improvement in Rank of Optimizers on using ACSS across Datasets

10

5

0

5

10

15

20

Pe
rfo

rm
an

ce

Figure 6: Heatmap of optimizer rank improvements when using ACSS across datasets. Green in-
dicates better performance, red indicates worse. The datasets are listed on the X-axis, and the
optimizers on the Y-axis. Color intensity represents the degree of improvement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 2 0 2 4
y

4

2

0

2

4
SimpleSGD

SimpleSGD
Global Optima

4 2 0 2 4
y

4

2

0

2

4
HeavyBall

HeavyBall
Global Optima

4 2 0 2 4
y

4

2

0

2

4
NAG

NAG
Global Optima

4 2 0 2 4
y

4

2

0

2

4
SimpleSGD-ACSS

SimpleSGDCurvature
Global Optima

4 2 0 2 4
y

4

2

0

2

4
HeavyBall-ACSS

HeavyBallCurvature
Global Optima

4 2 0 2 4
y

4

2

0

2

4
NAG-ACSS

NAGCurvature
Global Optima

Optimization Paths on Himmelblau Function

(a)

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 SimpleSGD

SimpleSGD
Global Optimum

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 HeavyBall

HeavyBall
Global Optimum

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 NAG

NAG
Global Optimum

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 SimpleSGD-ACSS

SimpleSGDCurvature
Global Optimum

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 HeavyBall-ACSS

HeavyBallCurvature
Global Optimum

1 0 1 2
y

2.0
1.5
1.0
0.5
0.0
0.5
1.0 NAG-ACSS

NAGCurvature
Global Optimum

Optimization Paths on the Goldstein Price Function

(b)

Figure 7: Optimization paths on the Goldstein-Price (left) and Himmelblau (right) functions. These
functions present challenges due to their complex landscapes with multiple optima and flat regions.
More complex optimizers like Adam, AdamW, and AMSGrad, which already incorporate adaptive
learning rate mechanisms, show lower benefits. This suggests ACSS is particularly effective in
enhancing simpler optimization algorithms, offering a memory-efficient alternative to more complex
adaptive methods.

Key Takeaways: Except for AdamW, all optimizers show positive mean performance improvement
with ACSS, indicating benefits in incorporating ACSS into existing optimization pipelines.

4.6 OPTIMIZATION ON CHALLENGING FUNCTIONS

We now plot the performance of our optimizers on two challenging functions: the Himmelblau and
Goldstein-Price functions. Additional functions are analyzed in Appendix F.

The Himmelblau Function: The Himmelblau function has four global minima. ACSS versions
converge to the nearest minimum from the starting point (-4,4), while other versions overshoot at a
learning rate of 1.5 × 10−2. At higher rates, non-ACSS versions diverge, whereas ACSS versions
maintain convergence.

The Goldstein-Price Function: The Goldstein-Price function, with its complex landscape of mul-
tiple local minima and one global minimum at (0, -1), challenges gradient-based methods. ACSS
optimizers dynamically adjust step sizes based on local curvature, enabling precise convergence to
the global minimum. In contrast, standard Heavyball and NAG optimizers overshoot, moving toward
different local minima. We plot 5000 iterations from (0.5, 0) with a learning rate of 2.5× 10−5.

Key Takeaways: In Figures 1, 7 in the main paper, and Figure 8 in Appendix F, we plot the ACSS
performance as compared with the regular versions for challenging optimization benchmark func-
tions. In all the cases, the ACSS versions showed better stability and convergence properties com-
pared to the traditional algorithms.

4.7 LIMITATIONS:
It is important to acknowledge that ACSS introduces additional computational overhead per iter-
ation, with theoretical analysis suggesting up to twice the cost and experimental wall-clock time
measurements showing an average increase of 1.37 times for the ACSS optimizers over their tra-
ditional counterparts, which is balanced against its memory efficiency benefits and lower time to
convergence (see Section D for detailed theoretical and experimental analyses).

5 CONCLUSIONS

This work introduced the Adaptive Curvature Step Size (ACSS) method, a novel optimization ap-
proach that leverages the geometric properties of the optimization path to dynamically adjust step
sizes. Our comprehensive empirical evaluation across diverse datasets and challenging functions
demonstrates that ACSS consistently outperforms traditional optimization methods. The method’s
ability to incorporate second-order-like information without explicit computation of the Hessian is
a key benefit, as we show through our theoretical guarantees. Furthermore, ACSS’s low memory
footprint makes it particularly suitable for large-scale optimization setups and low-resource set-
tings. The generalized framework we provide for incorporating ACSS into various optimization
algorithms, along with our PyTorch implementations, facilitates further research in this direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Timothy Dozat. Incorporating nesterov momentum into adam. Stanford CS 229 Project, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations
and Trends® in Machine Learning, 10(3-4):142–363, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization. Mit Press, 2019.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Siddharth Singh, Zachary Sating, and Abhinav Bhatele. Jorge: Approximate preconditioning for
gpu-efficient second-order optimization. arXiv preprint arXiv:2310.12298, 2023.

Derya Soydaner. A comparison of optimization algorithms for deep learning. International Journal
of Pattern Recognition and Artificial Intelligence, 34(13):2052013, 2020.

Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine learning. Mit
Press, 2012.

Yingjie Tian, Yuqi Zhang, and Haibin Zhang. Recent advances in stochastic gradient descent in
deep learning. Mathematics, 11(3):682, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit Dhillon, and Cho-Jui Hsieh. Block low-rank precondi-
tioner with shared basis for stochastic optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Yun Yue, Zhiling Ye, Jiadi Jiang, Yongchao Liu, and Ke Zhang. Agd: an auto-switchable optimizer
using stepwise gradient difference for preconditioning matrix. Advances in Neural Information
Processing Systems, 36:45812–45832, 2023.

SUPPLEMENTARY MATERIALS

These supplementary materials provide additional details, derivations, and experimental results for
our paper. The appendix is organized as follows:

• Section A presents detailed derivations of the Adaptive Curvature Step Size (ACSS) method.

• Section B offers a comprehensive theoretical analysis of ACSS, including proofs of key theorems.

• Section C introduces a generalized algorithm for incorporating ACSS into existing optimizers.

• Section D provides theoretical and experimental analyses pertaining to limitations of this work.

• Section E provides additional experimental results, like performance on the CoLA dataset.

• Section F details the testing functions used to benchmark ACSS optimization.

A DETAILED DERIVATIONS OF ACSS

The optimization path traced by iterates {wt} during the optimization process can be viewed as a
discrete approximation of a continuous curve in parameter space. Understanding the curvature of
this path provides valuable insights into the local geometry of the loss landscape and guides adaptive
step size selection. In differential geometry, the curvature κ(s) of a curve w(s) parameterized by
arc length s is defined as:

κ(s) =

∥∥∥∥dT (s)ds

∥∥∥∥ , (5)

where T (s) = dw(s)
ds is the unit tangent vector to the curve at point s. The radius of curvature ρ(s)

is then given by ρ(s) = 1
κ(s) .

In the context of gradient-based optimization, we consider the continuous-time dynamics governed
by the gradient flow:

dw(t)

dt
= −∇f(w(t)) = −g(t), (6)

where g(t) = ∇f(w(t)) is the gradient of the function f at w(t). To relate curvature to discrete
optimization steps, we approximate the curvature using finite differences. We define the unit tangent
vector at iteration t as Tt = − gt

∥gt∥ , and approximate the change in the unit tangent vector between

iterations t and t+ 1 as ∆Tt ≈ − gt+1−gt
∥gt∥ .

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

The curvature κt at iteration t, given this gradient norm approximation can then be given as:

κt =
∥gt+1 − gt∥

∥gt∥η
, (7)

where η is the step size. Consequently, the radius of curvature ρt is:

ρt =
1

κt
=

∥gt∥η
∥gt+1 − gt∥

. (8)

We introduce a normalized radius of curvature rt = ρt

η = ∥gt∥
∥g′

t−gt∥ , which decouples the radius
of curvature from the base learning rate η. The adaptive step size ∆st is then defined as ∆st =

η× rt = η× ∥gt∥
∥g′

t−gt∥ . To maintain numerical stability, we introduce a cap on the normalized radius
of curvature: r̂t = min{rmax, rt}, where rmax is a predefined maximum radius of curvature.

A.1 FINAL UPDATE RULE AND DISCUSSION

The final parameter update rule for the Adaptive Curvature Step Size (ACSS) method is:

wt+1 = wt − η × r̂t ×
gt
∥gt∥

. (9)

This can be interpreted as moving in the direction of the negative gradient gt
∥gt∥ with a step size

scaled by η × r̂t.

The ACSS method offers several key advantages in optimization tasks. By leveraging the curvature
of the optimization path, it implicitly incorporates second-order information without the computa-
tional overhead of explicit second-order methods. This dynamic adaptation allows ACSS to navigate
complex loss landscapes more effectively, enabling rapid progress in flat regions while ensuring
stability in high-curvature areas. The method’s memory efficiency, requiring minimal additional
storage beyond current and tentative gradients, makes it particularly suitable for large-scale opti-
mization problems in deep learning. Furthermore, ACSS’s framework allows for integration into
various existing optimization algorithms such as SGD, Adam, AdaGrad, and RMSProp, enhancing
their performance with its curvature-based step size adjustment.

B THEORETICAL ANALYSIS

Theorem 5 (Bounded Step Size of ACSS). Let f : Rn → R be an L-smooth and µ-strongly convex
function. Consider the ACSS update rule wt+1 = wt − ηr̂t

gt
∥gt∥ where r̂t = min{rmax, rt} and

rt =
∥gt∥

∥gt−g′
t∥

. Assume the following:

1. The gradients are bounded: ∃G > 0 such that ∥gt∥ ≤ G for all t

2. The function f is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y

3. The function f is µ-strongly convex: ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2 for all x, y

4. The maximum radius rmax is chosen such that rmax ≤ 2
η(µ+L)

Then, the effective step size ηeff = ηr̂t is bounded as follows:

1

L
≤ ηeff ≤

2

µ+ L

for all iterations t.

Proof. We proceed as follows:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

rt =
∥gt∥

∥gt − g′t∥
Definition of rt

g′t = ∇f(wt − ηgt) From the algorithm

∥gt − g′t∥ = ∥∇f(wt)−∇f(wt − ηgt)∥
≤ L∥ηgt∥ = Lη∥gt∥ Using L-smoothness

rt =
∥gt∥

∥gt − g′t∥
≥ ∥gt∥

Lη∥gt∥
=

1

Lη
Lower bound on rt

r̂t = min{rmax, rt} ≥ min{ 2

η(µ+ L)
,
1

Lη
} =

1

Lη
Since

2

µ+ L
>

1

L

ηeff = ηr̂t ≥ η
1

Lη
=

1

L
Lower bound on ηeff

ηeff = ηr̂t ≤ ηrmax ≤ η
2

η(µ+ L)
=

2

µ+ L
Upper bound on ηeff

Thus, we have established that 1
L ≤ ηeff ≤ 2

µ+L for all iterations t.

Theorem 6 (Convergence of Gradient Descent on Quadratic Functions). Consider the quadratic
function f : Rn → R defined as

f(w) =
1

2
wTAw − bTw + c,

where A ∈ Rn×n is symmetric positive definite with eigenvalues 0 < µ ≤ λ1 ≤ · · · ≤ λn ≤ L,
b ∈ Rn, and c ∈ R. For the gradient descent update rule with step size ηeff > 0:

wt+1 = wt − ηeff,t∇f(wt) = wt − ηeff,t(Awt − b),

convergence is guaranteed if and only if 0 < ηeff <
2
λn

. Moreover, the optimal convergence rate is
achieved when ηeff =

2
µ+L .

Proof. The gradient of f is ∇f(w) = Aw − b, yielding the unique minimizer w∗ = A−1b. Let
et = wt − w∗ denote the error at step t. The update rule can be rewritten as:

et+1 = (I − ηeff,tA)et

Since A is symmetric positive definite, it can be diagonalized as A = QΛQT , where Q is orthogonal
and Λ = diag(λ1, . . . , λn). Define ẽt = QT et. Then:

ẽt+1 = (I − ηeff,tΛ)ẽt

This implies that for each component i:

ẽit+1 = (1− ηeff,tλi)ẽ
i
t

For convergence, we require |1− ηeffλi| < 1 for all i, which leads to:

0 < ηeff <
2

λi
∀i

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Since λn is the largest eigenvalue, the condition 0 < ηeff <
2
λn

ensures convergence.

The convergence rate is determined by maxi |1− ηeffλi|. To minimize this, we solve:

min
ηeff

max{|1− ηeffµ|, |1− ηeffL|}

The optimal solution occurs when 1− ηeffµ = −(1− ηeffL), yielding ηeff =
2

µ+L .

Therefore, gradient descent converges if and only if 0 < ηeff <
2
λn

, with the optimal convergence
rate achieved at ηeff =

2
µ+L .

Theorem 7 (Convergence of Gradient Descent on L-Smooth and µ-Strongly Convex Functions).
Let f : Rn → R be an L-smooth and µ-strongly convex function. For the gradient descent update
rule with step size ηeff > 0:

wt+1 = wt − ηeff,t∇f(wt),

convergence to the unique minimizer w∗ is optimally achieved when ηeff =
2

µ+L .

Proof. Given that f is L-smooth and µ-strongly convex, we have:

µI ⪯ ∇2f(w) ⪯ LI ∀w ∈ Rn.

Let w∗ be the unique minimizer of f . Define the error vector et = wt − w∗. The gradient descent
update can be written as:

et+1 = et − ηeff,t∇f(wt).

By the Mean Value Theorem, there exists ξt on the line segment between wt and w∗ such that:

∇f(wt) = ∇2f(ξt)et.

Thus, we can rewrite the error dynamics as:

et+1 = (I − ηeff,t∇2f(ξt))et.

Taking the Euclidean norm and using the operator norm:

∥et+1∥ ≤ ∥I − ηeff,t∇2f(ξt)∥ · ∥et∥.

The eigenvalues of ∇2f(ξt) lie in [µ,L] by Lemma 1. For convergence, we require:

|1− ηeffλ| < 1 ∀λ ∈ [µ,L].

Similar to Theorem 6, the convergence rate is determined by maxλ∈[µ,L] |1 − ηeffλ|. To minimize
this, we solve:

min
ηeff

max{|1− ηeffµ|, |1− ηeffL|}

The optimal solution occurs when 1− ηeffµ = −(1− ηeffL), yielding ηeff =
2

µ+L .

Therefore, gradient descent converges if 0 < ηeff <
2

µ+L .

Lemma 1. Let f : Rn → R be an L-smooth and µ-strongly convex function. Then for any ξ ∈ Rn,
the eigenvalues of the Hessian matrix ∇2f(ξ) lie in the interval [µ,L].

Proof. We begin by establishing that µI ⪯ ∇2f(ξ) ⪯ LI for all ξ ∈ Rn, where ⪯ denotes the
semidefinite ordering and I is the identity matrix. From this, we will conclude that the eigenvalues
of ∇2f(ξ) lie in [µ,L].

First, consider the L-smoothness property. For any x, y ∈ Rn, we have:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For an arbitrary direction v ∈ Rn, this implies:

lim
t→0

∥∇f(x+ tv)−∇f(x)∥
t

≤ L∥v∥

Taking the limit, we obtain:
∥[∇2f(x)]v∥ ≤ L∥v∥

This inequality is equivalent to:

vT [∇2f(x)]v ≤ LvT v ∀v ∈ Rn

which can be expressed in matrix notation as ∇2f(x) ⪯ LI .

Now, we turn to the µ-strong convexity property. For any x, y ∈ Rn:

(∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2

Following a similar argument as above, we can show that:

vT [∇2f(x)]v ≥ µvT v ∀v ∈ Rn

which is equivalent to ∇2f(x) ⪰ µI .

Combining these results, we have established that for all ξ ∈ Rn:

µI ⪯ ∇2f(ξ) ⪯ LI

Now, we invoke a fundamental result from linear algebra: for any symmetric matrix A, the statement
λI ⪯ A ⪯ ΛI is equivalent to λ ≤ λi(A) ≤ Λ for all eigenvalues λi(A) of A. Since ∇2f(ξ) is
symmetric (due to the assumed twice differentiability of f), we can apply this result.

Therefore, we conclude that for any ξ ∈ Rn, all eigenvalues λi of ∇2f(ξ) satisfy:

µ ≤ λi ≤ L

Thus, the eigenvalues of ∇2f(ξ) lie in the interval [µ,L], completing the proof.

Theorem 8 (Stability of ACSS Under Gradient Perturbations). Let f : Rn → R be an L-smooth
and µ-strongly convex function. Consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where:

ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt − g′t∥
, g′t = ∇f(wt − ηgt).

Assume the following:

1. The gradients are bounded: ∃G > m > 0 such that m ≤ ∥gt∥ ≤ G for all t.

2. The function f is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn.

3. The function f is µ-strongly convex: ⟨∇f(x) − ∇f(y), x − y⟩ ≥ µ∥x − y∥2 for all
x, y ∈ Rn.

4. The maximum radius rmax is chosen such that rmax ≤ 2
(L+µ)η .

5. Gradients are perturbed: g̃t = gt + δt and g̃′t = g′t + δ′t, where ∥δt∥ ≤ ε and ∥δ′t∥ ≤ ε for
some ε > 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then, the difference between the updates using exact and perturbed gradients satisfies:

∥wt+1 − w̃t+1∥ ≤ 4ηmaxε

m− ε
,

where ηmax = 2
L+µ .

Proof. We begin by expressing the difference between the exact update wt+1 and the perturbed
update w̃t+1:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− η̃eff,t
g̃t

∥g̃t∥

∥∥∥∥
Applying Lemma 2, we obtain:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

We now bound each term separately.

First, we bound the difference in direction vectors. Note that g̃t = gt+ δt, so ∥gt− g̃t∥ = ∥δt∥ ≤ ε.
Also, from our assumptions, ∥gt∥ ≥ m > ε. Therefore, we can apply Proposition B.1 with a = gt
and b = g̃t: ∥∥∥∥ gt

∥gt∥
− g̃t

∥g̃t∥

∥∥∥∥ ≤ 2∥gt − g̃t∥
∥gt∥

≤ 2ε

m

Next, we bound the difference in effective step sizes:

|ηeff,t − η̃eff,t| = η|r̂t − ˜̂rt| ≤ η|rt − r̃t|

To bound |rt − r̃t|, we use the definition of rt and r̃t:

|rt − r̃t| =
∣∣∣∣ ∥gt∥
∥gt − g′t∥

− ∥g̃t∥
∥g̃t − g̃′t∥

∣∣∣∣
Using the triangle inequality and the fact that ∥g̃t∥ ≤ ∥gt∥ + ∥δt∥ ≤ G + ε, and ∥g̃t − g̃′t∥ ≥
∥gt − g′t∥ − 2ε, we can derive:

|rt − r̃t| ≤
2ε

m− 2ε

Thus,

|ηeff,t − η̃eff,t| ≤
2ηε

m− 2ε

Combining these bounds and using ηeff,t ≤ ηmax = 2
L+µ , we arrive at:

∥wt+1 − w̃t+1∥ ≤ ηmax ·
2ε

m
+

2ηε

m− 2ε

Given the choice of rmax and the boundedness of ηeff,t, we can bound this as:

∥wt+1 − w̃t+1∥ ≤ 2(ηmax + η)ε

m− ε
≤ 4ηmaxε

m− ε

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In practice, η is far lower than ηmax, and hence we can ignore the second term in which case we get
a tighter bound of

∥wt+1 − w̃t+1∥ ≤ 2ηmaxε

m

This bound demonstrates that the ACSS algorithm is stable under bounded gradient perturbations,
with the perturbation in the parameter updates being proportional to the noise level ε and inversely
proportional to m− ε.

Lemma 2 (Triangle Inequality for ACSS Updates). Given the ACSS update rule and its perturbed
version:

wt+1 = wt − ηeff,t
gt
∥gt∥

, w̃t+1 = wt − η̃eff,t
g̃t
∥g̃t∥

The difference between these updates can be bounded as:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

Proof. We start with the difference between the updates:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− η̃eff,t
g̃t

∥g̃t∥

∥∥∥∥
Add and subtract ηeff,t

g̃t
∥g̃t∥ inside the norm:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− ηeff,t
g̃t
∥g̃t∥

+ ηeff,t
g̃t

∥g̃t∥
− η̃eff,t

g̃t
∥g̃t∥

∥∥∥∥
Apply the triangle inequality:

∥wt+1 − w̃t+1∥ ≤
∥∥∥∥ηeff,t

gt
∥gt∥

− ηeff,t
g̃t
∥g̃t∥

∥∥∥∥+

∥∥∥∥ηeff,t
g̃t

∥g̃t∥
− η̃eff,t

g̃t
∥g̃t∥

∥∥∥∥
Factor out ηeff,t from the first term and simplify the second term:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+

∥∥∥∥(ηeff,t − η̃eff,t)
g̃t

∥g̃t∥

∥∥∥∥
Note that

∥∥∥ g̃t
∥g̃t∥

∥∥∥ = 1, so:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

This completes the proof of the lemma.

Proposition B.1 (Bound on Difference of Normalized Vectors). Given two vectors a, b ∈ Rn with
∥a∥ > ∥a− b∥, we have: ∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ 2∥a− b∥
∥a∥

Proof. We start with the vector identity:

a

∥a∥
− b

∥b∥
=

a∥b∥ − b∥a∥
∥a∥∥b∥

=
a(∥b∥ − ∥a∥) + ∥a∥(a− b)

∥a∥∥b∥

Taking the norm of both sides and applying the triangle inequality:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ ∥a∥|∥b∥ − ∥a∥|+ ∥a∥∥a− b∥
∥a∥∥b∥

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Using the reverse triangle inequality, |∥b∥ − ∥a∥| ≤ ∥b− a∥ = ∥a− b∥:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ ∥a∥∥a− b∥+ ∥a∥∥a− b∥
∥a∥∥b∥

=
2∥a− b∥

∥b∥

Since ∥b∥ ≥ ∥a∥ − ∥a− b∥ (by the triangle inequality), and given ∥a∥ > ∥a− b∥, we have:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ 2∥a− b∥
∥a∥ − ∥a− b∥

≤ 2∥a− b∥
∥a∥

This completes the proof of the lemma.

Theorem 9 (Convergence Rate for ACSS on Strongly Convex Functions). Let f : Rn → R be an
L-smooth and µ-strongly convex function. Consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where:

ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt − g′t∥
, g′t = ∇f(wt − ηgt).

Assume the following:

1. There exists a constant G > 0 such that ∥gt∥ ≤ G for all t.

2. The function f satisfies ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn.

3. The function f satisfies ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2 for all x, y ∈ Rn.

Then, for all t ≥ 0, the ACSS algorithm satisfies:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2.

Proof. We begin by analyzing the squared distance to the optimum after each update:

∥wt+1 − w∗∥2 = ∥wt − w∗ − ηeff,t
gt

∥gt∥
∥2

= ∥wt − w∗∥2 − 2ηeff,t
⟨gt, wt − w∗⟩

∥gt∥
+ η2eff,t

From the µ-strong convexity assumption, we derive a lower bound on the gradient:

⟨gt, wt − w∗⟩ ≥ µ∥wt − w∗∥2

The L-smoothness condition provides an upper bound on the gradient norm:

∥gt∥ ≤ L∥wt − w∗∥

Combining these bounds, we obtain:

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 − 2ηeff,t
µ∥wt − w∗∥2

L∥wt − w∗∥
+ η2eff,t

= ∥wt − w∗∥2 − 2ηeff,t
µ

L
∥wt − w∗∥+ η2eff,t

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To derive a contraction factor, we introduce dt = ∥wt − w∗∥ and seek q < 1 such that dt+1 ≤ qdt.
Assuming dt+1 ≤ qdt, we have:

q2d2t ≥ d2t − 2ηeff,t
µ

L
dt + η2eff,t

Dividing by d2t , we obtain:

q2 ≥ 1− 2ηeff,t
µ

Ldt
+

η2eff,t

d2t

To minimize q, we define f(dt) = 1− 2ηeff,t
µ

Ldt
+

η2
eff,t

d2
t

and find its minimum:

f ′(dt) = 2ηeff,t
µ

Ld2t
− 2

η2eff,t

d3t
= 0

dt =
ηeff,tL

µ

This critical point is indeed a minimum as f ′′(dt) > 0 for dt > 0. Evaluating f(dt) at this minimum:

f

(
ηeff,tL

µ

)
= 1− 2ηeff,t

µ

L
· µ

ηeff,tL
+

η2eff,t(
ηeff,tL

µ

)2

= 1− 2
µ2

L2
+

µ2

L2
= 1− µ2

L2

Therefore, for all dt > 0, we have f(dt) ≥ 1− µ2

L2 , which implies:

q2 ≥ 1− µ2

L2
=⇒ q ≥

√
1− µ2

L2

We conclude that:

∥wt+1 − w∗∥2 ≤
(
1− µ2

L2

)
∥wt − w∗∥2

Applying this inequality recursively, we obtain the final convergence rate:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2

This establishes the linear convergence rate for the ACSS algorithm under the given assumptions.

Theorem 10 (Scale Invariance of ACSS Effective Step Size). Let f : Rn → R be a function, and
consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt−g′
t∥

, gt = ∇f(wt), and g′t = ∇f(wt − ηgt).

For any scalar α > 0, scaling the base step size η by α results in the same parameter updates,
assuming that r′t ≤ rmax. Specifically:

a) For quadratic functions f(w) = 1
2w

TAw − bTw + c, where A ∈ Rn×n is symmetric positive
definite:

w
(αη)
t+1 = w

(η)
t+1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

b) For L-smooth and µ-strongly convex functions:

w
(αη)
t+1 ≈ w

(η)
t+1

where the approximation becomes exact as η → 0.

In both cases, w(αη)
t+1 and w

(η)
t+1 are the parameter updates for the scaled and original step sizes

respectively.

Proof. We prove this theorem by examining both cases separately.

a) Quadratic case:

For a quadratic function f(w) = 1
2w

TAw − bTw + c, the gradient is ∇f(w) = Aw − b.

With the original step size η, we have:

gt = Awt − b,

g′t = A(wt − ηgt)− b = (I − ηA)gt,

rt =
∥gt∥

∥gt − g′t∥
=

∥gt∥
∥ηAgt∥

=
1

η
· ∥gt∥
∥Agt∥

.

With the scaled step size αη, we have:

g′t = A(wt − αηgt)− b = (I − αηA)gt,

r′t =
∥gt∥

∥gt − g′t∥
=

∥gt∥
∥αηAgt∥

=
1

αη
· ∥gt∥
∥Agt∥

=
rt
α
.

Assuming r′t ≤ rmax, we have:

r̂′t = min{rmax, r
′
t} =

rt
α

=
r̂t
α
.

The effective step size with the scaled η becomes:

η′eff,t = αη · r̂′t = αη · r̂t
α

= η · r̂t = ηeff,t.

Therefore, the parameter updates are identical:

w
(αη)
t+1 = wt − η′eff,t

gt
∥gt∥

= wt − ηeff,t
gt

∥gt∥
= w

(η)
t+1.

b) L-smooth and µ-strongly convex case:

For a general L-smooth and µ-strongly convex function, we use a first-order Taylor expansion to
approximate g′t:

g′t = ∇f(wt − ηgt) ≈ ∇f(wt)− η∇2f(wt)gt = gt − η∇2f(wt)gt.

With this approximation:

rt ≈
∥gt∥

∥η∇2f(wt)gt∥
=

1

η
· ∥gt∥
∥∇2f(wt)gt∥

.

For the scaled step size αη:

r′t ≈
∥gt∥

∥αη∇2f(wt)gt∥
=

1

αη
· ∥gt∥
∥∇2f(wt)gt∥

=
rt
α
.

As in the quadratic case, assuming r′t ≤ rmax, we have r̂′t = r̂t/α, leading to:

η′eff,t = αη · r̂′t = αη · r̂t
α

= η · r̂t = ηeff,t.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, the parameter updates are approximately equal:

w
(αη)
t+1 ≈ wt − η′eff,t

gt
∥gt∥

≈ wt − ηeff,t
gt

∥gt∥
≈ w

(η)
t+1.

The approximation becomes exact as η → 0, as the first-order Taylor expansion becomes increas-
ingly accurate.

Thus, we have shown that for both quadratic functions and general L-smooth and µ-strongly con-
vex functions, scaling the base step size η by α > 0 results in either identical (quadratic case) or
approximately identical (general case) parameter updates, assuming that r′t ≤ rmax.

Corollary 1 (Adaptive Behavior of ACSS). Let f : Rn → R be an L-smooth and µ-strongly convex
function satisfying the conditions of Theorem 5, including rmax ≤ 2

η(µ+L) . Further, assume that f
has locally L(w)-Lipschitz continuous gradients, where L(w) may vary with w and µ ≤ L(w) ≤
L for all w ∈ Rn. Then, the effective step size ηeff,t = ηr̂t adapts to the local curvature of f .
Specifically, in regions of low curvature (small L(wt)), ηeff,t tends to be larger, allowing for larger
steps, while in regions of high curvature (large L(wt)), ηeff,t tends to be smaller, resulting in more
conservative updates.

Proof. The adaptive behavior of ACSS stems from its relationship with the local curvature of the
function, as captured by the local Lipschitz constant L(wt). To understand this relationship, let’s
examine how the effective step size ηeff,t is influenced by L(wt).

Recall from Theorem 5 that 1
L ≤ ηeff,t ≤ 2

µ+L for all iterations t. We can refine this bound by
considering the local properties of f at wt. First, let’s consider the lower bound on ηeff,t. The
normalized radius of curvature rt is defined as ∥gt∥

∥gt−g′
t∥

. By applying the mean value theorem and
using the locally L(w)-Lipschitz continuous gradient assumption, we can bound the denominator:

∥gt − g′t∥ = ∥∇f(wt)−∇f(wt − ηgt)∥ ≤ L(wt)∥ηgt∥ = L(wt)η∥gt∥ (10)

This inequality allows us to establish a lower bound on rt: rt ≥ 1
L(wt)η

. Consequently, we can
bound ηeff,t from below:

ηeff,t = ηr̂t ≥ min

{
ηrmax,

1

L(wt)

}
(11)

The upper bound on ηeff,t remains 2
µ+L as given in Theorem 5. Additionally, we know that ηeff,t ≤

ηrmax by definition. Combining these bounds and using the assumption rmax ≤ 2
η(µ+L) , we can

express the range of ηeff,t as:

min

{
2

µ+ L
,

1

L(wt)

}
≤ ηeff,t ≤

2

µ+ L
(12)

This refined bound reveals the adaptive nature of ACSS:

1. In regions of low curvature, where L(wt) is small, the lower bound 1
L(wt)

becomes larger. This
allows ηeff,t to take on larger values, potentially approaching 2

µ+L . As a result, ACSS can take larger
steps in these flatter regions of the loss landscape.

2. Conversely, in regions of high curvature, where L(wt) is large, the lower bound 1
L(wt)

becomes
smaller. This constrains ηeff,t to smaller values, ensuring that ACSS takes more conservative steps
in these highly curved areas of the loss landscape.

Through this mechanism, ACSS naturally adapts its step size to the local geometry of the function,
balancing between rapid progress in flat regions and careful navigation in curved regions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C GENERALIZED ALGORITHM: OPT-ACSS

For any optimizer OPT, we can derive an ACSS version using Algorithm 2. The key modification in
the weight and state update steps of the existing optimizer is the substitution of the gradient at time
t, gt, with r̂tgt/|gt|. Using this adaptation, we can incorporate the ACSS mechanism into various
optimizers.

Algorithm 2: Arbitrary optimizer OPT with adaptive curvature step size (OPT-ACSS)
Input: Function f : Rn ×D → R, initial parameters w0 ∈ Rn, base learning rate η, maximum

radius rmax, number of iterations T , batch size B, Optimizer parameter update
function: UpdateParams, Optimizer weight update function: UpdateWeights

Output: Optimized parameters wT

Initialize optimizer state S0 according to the specific optimizer;
for t = 0 to T − 1 do

Sample a mini-batch Bt from D;
Compute gradient gt = ∇wf(wt,Bt) and next point gradient g′t = ∇wf(wt − ηgt,Bt);
Compute normalized radius of curvature rt =

||gt||
||gt−g′

t||
;

Compute capped radius r̂t = min{rmax, rt};
Compute ACSS-adjusted gradient g̃t = r̂t × gt

||gt|| ;
Update optimizer state St = UpdateState(St−1, g̃t);
Compute update ∆wt = UpdateWeights(St, g̃t);
Update parameters wt+1 = wt +∆wt;

end
return wT

This generalization allows for integration of ACSS into various existing optimization algorithms
such as SGD, Adam, AdaGrad, and RMSProp, enhancing their performance with its curvature-based
step size adjustment.

D LIMITATIONS

While ACSS offers significant benefits in terms of optimization performance, it’s important to ac-
knowledge its primary limitation: increased computational time per iteration. This additional com-
putational cost arises from the need to compute a secondary gradient and perform additional calcu-
lations to determine the adaptive step size. To quantify this limitation, we provide both experimental
and theoretical evidence of the additional time required by ACSS methods compared to their non-
ACSS counterparts.

D.1 EXPERIMENTAL EVIDENCE

Wall-Clock Time Experiments: To quantify the computational overhead of ACSS methods com-
pared to their non-ACSS counterparts, we conducted comprehensive wall-clock time experiments.
Table 3 presents the results of these experiments, focusing on the mean time taken to complete 2
epochs on the IMDB dataset using various optimizers.

These results offer several insights:

1. Computational Overhead: As expected, ACSS methods require more computation time
than their non-ACSS counterparts. On average, ACSS methods take approximately 1.37
times longer to complete the same number of epochs.

2. Consistency Across Optimizers: The overhead ratio is relatively consistent across differ-
ent optimization algorithms, ranging from about 1.33 to 1.46 times the non-ACSS version’s
runtime.

3. Memory Efficiency Trade-off: While there is a computational time overhead, it’s crucial
to emphasize that the primary trade-off that the ACSS method provides is in memory ef-
ficiency. Our method achieves results equivalent to several second-order methods while
maintaining a significantly lower memory footprint.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: Mean time to complete 2 epochs on the IMDB dataset using various optimizers
Wall-clock time Wall-clock time Ratio of

Optimizer (Mean) (Std Deviation) Times Taken
SimpleSGD 91.0175 5.0617
SimpleSGDCurvature 122.5004 2.6835 1.3459
Adam 86.4103 0.1938
AdamCurvature 121.6974 1.3342 1.4084
HeavyBall 85.5865 0.5449
HeavyBallCurvature 120.9661 0.1746 1.4134
NAG 85.6665 0.1808
NAGCurvature 125.0773 1.5621 1.4600
Adagrad 88.1545 0.5783
AdagradCurvature 119.6787 0.5171 1.3576
Adadelta 91.4525 1.0088
AdadeltaCurvature 124.8485 0.3255 1.3652
RMSProp 89.4943 1.8763
RMSPropCurvature 125.4326 0.8316 1.4016
RMSPropMomentum 89.9954 0.7421
RMSPropMomentumCurvature 124.8127 0.2511 1.3869
AdamW 89.5067 0.8976
AdamWCurvature 125.9545 4.0044 1.4072
NAdam 91.6765 0.1706
NAdamCurvature 125.4949 1.8784 1.3689
NAdamW 91.1489 2.7840
NAdamWCurvature 124.9436 0.9476 1.3708
AMSGrad 91.5774 2.1047
AMSGradCurvature 121.5177 2.3766 1.3269

D.2 THEORETICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

To complement our empirical results, we provide a theoretical analysis of the computational com-
plexity of ACSS compared to standard SGD.

Theorem 11 (Computational Complexity of ACSS vs. SGD). Let f : Rn → R be the objective
function for a neural network, n be the number of parameters, and B be the mini-batch size. Let Cgc
represent the cost of gradient computation per sample per parameter.

The ratio of computational cost per iteration for ACSS vs SGD is approximately 2, assuming Cgc ≫
1. In other words:

CostACSS

CostSGD
≈ 2 (13)

Proof. We analyze the computational cost of each step in both SGD and ACSS:

Operation Description Cost (FLOPs)
c1 Gradient Computation (SGD & ACSS) Bn · Cgc
c2 Secondary Gradient Computation (ACSS only) Bn · Cgc

c3, c4 Norm Calculation (ACSS only) 2n+ 1
c5 Ratio Computation (ACSS only) 1
c6 Gradient Normalization (ACSS only) n
c7 Parameter Update (SGD & ACSS) n

Table 4: Computational cost breakdown for SGD and ACSS operations

Summing up for SGD:
CostSGD = c1 + c7 = Bn · Cgc + n FLOPs

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Summing up for ACSS:

CostACSS = c1 + c2 + c3 + c4 + c5 + c6 + c7

= Bn · Cgc +Bn · Cgc + (2n+ 1) + (2n+ 1) + 1 + n+ n

= 2Bn · Cgc + 7n+ 3 FLOPs

The additional overhead of ACSS is therefore:

∆Cost = CostACSS − CostSGD

= (2Bn · Cgc + 7n+ 3)− (Bn · Cgc + n)

= Bn · Cgc + 6n+ 3 FLOPs

Given that Cgc ≫ 1 in practice, the dominant term in both algorithms is Bn ·Cgc. ACSS effectively
doubles this term, leading to approximately twice the computational cost of SGD per iteration.

This theoretical analysis aligns with our empirical observations, confirming that ACSS introduces a
significant but consistent computational overhead compared to standard optimization methods.

In conclusion, while ACSS methods introduce a computational overhead of approximately 1.37
times longer runtime, this is balanced by significant memory efficiency. By providing second-order-
like benefits without increasing memory footprint, ACSS offers a valuable alternative for large-scale
problems and memory-constrained scenarios. This makes ACSS particularly useful when memory
constraints outweigh computational time considerations, introducing a new option for balancing
time and memory trade-offs in optimization.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COLA DATASET PERFORMANCE:

In our experiments with the CoLA (Corpus of Linguistic Acceptability) dataset, we evaluated the
performance of various optimizers with and without the Adaptive Curvature Step Size (ACSS)
method over five epochs. The ACSS variants consistently outperformed their traditional counter-
parts throughout the training process.

RMSProp and RMSProp-ACSS initially performed similarly (0.634 vs 0.636), but by the fifth epoch,
the ACSS version significantly outperformed the standard version (0.522 vs 0.611). Adagrad showed
more modest improvements with ACSS, yet still consistently outperformed its standard counter-
part. Adam-based optimizers (Adam-ACSS, AMSGrad-ACSS, AdamW-ACSS, NAdam-ACSS,
NAdamW-ACSS) demonstrated similar performance patterns, starting with slightly higher losses but
showing consistent improvement over the epochs. By the fifth epoch, these ACSS variants achieved
lower losses (around 0.528-0.534) compared to their non-ACSS counterparts (0.596-0.605).

Key Takeaways: Table 5 shows a significant outperformance of the ACSS optimizers where the
best performing optimizers have only reached a training loss of 0.591 (Adagrad), whereas eight of
the ACSS versions beat this training loss at epoch 5.

Table 5: Training Loss over 10 Epochs for CoLA Dataset with a simplified RNN Model. Notice
that many of the best models are ACSS versions. Furthermore, the decrease in training loss is often
much higher for the ACSS versions of the optimizer.

Optimizer Name Regular Optimizer ACSS Version of Optimizer
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Adadelta 0.610±0.00 0.605±0.00 0.601±0.00 0.597±0.00 0.593±0.00 0.684±0.03 0.645±0.01 0.627±0.01 0.619±0.00 0.616±0.00

Adagrad 0.611±0.00 0.608±0.00 0.604±0.00 0.599±0.01 0.591±0.01 0.613±0.00 0.601±0.00 0.596±0.00 0.591±0.00 0.588±0.00

Adam 0.611±0.00 0.608±0.00 0.605±0.00 0.603±0.00 0.596±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

AdamW 0.611±0.00 0.608±0.00 0.606±0.00 0.602±0.01 0.597±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

AMSGrad 0.611±0.00 0.608±0.00 0.606±0.00 0.602±0.00 0.596±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

HeavyBall 0.624±0.00 0.611±0.00 0.610±0.00 0.610±0.00 0.609±0.00 0.621±0.00 0.608±0.00 0.603±0.00 0.599±0.00 0.595±0.00

NAdam 0.612±0.00 0.609±0.00 0.608±0.00 0.605±0.00 0.602±0.01 0.623±0.00 0.606±0.00 0.592±0.00 0.569±0.01 0.534±0.01

NAdamW 0.611±0.00 0.609±0.00 0.608±0.00 0.607±0.00 0.605±0.00 0.623±0.00 0.606±0.00 0.592±0.00 0.568±0.01 0.534±0.01

NAG 0.624±0.00 0.611±0.00 0.610±0.00 0.610±0.00 0.609±0.00 0.621±0.00 0.608±0.00 0.603±0.00 0.599±0.00 0.595±0.00

RMSProp 0.634±0.02 0.617±0.01 0.614±0.01 0.611±0.00 0.611±0.00 0.636±0.00 0.602±0.00 0.584±0.00 0.557±0.01 0.522±0.01

RMSPropMomentum 0.635±0.02 0.626±0.04 0.614±0.01 0.612±0.00 0.610±0.00 0.638±0.00 0.604±0.00 0.587±0.01 0.561±0.01 0.525±0.02

SimpleSGD 0.662±0.01 0.630±0.00 0.622±0.00 0.618±0.00 0.616±0.00 0.611±0.00 0.608±0.00 0.606±0.00 0.605±0.00 0.603±0.00

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F DETAILS OF TESTING FUNCTIONS FOR ACSS OPTIMIZATION

We provide details on the four functions used to test the ACSS based optimizer below.

F.1 THE ROSENBROCK FUNCTION

The function is depicted with contour lines, where darker colors indicate lower values. Each subplot
displays the path taken by a different optimizer. The plots indicate that the ACSS versions of the op-
timizers navigate the function’s characteristic narrow, parabolic valley more effectively, by reducing
the step size as appropriate. The learning rate is set to 1.5× 10−3, and the iterates start at (−1.5, 2).

F.2 THE EASOM FUNCTION

The Easom function features a broad, flat area with a sharp depression at its global minimum (π, π).
With a learning rate of 2.0×10−3 and 200 iteration steps, standard optimizers remain near the initial
point. In contrast, ACSS versions achieve convergence, showing ACSS’s capability to accelerate
optimization in low-gradient scenarios.

F.3 THE ACKLEY FUNCTION

The Ackley function presents a flat outer region with numerous local minima and a steep central hole
containing the global minimum at (0,0). With a learning rate of 5 × 10−3 and 25 iterations, ACSS
versions of optimizers demonstrate superior navigation of the loss landscape, adaptively reducing
step size near convergence.

F.4 THE THREE-HUMPED CAMEL FUNCTION

The Three-Hump Camel function has three local minima and a global minimum at (0, 0). Using
1.0 × 10−2 learning rate for 300 steps, Heavyball and Nesterov methods overshoot, while ACSS
versions self-correct, showing enhanced optimization in this complex landscape.

2 1 0 1 2
y

1

0

1

2

3 SimpleSGD
SimpleSGD
Global Optimum

2 1 0 1 2
y

1

0

1

2

3 HeavyBall
HeavyBall
Global Optimum

2 1 0 1 2
y

1

0

1

2

3 NAG
NAG
Global Optimum

2 1 0 1 2
y

1

0

1

2

3 SimpleSGD-ACSS

SimpleSGDCurvature
Global Optimum

2 1 0 1 2
y

1

0

1

2

3 HeavyBall-ACSS

HeavyBallCurvature
Global Optimum

2 1 0 1 2
y

1

0

1

2

3 NAG-ACSS
NAGCurvature
Global Optimum

Optimization Paths on Rosenbrock Function

(a)

0 2 4 6
y

0

2

4

6
SimpleSGD

SimpleSGD
Global Optimum

0 2 4 6
y

0

2

4

6
HeavyBall

HeavyBall
Global Optimum

0 2 4 6
y

0

2

4

6
NAG

NAG
Global Optimum

0 2 4 6
y

0

2

4

6
SimpleSGD-ACSS

SimpleSGDCurvature
Global Optimum

0 2 4 6
y

0

2

4

6
HeavyBall-ACSS

HeavyBallCurvature
Global Optimum

0 2 4 6
y

0

2

4

6
NAG-ACSS

NAGCurvature
Global Optimum

Optimization Paths on the Easom Function

(b)

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

SimpleSGD

SimpleSGD
Global Optimum

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

HeavyBall

HeavyBall
Global Optimum

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

NAG

NAG
Global Optimum

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

SimpleSGD-ACSS
SimpleSGDCurvature
Global Optimum

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

HeavyBall-ACSS
HeavyBallCurvature
Global Optimum

1 0 1
x

1.0

0.5

0.0

0.5

1.0

y

NAG-ACSS
NAGCurvature
Global Optimum

Optimization Paths on the Ackley Function

(c)

2 1 0 1 2
y

2

1

0

1

2 SimpleSGD

SimpleSGD
Global Optimum

2 1 0 1 2
y

2

1

0

1

2 HeavyBall
HeavyBall
Global Optimum

2 1 0 1 2
y

2

1

0

1

2 NAG
NAG
Global Optimum

2 1 0 1 2
y

2

1

0

1

2 SimpleSGD-ACSS

SimpleSGDCurvature
Global Optimum

2 1 0 1 2
y

2

1

0

1

2 HeavyBall-ACSS

HeavyBallCurvature
Global Optimum

2 1 0 1 2
y

2

1

0

1

2 NAG-ACSS

NAGCurvature
Global Optimum

Optimization Paths on the Three Humped Camel Function

(d)

Figure 8: Optimizer performance on challenging optimizer benchmarking functions.

25

	Introduction
	Related Works:
	Our Contributions

	Notations and Method
	Algorithm

	Theoretical Analysis
	Step Size Bounds and Convergence
	Stability under Perturbation
	Adaptive Behavior and Scale Invariance

	Experiments
	Cross-Dataset Performance Analysis of ACSS
	Performance on the Yelp Reviews Dataset
	Training Loss Improvements Averaged over all Datasets
	Performance on vision benchmarks
	Overall rank improvements for different optimizers
	Optimization on challenging functions
	Limitations:

	Conclusions
	Detailed Derivations of ACSS
	Final Update Rule and Discussion

	Theoretical Analysis
	Generalized Algorithm: OPT-ACSS
	Limitations
	Experimental Evidence
	Theoretical Analysis of Computational Complexity

	Additional Experimental Results
	CoLA Dataset Performance:

	Details of Testing Functions for ACSS Optimization
	The Rosenbrock Function
	The Easom Function
	The Ackley Function
	The Three-humped Camel Function

