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ABSTRACT

We propose the Adaptive Curvature Step Size (ACSS) method, which dynami-
cally adjusts the step size based on the local geometry of the optimization path.
Our approach computes the normalized radius of curvature using consecutive gra-
dients along the iterate path and sets the step-size equal to this radius. The ef-
fectiveness of ACSS stems from its ability to adapt to the local landscape of the
optimization problem. In regions of low curvature, where consecutive gradient
steps are nearly identical, ACSS allows for larger steps. Conversely, in areas of
high curvature, where gradient steps differ significantly in direction, ACSS re-
duces the step size. This adaptive behavior enables more efficient navigation of
complex loss landscapes. A key advantage of ACSS is its adaptive behavior based
on local curvature information, which implicitly captures aspects of the function’s
second-order geometry without requiring additional memory. We provide a gen-
eralized framework for incorporating ACSS into various optimization algorithms,
including SGD, Adam, AdaGrad, and RMSProp. Through extensive empirical
evaluation on 20 diverse datasets, we compare ACSS variants against 12 popular
optimization methods. Our results consistently show that ACSS provides perfor-
mance benefits. Our results consistently show that ACSS provides performance
benefits. We provide PyTorch implementations of ACSS versions for popular op-
timizers at our anonymized code repository.

1 INTRODUCTION

Optimization algorithms are the canonical work-horses of machine learning, driving the process of
finding optimal parameters for deep learning models (Soydaner, 2020; Kochenderfer & Wheeler,
2019; Beck, 2017). As model architectures grow in size and complexity, the efficiency of these al-
gorithms becomes paramount. A key challenge is that the objective in many learning problems are
inherently non-convex, often due to structural or data-related constraints that impose non-convexity
(Jain et al., 2017). Such learning problems may induce intricate loss landscapes characterized by
large tracts of low gradients interspersed with areas of steep gradients, presenting significant navi-
gational challenges for optimization algorithms. Effective optimization methods must not only find
good solutions but do so efficiently in terms of computation and memory usage, especially when
dealing with large-scale models and datasets, where navigation on the loss landscape is likely to
follow an intricate path (Anil et al., 2019).

In light of this, we propose a geometric path based solution to optimization: the Adaptive Curvature
Step Size (ACSS) method. Our approach is motivated by the observation that the curvature of the
optimization path itself contains information about the local geometry of the loss landscape. By
utilizing this curvature information, we can incorporate second order information adaptively into
the step size — without the need for explicit computation or storage of second-order derivatives,
and without the need for careful tuning of learning rates.

The intuition behind ACSS is rooted in differential geometry. Specifically, the curvature of a path
provides insight into how rapidly the gradient is changing, which is indicative of the local shape
of the loss surface. In fact, the iterate path can be viewed as a finite-difference approximation to
the gradient flow manifold. We note that the curvature of this manifold is a powerful proxy for the
local geometry of the loss landscape. Our method, ACSS, implicitly captures information about the
changing gradient, which is related to the Hessian. This provides some of the benefits of second-
order methods while maintaining the computational efficiency of first-order approaches.
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Figure 1: We plot the optimization paths of various optimizers on the Beale function which is
characterized by steep valleys and a small area containing the global minimum. All optimizers start
at (−1.5, 2.5) with a learning rate of 1× 10−3. The function has a global minimum at (3, 0.5); The
ACSS versions of the optimizers converge here, without the use of any additional memory to store
higher order moments.

1.1 RELATED WORKS:

First Order Methods: While first-order methods like Stochastic Gradient Descent (SGD) have low
memory requirements, they converge slowly, particularly in ill-conditioned problems (Tian et al.,
2023). Momentum based methods such as HeavyBall and NAG dampen oscillations to a certain
degree (Sra et al., 2012; Nesterov, 2013), yet have limited ability to adapt when the loss landscape
requires a change in direction of iterate (as seen in Figure 1).

Variance of Gradient: To address the limitations of basic SGD, several adaptive methods that ad-
just learning rates based on gradient statistics have been proposed. Adagrad accumulates squared
gradients to adaptively tune learning rates, but it suffers from an ever-decreasing learning rate (Duchi
et al., 2011). RMSProp improves upon this by using an exponentially decaying average of squared
gradients, maintaining a more stable learning rate over time (Hinton et al., 2012). Adam and its
variants (Kingma & Ba, 2014) further incorporate momentum, combining the benefits of adaptive
learning rates and momentum to achieve better performance in various scenarios. AdamW en-
ables better generalization through through weight decay regularization Loshchilov & Hutter (2017).
AMSGrad addresses the convergence issues of Adam by ensuring that the learning rate does not
increase, thereby providing better theoretical guarantees and more stable convergence in practice
(Reddi et al., 2019). Nadam, and its weight decay variant NAdamW, integrate Nesterov momen-
tum into the Adam framework, leading to faster convergence by anticipating the future position of

Optimizer Weights Gradients Momentum
Accumulated

Squared
Gradients

Exp. Avg.
of Gradients

Exp. Avg. of
Squared

Gradients
SimpleSGD ✓ ✓ × × × ×
HeavyBall ✓ ✓ ✓ × × ×
NAG ✓ ✓ ✓ × × ×
Adagrad ✓ ✓ × ✓ × ×
RMSProp ✓ ✓ × ✓ × ×
Adadelta ✓ ✓ × × × ✓
Adam ✓ ✓ × × ✓ ✓
AdamW ✓ ✓ × × ✓ ✓
AMSGrad ✓ ✓ × × ✓ ✓
NAdam ✓ ✓ × × ✓ ✓
NAdamW ✓ ✓ × × ✓ ✓
RMSPropMomentum ✓ ✓ ✓ ✓ × ×

Table 1: Memory requirements for different optimizers during backpropagation
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the parameters (Dozat, 2016). However, these adaptive methods are not without drawbacks. They
can sometimes lead to poor generalization (Wilson et al., 2017), and the implicit learning rate de-
cay inherent in their designs can cause convergence issues in some scenarios (Reddi et al., 2019).
Moreover, lack the ability to fully capture and utilize the local geometric information of the loss
landscape, and often require careful tuning of hyper-parameters. We provide a study on the memory
requirements of various optimizers in terms of the number of parameters in the model, in Table 1.

Second Order Methods: Second-order optimization methods typically offer better convergence
properties, but Hessian based methods can get prohibitively expensive (Anil et al., 2020). Works
like Gupta et al. (2018); Goldfarb et al. (2020); Singh et al. (2023) exploit the structure of the neural
architecture that is being optimized (using factoring over layers) to reduce the computational cost,
but these can face numerical instabilities. Subsequent works like Sophia (Liu et al., 2023) and AGD
(Yue et al., 2023) address these issues, and yet have memory overhead. Recent works like Feinberg
et al. (2024); Yen et al. (2024) address the memory issue to a certain degree, but they are essentially
approximating the preconditioning tensor, which has a computation cost. Still other methods like
VeLO (Metz et al., 2022) are frameworks that decide the optimization parameters using a small
neural network — which has a wall-clock time overhead.

1.2 OUR CONTRIBUTIONS

1. Novel Optimization Approach: We introduce the Adaptive Curvature Step Size (ACSS) method,
a new optimization algorithm that leverages the geometric properties of the optimization path to dy-
namically adjust step sizes. ACSS incorporates local curvature information derived from consecutive
gradients, providing benefits typically associated with higher-order methods while maintaining the
computational efficiency of first-order approaches. This approach allows ACSS to adapt to the local
landscape of the optimization problem automatically, eliminating the need for careful manual tuning
of step sizes typically required in traditional optimization methods.

2. Low Memory Footprint with Performance Benefits: Unlike many optimization methods that
require significant additional memory for storing pre-conditioners or momentum terms, ACSS of-
fers second-order benefits while maintaining the memory footprint of the base optimizer. Our ex-
periments demonstrate that ACSS variants, particularly for optimizers like SGD, HeavyBall, and
NAG that do not store squared gradients, show significant performance improvements across diverse
datasets. For instance, SimpleSGD-ACSS often outperforms more complex methods like AdamW
and AMSGrad, despite its lower memory requirements. This makes ACSS particularly suitable for
large-scale optimization problems, where the reduced memory footprint can be leveraged to increase
the number of parameters being optimized.

3. Theoretical Foundation: We provide a comprehensive theoretical analysis of ACSS, proving
bounds on effective step size, stability under perturbations, convergence rates for strongly convex
functions, and scale invariance properties. This analysis demonstrates ACSS’s adaptive behavior
to local curvature and offers insights into its relationship with both first-order and second-order
optimization techniques.

4. PyTorch Implementation: To facilitate adoption and further research, we provide efficient
PyTorch implementations of the ACSS variants for popular optimizers, at our anonymized GitHub
repository, making it easy to incorporate our method into existing machine learning workflows and
reproduce our results.

In the next section, we provide the necessary notations and theoretical machinery for ACSS.

2 NOTATIONS AND METHOD

Consider a function f : Rn × D → R that we wish to minimize with respect to its first argument
w ∈ Rn. The optimization path traced by iterates {wt} can be viewed as a discrete approximation
of a continuous curve in parameter space. Let wt ∈ Rn be the parameter at iteration t, and gt =
∇wf(wt,Bt) be the gradient computed using a batch Bt ⊂ D.

In differential geometry, the curvature κ(s) of a curve w(s) parameterized by arc length s is defined
as:

κ(s) =

∥∥∥∥dT (s)ds

∥∥∥∥ , (1)

3
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where T (s) = dw(s)
ds is the unit tangent vector. The radius of curvature is given by ρ(s) = 1

κ(s) .

To relate this to our discrete optimization steps, we approximate the curvature using finite differ-
ences. Let η be the base learning rate, and g′t = ∇wf(wt − ηgt,Bt) be the gradient at a tentative
next point. We define the normalized radius of curvature as:

rt :=
∥gt∥

∥gt − g′t∥
. (2)

This approximation allows us to estimate the local curvature of the loss landscape without explicitly
computing second-order derivatives.

To ensure numerical stability, we introduce a cap on the normalized radius of curvature:

r̂t := min{rmax, rt}, (3)

where rmax is the maximum allowed curvature.

Update Rule: Incorporating this adaptive curvature step size, we define the update rule as:

wt+1 := wt − η × r̂t ×
gt
∥gt∥

(Eq. 1) (4)

This update can be interpreted as moving in the direction of the negative gradient gt
∥gt∥ with a step

size dynamically adjusted by η × r̂t based on the local curvature of the loss landscape.

The proposed Adaptive Curvature Step Size (ACSS) method aims to balance the trade-off between
convergence speed and stability by adapting the step size according to the geometry of the opti-
mization path. In regions of low curvature, it allows for larger steps to accelerate progress, while in
highly curved areas, it reduces the step size to maintain stability.

2.1 ALGORITHM

We now provide this update rule in the form of an Algorithm.

Algorithm 1: Stochastic gradient descent with adaptive curvature step size (SGD-ACSS)
Input: Function fw : D → R, initial parameters w0 ∈ Rn, base learning rate η, maximum

radius rmax, number of iterations T , batch size B
Output: Optimized parameters wT

for t = 0 to T − 1 do
Sample a mini-batch Bt from D;
Compute gradient gt = ∇fw(wt;Bt);
Compute tentative next point gradient g′t = ∇fw(wt − ηgt;Bt);
Compute normalized radius of curvature rt =

||gt||
||gt−g′

t||
;

Compute capped radius r̂t = min{rmax, rt};
Update parameters wt+1 = wt − η × r̂t × gt

||gt|| ;
end
return wT

3 THEORETICAL ANALYSIS

We provide theoretical guarantees for the Adaptive Curvature Step Size (ACSS) method. Our anal-
ysis focuses on the method’s convergence properties, step size bounds, and adaptive behavior. De-
tailed proofs for all theorems can be found in the Appendix Section B.

4
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3.1 STEP SIZE BOUNDS AND CONVERGENCE

We begin by establishing bounds on the effective step size of ACSS and proving its convergence for
strongly convex functions.

Theorem 1 (Bounded Step Size of ACSS). Let f : Rn → R be an L-smooth and µ-strongly
convex function. Consider the ACSS update rule with rmax ≤ 2

η(µ+L) . Then, the effective step size
ηeff = ηr̂t is bounded as follows:

1

L
≤ ηeff ≤

2

µ+ L

for all iterations t.

This theorem ensures that ACSS maintains step sizes within a range that promotes stable conver-
gence. Building on this result, we establish the convergence rate for ACSS:

Theorem 2 (Convergence Rate for ACSS on Strongly Convex Functions). Let f : Rn → R be an
L-smooth and µ-strongly convex function. Under the ACSS update rule, for all t ≥ 0:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2.

This theorem indicates that ACSS achieves linear convergence for strongly convex functions, with a
rate comparable to standard gradient descent methods.

It is important to note that while the theoretical results presented in this section are derived for the
deterministic gradient setting, the empirical results of ACSS, as discussed in Section 4, involves its
use in stochastic settings with mini-batch optimization. The extension of these theoretical guarantees
to the stochastic case is a potential area for future work. Nevertheless, our analysis does extend to
scenarios involving bounded gradient perturbations, as detailed in the following subsection.

3.2 STABILITY UNDER PERTURBATION

Next, we present results on the stability of ACSS under gradient perturbations and its convergence
guarantees for L-smooth and µ-strongly convex functions.

Theorem 3 (Stability of ACSS Under Gradient Perturbations). Let f : Rn → R be an L-smooth
and µ-strongly convex function. Assume the gradients are perturbed such that g̃t = gt + δt and
g̃′t = g′t + δ′t, where ∥δt∥ ≤ ε and ∥δ′t∥ ≤ ε for some ε > 0. Then, the difference between the
updates using exact and perturbed gradients satisfies:

∥w̃t+1 − wt+1∥ ≤ 4ηmaxε

m− ε
,

where ηmax = 2
L+µ and m is a lower bound on the gradient norm.

While this theoretical result provides partial insights under specific assumptions, it may not fully
capture ACSS’s behavior in complex, non-convex landscapes. However, our extensive experiments
in Section 4 may provide further evidence of ACSS stability properties across several difficult-to-
optimize problems and diverse common machine learning datasets.

3.3 ADAPTIVE BEHAVIOR AND SCALE INVARIANCE

Finally, we examine the scale invariance property of ACSS.

Theorem 4 (Scale Invariance of ACSS Effective Step Size). For any scalar α > 0, scaling the base
step size η by α results in the same parameter updates for quadratic functions and approximately the
same updates for general L-smooth and µ-strongly convex functions, assuming r′t ≤ rmax.

This scale invariance property suggests that ACSS is not sensitive to the choice of base step size
— a significant practical advantage. ACSS automatically adapts its effective step size to the lo-
cal geometry of the loss landscape, taking larger steps in low-curvature regions and smaller steps
in high-curvature areas. This behavior mitigates the need for manual step size tuning and allows
ACSS to maintain near-optimal convergence rates across varying landscapes without requiring prior
knowledge of function-specific parameters. In contrast, SGD often requires careful manual tuning
of step sizes to achieve similar convergence rate guarantees, which is challenging, particularly when
optimizing functions with varying curvature across the parameter space.

5
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4 EXPERIMENTS

4.1 CROSS-DATASET PERFORMANCE ANALYSIS OF ACSS
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Figure 2: Binary representation of ACSS effectiveness across datasets and optimizers. Values indi-
cate improvement (1) or no improvement (0) in training loss after a fixed number of epochs.
Figures 2 and 3 present a comprehensive evaluation of ACSS across 12 optimizers and 20 diverse
datasets. ACSS demonstrates consistent performance improvements for most optimizer-dataset
combinations. Significantly, SimpleSGD exhibits the most robust improvement across all datasets.

Optimizers that do not inherently use second-order information show the highest improvements, sug-
gesting that ACSS effectively incorporates second-order information through loss landscape topol-
ogy. SGD, HeavyBall, and NAG demonstrated mean training loss improvements of approximately
0.5 across 20 datasets using their respective ACSS versions.

Vision-related benchmarks, including Caltech 101, CIFAR-100, Flowers102, and STL10, showed
the most significant improvements. The 18-layer ResNet variant exhibited the best performance,
while the MNIST dataset with a simple neural network showed less pronounced improvements,
likely due to the inherent effectiveness of most optimizers on simpler models.

Key Takeaways: ACSS provides improvements for most optimizers across various datasets. In
cases where regular versions outperform ACSS, the difference in training loss is typically minimal.
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Figure 3: Quantitative improvement in training loss using ACSS across datasets and optimizers after
a fixed number of epochs.
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Table 2: Training Loss over 5 Epochs for Yelp Reviews Polarity Dataset (560,000 reviews) using a
Simplified RNN Model. The model consists of embedding, RNN, and fully connected layers. ACSS
versions of optimizers generally outperform their traditional counterparts.

Optimizer Name Regular Optimizer ACSS Version of Optimizer
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Adadelta 0.680 ±0.00 0.674 ±0.00 0.671 ±0.00 0.669 ±0.00 0.668 ±0.00 0.679 ±0.01 0.670 ±0.00 0.666 ±0.00 0.663 ±0.00 0.659 ±0.00

Adagrad 0.558 ±0.01 0.521 ±0.01 0.510 ±0.01 0.501 ±0.01 0.493 ±0.01 0.569 ±0.07 0.498 ±0.07 0.452 ±0.06 0.429 ±0.06 0.410 ±0.07

Adam 0.627 ±0.01 0.584 ±0.01 0.587 ±0.00 0.568 ±0.04 0.575 ±0.02 0.542 ±0.04 0.541 ±0.16 0.530 ±0.17 0.457 ±0.20 0.489 ±0.14

AdamW 0.581 ±0.02 0.567 ±0.03 0.478 ±0.01 0.499 ±0.08 0.419 ±0.11 0.599 ±0.04 0.589 ±0.12 0.555 ±0.10 0.413 ±0.05 0.376 ±0.12

AMSGrad 0.537 ±0.00 0.548 ±0.01 0.569 ±0.11 0.481 ±0.05 0.589 ±0.07 0.616 ±0.04 0.596 ±0.02 0.625 ±0.08 0.625 ±0.03 0.578 ±0.03

HeavyBall 0.666 ±0.00 0.652 ±0.00 0.604 ±0.01 0.529 ±0.01 0.512 ±0.01 0.572 ±0.01 0.517 ±0.01 0.491 ±0.01 0.474 ±0.01 0.455 ±0.01

NAdam 0.637 ±0.01 0.612 ±0.00 0.589 ±0.00 0.580 ±0.04 0.537 ±0.09 0.609 ±0.02 0.543 ±0.05 0.543 ±0.01 0.531 ±0.04 0.538 ±0.02

NAdamW 0.601 ±0.01 0.531 ±0.00 0.495 ±0.05 0.498 ±0.05 0.523 ±0.03 0.632 ±0.00 0.594 ±0.02 0.585 ±0.02 0.541 ±0.04 0.528 ±0.02

NAG 0.666 ±0.00 0.652 ±0.00 0.604 ±0.01 0.529 ±0.01 0.510 ±0.02 0.630 ±0.02 0.616 ±0.00 0.604 ±0.01 0.604 ±0.03 0.591 ±0.02

RMSProp 0.650 ±0.04 0.538 ±0.07 0.495 ±0.13 0.425 ±0.09 0.447 ±0.03 0.624 ±0.02 0.493 ±0.03 0.432 ±0.03 0.407 ±0.06 0.394 ±0.06

RMSPropMomentum 0.652 ±0.02 0.578 ±0.04 0.561 ±0.03 0.491 ±0.05 0.467 ±0.03 0.633 ±0.06 0.601 ±0.03 0.581 ±0.00 0.551 ±0.04 0.524 ±0.04

SimpleSGD 0.676 ±0.00 0.671 ±0.00 0.669 ±0.00 0.667 ±0.00 0.665 ±0.00 0.596 ±0.01 0.535 ±0.01 0.519 ±0.01 0.506 ±0.01 0.493 ±0.02

4.2 PERFORMANCE ON THE YELP REVIEWS DATASET

We evaluated various optimizers with and without ACSS on the Yelp Reviews Polarity Dataset
(560,000 reviews) using a simplified RNN model. The ACSS variants generally outperformed their
standard counterparts over five epochs. AdamW-ACSS showed the most significant improvement,
with loss decreasing from 0.5994 to 0.3756 across epochs, outperforming the traditional AdamW’s
final loss. SimpleSGD-ACSS demonstrated remarkable improvement, matching top performers like
AdamW-ACSS by the first epoch.
Key Takeaways: The best performing non-ACSS optimizer after Epoch 5 reaches a training loss
of only 0.419 (AdamW), which is reached at Epoch 4 for two of the ACSS versions. All the best-
performing optimizers after Epoch 2 are ACSS versions of the optimizers.

4.3 TRAINING LOSS IMPROVEMENTS AVERAGED OVER ALL DATASETS

We evaluated the performance of Adaptive Curvature Step Size (ACSS) variants of SimpleSGD,
HeavyBall, and NAG (Nesterov Accelerated Gradient) across diverse datasets in vision and lan-
guage domains. Our evaluation encompassed various model architectures, including CNNs (such as
ResNet), RNNs, and simple neural networks. The results, as illustrated in Figure 4, demonstrate
consistent improvements in training performance for ACSS variants compared to their standard
counterparts. These improvements were observed across all five epochs and increased over time,
indicating that ACSS provides sustained benefits throughout the training process.
Key Takeaways: Optimizers that do not store square-gradient terms (SGD, HeavyBall, NAG) ex-
hibit significant outperformance through the use of ACSS. The improvement in mean training loss,
averaged across all datasets, is evident across all the epochs.

4.4 PERFORMANCE ON VISION BENCHMARKS

Figure 5 presents a heatmap of optimizer rankings across five vision datasets: Caltech101, CIFAR10,
Flowers102, MNIST, and STL10. The analysis reveals that Adadelta and RMSProp variants con-
sistently underperform, with ACSS showing minimal impact on their effectiveness. In contrast,
Adam, AdamW, and AMSGrad perform well initially, with ACSS offering marginal improvements.
Adagrad demonstrates high performance variance across datasets.
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Figure 4: Mean training loss across epochs for different optimizers.
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Figure 5: Heatmap of optimizer rankings across various computer vision datasets. The heatmap
displays the performance ranks of 24 optimizers, including both standard versions and their Adaptive
Curvature Step Size (ACSS) variants, on five different datasets (Caltech101, CIFAR10, Flowers102,
MNIST, and STL10) at epochs 5 and 10. Rankings range from 1 (best performing) to 24 (worst
performing), with lower numbers and cooler colors indicating better performance. This visualization
highlights the impact of ACSS on various optimizers across different datasets.

Notably, optimizers that do not incorporate squared gradients (SimpleSGD, HeavyBall, NAG) ben-
efit most from ACSS. These optimizers achieve performance boosts comparable to methods using
squared gradients, but without the associated memory overhead.
Key Takeaways: ACSS versions generally outperform their traditional counterparts on these vision
benchmarks for both ResNet-18 and simple CNN architectures. The most significant improvements
are observed in optimizers that do not initially use squared gradients.

4.5 OVERALL RANK IMPROVEMENTS FOR DIFFERENT OPTIMIZERS

Figure 6 illustrates the performance improvement of optimizers with ACSS across multiple datasets.
Optimizers with lower memory requirements benefit most from ACSS. SimpleSGD, with the small-
est memory footprint, shows the highest average rank improvement of 12.5. HeavyBall and NAG
also demonstrate significant enhancements, with average improvements of 7.9 and 6.7 respectively.
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Figure 6: Heatmap of optimizer rank improvements when using ACSS across datasets. Green in-
dicates better performance, red indicates worse. The datasets are listed on the X-axis, and the
optimizers on the Y-axis. Color intensity represents the degree of improvement.
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Figure 7: Optimization paths on the Goldstein-Price (left) and Himmelblau (right) functions. These
functions present challenges due to their complex landscapes with multiple optima and flat regions.
More complex optimizers like Adam, AdamW, and AMSGrad, which already incorporate adaptive
learning rate mechanisms, show lower benefits. This suggests ACSS is particularly effective in
enhancing simpler optimization algorithms, offering a memory-efficient alternative to more complex
adaptive methods.

Key Takeaways: Except for AdamW, all optimizers show positive mean performance improvement
with ACSS, indicating benefits in incorporating ACSS into existing optimization pipelines.

4.6 OPTIMIZATION ON CHALLENGING FUNCTIONS

We now plot the performance of our optimizers on two challenging functions: the Himmelblau and
Goldstein-Price functions. Additional functions are analyzed in Appendix F.

The Himmelblau Function: The Himmelblau function has four global minima. ACSS versions
converge to the nearest minimum from the starting point (-4,4), while other versions overshoot at a
learning rate of 1.5 × 10−2. At higher rates, non-ACSS versions diverge, whereas ACSS versions
maintain convergence.

The Goldstein-Price Function: The Goldstein-Price function, with its complex landscape of mul-
tiple local minima and one global minimum at (0, -1), challenges gradient-based methods. ACSS
optimizers dynamically adjust step sizes based on local curvature, enabling precise convergence to
the global minimum. In contrast, standard Heavyball and NAG optimizers overshoot, moving toward
different local minima. We plot 5000 iterations from (0.5, 0) with a learning rate of 2.5× 10−5.

Key Takeaways: In Figures 1, 7 in the main paper, and Figure 8 in Appendix F, we plot the ACSS
performance as compared with the regular versions for challenging optimization benchmark func-
tions. In all the cases, the ACSS versions showed better stability and convergence properties com-
pared to the traditional algorithms.

4.7 LIMITATIONS:
It is important to acknowledge that ACSS introduces additional computational overhead per iter-
ation, with theoretical analysis suggesting up to twice the cost and experimental wall-clock time
measurements showing an average increase of 1.37 times for the ACSS optimizers over their tra-
ditional counterparts, which is balanced against its memory efficiency benefits and lower time to
convergence (see Section D for detailed theoretical and experimental analyses).

5 CONCLUSIONS

This work introduced the Adaptive Curvature Step Size (ACSS) method, a novel optimization ap-
proach that leverages the geometric properties of the optimization path to dynamically adjust step
sizes. Our comprehensive empirical evaluation across diverse datasets and challenging functions
demonstrates that ACSS consistently outperforms traditional optimization methods. The method’s
ability to incorporate second-order-like information without explicit computation of the Hessian is
a key benefit, as we show through our theoretical guarantees. Furthermore, ACSS’s low memory
footprint makes it particularly suitable for large-scale optimization setups and low-resource set-
tings. The generalized framework we provide for incorporating ACSS into various optimization
algorithms, along with our PyTorch implementations, facilitates further research in this direction.
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SUPPLEMENTARY MATERIALS

These supplementary materials provide additional details, derivations, and experimental results for
our paper. The appendix is organized as follows:

• Section A presents detailed derivations of the Adaptive Curvature Step Size (ACSS) method.

• Section B offers a comprehensive theoretical analysis of ACSS, including proofs of key theorems.

• Section C introduces a generalized algorithm for incorporating ACSS into existing optimizers.

• Section D provides theoretical and experimental analyses pertaining to limitations of this work.

• Section E provides additional experimental results, like performance on the CoLA dataset.

• Section F details the testing functions used to benchmark ACSS optimization.

A DETAILED DERIVATIONS OF ACSS

The optimization path traced by iterates {wt} during the optimization process can be viewed as a
discrete approximation of a continuous curve in parameter space. Understanding the curvature of
this path provides valuable insights into the local geometry of the loss landscape and guides adaptive
step size selection. In differential geometry, the curvature κ(s) of a curve w(s) parameterized by
arc length s is defined as:

κ(s) =

∥∥∥∥dT (s)ds

∥∥∥∥ , (5)

where T (s) = dw(s)
ds is the unit tangent vector to the curve at point s. The radius of curvature ρ(s)

is then given by ρ(s) = 1
κ(s) .

In the context of gradient-based optimization, we consider the continuous-time dynamics governed
by the gradient flow:

dw(t)

dt
= −∇f(w(t)) = −g(t), (6)

where g(t) = ∇f(w(t)) is the gradient of the function f at w(t). To relate curvature to discrete
optimization steps, we approximate the curvature using finite differences. We define the unit tangent
vector at iteration t as Tt = − gt

∥gt∥ , and approximate the change in the unit tangent vector between

iterations t and t+ 1 as ∆Tt ≈ − gt+1−gt
∥gt∥ .
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The curvature κt at iteration t, given this gradient norm approximation can then be given as:

κt =
∥gt+1 − gt∥

∥gt∥η
, (7)

where η is the step size. Consequently, the radius of curvature ρt is:

ρt =
1

κt
=

∥gt∥η
∥gt+1 − gt∥

. (8)

We introduce a normalized radius of curvature rt = ρt

η = ∥gt∥
∥g′

t−gt∥ , which decouples the radius
of curvature from the base learning rate η. The adaptive step size ∆st is then defined as ∆st =

η× rt = η× ∥gt∥
∥g′

t−gt∥ . To maintain numerical stability, we introduce a cap on the normalized radius
of curvature: r̂t = min{rmax, rt}, where rmax is a predefined maximum radius of curvature.

A.1 FINAL UPDATE RULE AND DISCUSSION

The final parameter update rule for the Adaptive Curvature Step Size (ACSS) method is:

wt+1 = wt − η × r̂t ×
gt
∥gt∥

. (9)

This can be interpreted as moving in the direction of the negative gradient gt
∥gt∥ with a step size

scaled by η × r̂t.

The ACSS method offers several key advantages in optimization tasks. By leveraging the curvature
of the optimization path, it implicitly incorporates second-order information without the computa-
tional overhead of explicit second-order methods. This dynamic adaptation allows ACSS to navigate
complex loss landscapes more effectively, enabling rapid progress in flat regions while ensuring
stability in high-curvature areas. The method’s memory efficiency, requiring minimal additional
storage beyond current and tentative gradients, makes it particularly suitable for large-scale opti-
mization problems in deep learning. Furthermore, ACSS’s framework allows for integration into
various existing optimization algorithms such as SGD, Adam, AdaGrad, and RMSProp, enhancing
their performance with its curvature-based step size adjustment.

B THEORETICAL ANALYSIS

Theorem 5 (Bounded Step Size of ACSS). Let f : Rn → R be an L-smooth and µ-strongly convex
function. Consider the ACSS update rule wt+1 = wt − ηr̂t

gt
∥gt∥ where r̂t = min{rmax, rt} and

rt =
∥gt∥

∥gt−g′
t∥

. Assume the following:

1. The gradients are bounded: ∃G > 0 such that ∥gt∥ ≤ G for all t

2. The function f is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y

3. The function f is µ-strongly convex: ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2 for all x, y

4. The maximum radius rmax is chosen such that rmax ≤ 2
η(µ+L)

Then, the effective step size ηeff = ηr̂t is bounded as follows:

1

L
≤ ηeff ≤

2

µ+ L

for all iterations t.

Proof. We proceed as follows:

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

rt =
∥gt∥

∥gt − g′t∥
Definition of rt

g′t = ∇f(wt − ηgt) From the algorithm

∥gt − g′t∥ = ∥∇f(wt)−∇f(wt − ηgt)∥
≤ L∥ηgt∥ = Lη∥gt∥ Using L-smoothness

rt =
∥gt∥

∥gt − g′t∥
≥ ∥gt∥

Lη∥gt∥
=

1

Lη
Lower bound on rt

r̂t = min{rmax, rt} ≥ min{ 2

η(µ+ L)
,
1

Lη
} =

1

Lη
Since

2

µ+ L
>

1

L

ηeff = ηr̂t ≥ η
1

Lη
=

1

L
Lower bound on ηeff

ηeff = ηr̂t ≤ ηrmax ≤ η
2

η(µ+ L)
=

2

µ+ L
Upper bound on ηeff

Thus, we have established that 1
L ≤ ηeff ≤ 2

µ+L for all iterations t.

Theorem 6 (Convergence of Gradient Descent on Quadratic Functions). Consider the quadratic
function f : Rn → R defined as

f(w) =
1

2
wTAw − bTw + c,

where A ∈ Rn×n is symmetric positive definite with eigenvalues 0 < µ ≤ λ1 ≤ · · · ≤ λn ≤ L,
b ∈ Rn, and c ∈ R. For the gradient descent update rule with step size ηeff > 0:

wt+1 = wt − ηeff,t∇f(wt) = wt − ηeff,t(Awt − b),

convergence is guaranteed if and only if 0 < ηeff <
2
λn

. Moreover, the optimal convergence rate is
achieved when ηeff =

2
µ+L .

Proof. The gradient of f is ∇f(w) = Aw − b, yielding the unique minimizer w∗ = A−1b. Let
et = wt − w∗ denote the error at step t. The update rule can be rewritten as:

et+1 = (I − ηeff,tA)et

Since A is symmetric positive definite, it can be diagonalized as A = QΛQT , where Q is orthogonal
and Λ = diag(λ1, . . . , λn). Define ẽt = QT et. Then:

ẽt+1 = (I − ηeff,tΛ)ẽt

This implies that for each component i:

ẽit+1 = (1− ηeff,tλi)ẽ
i
t

For convergence, we require |1− ηeffλi| < 1 for all i, which leads to:

0 < ηeff <
2

λi
∀i

13
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Since λn is the largest eigenvalue, the condition 0 < ηeff <
2
λn

ensures convergence.

The convergence rate is determined by maxi |1− ηeffλi|. To minimize this, we solve:

min
ηeff

max{|1− ηeffµ|, |1− ηeffL|}

The optimal solution occurs when 1− ηeffµ = −(1− ηeffL), yielding ηeff =
2

µ+L .

Therefore, gradient descent converges if and only if 0 < ηeff <
2
λn

, with the optimal convergence
rate achieved at ηeff =

2
µ+L .

Theorem 7 (Convergence of Gradient Descent on L-Smooth and µ-Strongly Convex Functions).
Let f : Rn → R be an L-smooth and µ-strongly convex function. For the gradient descent update
rule with step size ηeff > 0:

wt+1 = wt − ηeff,t∇f(wt),

convergence to the unique minimizer w∗ is optimally achieved when ηeff =
2

µ+L .

Proof. Given that f is L-smooth and µ-strongly convex, we have:

µI ⪯ ∇2f(w) ⪯ LI ∀w ∈ Rn.

Let w∗ be the unique minimizer of f . Define the error vector et = wt − w∗. The gradient descent
update can be written as:

et+1 = et − ηeff,t∇f(wt).

By the Mean Value Theorem, there exists ξt on the line segment between wt and w∗ such that:

∇f(wt) = ∇2f(ξt)et.

Thus, we can rewrite the error dynamics as:

et+1 = (I − ηeff,t∇2f(ξt))et.

Taking the Euclidean norm and using the operator norm:

∥et+1∥ ≤ ∥I − ηeff,t∇2f(ξt)∥ · ∥et∥.

The eigenvalues of ∇2f(ξt) lie in [µ,L] by Lemma 1. For convergence, we require:

|1− ηeffλ| < 1 ∀λ ∈ [µ,L].

Similar to Theorem 6, the convergence rate is determined by maxλ∈[µ,L] |1 − ηeffλ|. To minimize
this, we solve:

min
ηeff

max{|1− ηeffµ|, |1− ηeffL|}

The optimal solution occurs when 1− ηeffµ = −(1− ηeffL), yielding ηeff =
2

µ+L .

Therefore, gradient descent converges if 0 < ηeff <
2

µ+L .

Lemma 1. Let f : Rn → R be an L-smooth and µ-strongly convex function. Then for any ξ ∈ Rn,
the eigenvalues of the Hessian matrix ∇2f(ξ) lie in the interval [µ,L].

Proof. We begin by establishing that µI ⪯ ∇2f(ξ) ⪯ LI for all ξ ∈ Rn, where ⪯ denotes the
semidefinite ordering and I is the identity matrix. From this, we will conclude that the eigenvalues
of ∇2f(ξ) lie in [µ,L].

First, consider the L-smoothness property. For any x, y ∈ Rn, we have:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

14
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For an arbitrary direction v ∈ Rn, this implies:

lim
t→0

∥∇f(x+ tv)−∇f(x)∥
t

≤ L∥v∥

Taking the limit, we obtain:
∥[∇2f(x)]v∥ ≤ L∥v∥

This inequality is equivalent to:

vT [∇2f(x)]v ≤ LvT v ∀v ∈ Rn

which can be expressed in matrix notation as ∇2f(x) ⪯ LI .

Now, we turn to the µ-strong convexity property. For any x, y ∈ Rn:

(∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2

Following a similar argument as above, we can show that:

vT [∇2f(x)]v ≥ µvT v ∀v ∈ Rn

which is equivalent to ∇2f(x) ⪰ µI .

Combining these results, we have established that for all ξ ∈ Rn:

µI ⪯ ∇2f(ξ) ⪯ LI

Now, we invoke a fundamental result from linear algebra: for any symmetric matrix A, the statement
λI ⪯ A ⪯ ΛI is equivalent to λ ≤ λi(A) ≤ Λ for all eigenvalues λi(A) of A. Since ∇2f(ξ) is
symmetric (due to the assumed twice differentiability of f ), we can apply this result.

Therefore, we conclude that for any ξ ∈ Rn, all eigenvalues λi of ∇2f(ξ) satisfy:

µ ≤ λi ≤ L

Thus, the eigenvalues of ∇2f(ξ) lie in the interval [µ,L], completing the proof.

Theorem 8 (Stability of ACSS Under Gradient Perturbations). Let f : Rn → R be an L-smooth
and µ-strongly convex function. Consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where:

ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt − g′t∥
, g′t = ∇f(wt − ηgt).

Assume the following:

1. The gradients are bounded: ∃G > m > 0 such that m ≤ ∥gt∥ ≤ G for all t.

2. The function f is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn.

3. The function f is µ-strongly convex: ⟨∇f(x) − ∇f(y), x − y⟩ ≥ µ∥x − y∥2 for all
x, y ∈ Rn.

4. The maximum radius rmax is chosen such that rmax ≤ 2
(L+µ)η .

5. Gradients are perturbed: g̃t = gt + δt and g̃′t = g′t + δ′t, where ∥δt∥ ≤ ε and ∥δ′t∥ ≤ ε for
some ε > 0.
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Then, the difference between the updates using exact and perturbed gradients satisfies:

∥wt+1 − w̃t+1∥ ≤ 4ηmaxε

m− ε
,

where ηmax = 2
L+µ .

Proof. We begin by expressing the difference between the exact update wt+1 and the perturbed
update w̃t+1:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− η̃eff,t
g̃t

∥g̃t∥

∥∥∥∥
Applying Lemma 2, we obtain:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

We now bound each term separately.

First, we bound the difference in direction vectors. Note that g̃t = gt+ δt, so ∥gt− g̃t∥ = ∥δt∥ ≤ ε.
Also, from our assumptions, ∥gt∥ ≥ m > ε. Therefore, we can apply Proposition B.1 with a = gt
and b = g̃t: ∥∥∥∥ gt

∥gt∥
− g̃t

∥g̃t∥

∥∥∥∥ ≤ 2∥gt − g̃t∥
∥gt∥

≤ 2ε

m

Next, we bound the difference in effective step sizes:

|ηeff,t − η̃eff,t| = η|r̂t − ˜̂rt| ≤ η|rt − r̃t|

To bound |rt − r̃t|, we use the definition of rt and r̃t:

|rt − r̃t| =
∣∣∣∣ ∥gt∥
∥gt − g′t∥

− ∥g̃t∥
∥g̃t − g̃′t∥

∣∣∣∣
Using the triangle inequality and the fact that ∥g̃t∥ ≤ ∥gt∥ + ∥δt∥ ≤ G + ε, and ∥g̃t − g̃′t∥ ≥
∥gt − g′t∥ − 2ε, we can derive:

|rt − r̃t| ≤
2ε

m− 2ε

Thus,

|ηeff,t − η̃eff,t| ≤
2ηε

m− 2ε

Combining these bounds and using ηeff,t ≤ ηmax = 2
L+µ , we arrive at:

∥wt+1 − w̃t+1∥ ≤ ηmax ·
2ε

m
+

2ηε

m− 2ε

Given the choice of rmax and the boundedness of ηeff,t, we can bound this as:

∥wt+1 − w̃t+1∥ ≤ 2(ηmax + η)ε

m− ε
≤ 4ηmaxε

m− ε
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In practice, η is far lower than ηmax, and hence we can ignore the second term in which case we get
a tighter bound of

∥wt+1 − w̃t+1∥ ≤ 2ηmaxε

m

This bound demonstrates that the ACSS algorithm is stable under bounded gradient perturbations,
with the perturbation in the parameter updates being proportional to the noise level ε and inversely
proportional to m− ε.

Lemma 2 (Triangle Inequality for ACSS Updates). Given the ACSS update rule and its perturbed
version:

wt+1 = wt − ηeff,t
gt
∥gt∥

, w̃t+1 = wt − η̃eff,t
g̃t
∥g̃t∥

The difference between these updates can be bounded as:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

Proof. We start with the difference between the updates:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− η̃eff,t
g̃t

∥g̃t∥

∥∥∥∥
Add and subtract ηeff,t

g̃t
∥g̃t∥ inside the norm:

∥wt+1 − w̃t+1∥ =

∥∥∥∥ηeff,t
gt
∥gt∥

− ηeff,t
g̃t
∥g̃t∥

+ ηeff,t
g̃t

∥g̃t∥
− η̃eff,t

g̃t
∥g̃t∥

∥∥∥∥
Apply the triangle inequality:

∥wt+1 − w̃t+1∥ ≤
∥∥∥∥ηeff,t

gt
∥gt∥

− ηeff,t
g̃t
∥g̃t∥

∥∥∥∥+

∥∥∥∥ηeff,t
g̃t

∥g̃t∥
− η̃eff,t

g̃t
∥g̃t∥

∥∥∥∥
Factor out ηeff,t from the first term and simplify the second term:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+

∥∥∥∥(ηeff,t − η̃eff,t)
g̃t

∥g̃t∥

∥∥∥∥
Note that

∥∥∥ g̃t
∥g̃t∥

∥∥∥ = 1, so:

∥wt+1 − w̃t+1∥ ≤ ηeff,t

∥∥∥∥ gt
∥gt∥

− g̃t
∥g̃t∥

∥∥∥∥+ |ηeff,t − η̃eff,t|

This completes the proof of the lemma.

Proposition B.1 (Bound on Difference of Normalized Vectors). Given two vectors a, b ∈ Rn with
∥a∥ > ∥a− b∥, we have: ∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ 2∥a− b∥
∥a∥

Proof. We start with the vector identity:

a

∥a∥
− b

∥b∥
=

a∥b∥ − b∥a∥
∥a∥∥b∥

=
a(∥b∥ − ∥a∥) + ∥a∥(a− b)

∥a∥∥b∥

Taking the norm of both sides and applying the triangle inequality:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ ∥a∥|∥b∥ − ∥a∥|+ ∥a∥∥a− b∥
∥a∥∥b∥
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Using the reverse triangle inequality, |∥b∥ − ∥a∥| ≤ ∥b− a∥ = ∥a− b∥:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ ∥a∥∥a− b∥+ ∥a∥∥a− b∥
∥a∥∥b∥

=
2∥a− b∥

∥b∥

Since ∥b∥ ≥ ∥a∥ − ∥a− b∥ (by the triangle inequality), and given ∥a∥ > ∥a− b∥, we have:∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ ≤ 2∥a− b∥
∥a∥ − ∥a− b∥

≤ 2∥a− b∥
∥a∥

This completes the proof of the lemma.

Theorem 9 (Convergence Rate for ACSS on Strongly Convex Functions). Let f : Rn → R be an
L-smooth and µ-strongly convex function. Consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where:

ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt − g′t∥
, g′t = ∇f(wt − ηgt).

Assume the following:

1. There exists a constant G > 0 such that ∥gt∥ ≤ G for all t.

2. The function f satisfies ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn.

3. The function f satisfies ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2 for all x, y ∈ Rn.

Then, for all t ≥ 0, the ACSS algorithm satisfies:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2.

Proof. We begin by analyzing the squared distance to the optimum after each update:

∥wt+1 − w∗∥2 = ∥wt − w∗ − ηeff,t
gt

∥gt∥
∥2

= ∥wt − w∗∥2 − 2ηeff,t
⟨gt, wt − w∗⟩

∥gt∥
+ η2eff,t

From the µ-strong convexity assumption, we derive a lower bound on the gradient:

⟨gt, wt − w∗⟩ ≥ µ∥wt − w∗∥2

The L-smoothness condition provides an upper bound on the gradient norm:

∥gt∥ ≤ L∥wt − w∗∥

Combining these bounds, we obtain:

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 − 2ηeff,t
µ∥wt − w∗∥2

L∥wt − w∗∥
+ η2eff,t

= ∥wt − w∗∥2 − 2ηeff,t
µ

L
∥wt − w∗∥+ η2eff,t
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To derive a contraction factor, we introduce dt = ∥wt − w∗∥ and seek q < 1 such that dt+1 ≤ qdt.
Assuming dt+1 ≤ qdt, we have:

q2d2t ≥ d2t − 2ηeff,t
µ

L
dt + η2eff,t

Dividing by d2t , we obtain:

q2 ≥ 1− 2ηeff,t
µ

Ldt
+

η2eff,t

d2t

To minimize q, we define f(dt) = 1− 2ηeff,t
µ

Ldt
+

η2
eff,t

d2
t

and find its minimum:

f ′(dt) = 2ηeff,t
µ

Ld2t
− 2

η2eff,t

d3t
= 0

dt =
ηeff,tL

µ

This critical point is indeed a minimum as f ′′(dt) > 0 for dt > 0. Evaluating f(dt) at this minimum:

f

(
ηeff,tL

µ

)
= 1− 2ηeff,t

µ

L
· µ

ηeff,tL
+

η2eff,t(
ηeff,tL

µ

)2

= 1− 2
µ2

L2
+

µ2

L2
= 1− µ2

L2

Therefore, for all dt > 0, we have f(dt) ≥ 1− µ2

L2 , which implies:

q2 ≥ 1− µ2

L2
=⇒ q ≥

√
1− µ2

L2

We conclude that:

∥wt+1 − w∗∥2 ≤
(
1− µ2

L2

)
∥wt − w∗∥2

Applying this inequality recursively, we obtain the final convergence rate:

∥wt − w∗∥2 ≤
(
1− µ2

L2

)t

∥w0 − w∗∥2

This establishes the linear convergence rate for the ACSS algorithm under the given assumptions.

Theorem 10 (Scale Invariance of ACSS Effective Step Size). Let f : Rn → R be a function, and
consider the ACSS update rule:

wt+1 = wt − ηeff,t
gt

∥gt∥
,

where ηeff,t = ηr̂t, r̂t = min{rmax, rt}, rt =
∥gt∥

∥gt−g′
t∥

, gt = ∇f(wt), and g′t = ∇f(wt − ηgt).

For any scalar α > 0, scaling the base step size η by α results in the same parameter updates,
assuming that r′t ≤ rmax. Specifically:

a) For quadratic functions f(w) = 1
2w

TAw − bTw + c, where A ∈ Rn×n is symmetric positive
definite:

w
(αη)
t+1 = w

(η)
t+1
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b) For L-smooth and µ-strongly convex functions:

w
(αη)
t+1 ≈ w

(η)
t+1

where the approximation becomes exact as η → 0.

In both cases, w(αη)
t+1 and w

(η)
t+1 are the parameter updates for the scaled and original step sizes

respectively.

Proof. We prove this theorem by examining both cases separately.

a) Quadratic case:

For a quadratic function f(w) = 1
2w

TAw − bTw + c, the gradient is ∇f(w) = Aw − b.

With the original step size η, we have:

gt = Awt − b,

g′t = A(wt − ηgt)− b = (I − ηA)gt,

rt =
∥gt∥

∥gt − g′t∥
=

∥gt∥
∥ηAgt∥

=
1

η
· ∥gt∥
∥Agt∥

.

With the scaled step size αη, we have:

g′t = A(wt − αηgt)− b = (I − αηA)gt,

r′t =
∥gt∥

∥gt − g′t∥
=

∥gt∥
∥αηAgt∥

=
1

αη
· ∥gt∥
∥Agt∥

=
rt
α
.

Assuming r′t ≤ rmax, we have:

r̂′t = min{rmax, r
′
t} =

rt
α

=
r̂t
α
.

The effective step size with the scaled η becomes:

η′eff,t = αη · r̂′t = αη · r̂t
α

= η · r̂t = ηeff,t.

Therefore, the parameter updates are identical:

w
(αη)
t+1 = wt − η′eff,t

gt
∥gt∥

= wt − ηeff,t
gt

∥gt∥
= w

(η)
t+1.

b) L-smooth and µ-strongly convex case:

For a general L-smooth and µ-strongly convex function, we use a first-order Taylor expansion to
approximate g′t:

g′t = ∇f(wt − ηgt) ≈ ∇f(wt)− η∇2f(wt)gt = gt − η∇2f(wt)gt.

With this approximation:

rt ≈
∥gt∥

∥η∇2f(wt)gt∥
=

1

η
· ∥gt∥
∥∇2f(wt)gt∥

.

For the scaled step size αη:

r′t ≈
∥gt∥

∥αη∇2f(wt)gt∥
=

1

αη
· ∥gt∥
∥∇2f(wt)gt∥

=
rt
α
.

As in the quadratic case, assuming r′t ≤ rmax, we have r̂′t = r̂t/α, leading to:

η′eff,t = αη · r̂′t = αη · r̂t
α

= η · r̂t = ηeff,t.
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Therefore, the parameter updates are approximately equal:

w
(αη)
t+1 ≈ wt − η′eff,t

gt
∥gt∥

≈ wt − ηeff,t
gt

∥gt∥
≈ w

(η)
t+1.

The approximation becomes exact as η → 0, as the first-order Taylor expansion becomes increas-
ingly accurate.

Thus, we have shown that for both quadratic functions and general L-smooth and µ-strongly con-
vex functions, scaling the base step size η by α > 0 results in either identical (quadratic case) or
approximately identical (general case) parameter updates, assuming that r′t ≤ rmax.

Corollary 1 (Adaptive Behavior of ACSS). Let f : Rn → R be an L-smooth and µ-strongly convex
function satisfying the conditions of Theorem 5, including rmax ≤ 2

η(µ+L) . Further, assume that f
has locally L(w)-Lipschitz continuous gradients, where L(w) may vary with w and µ ≤ L(w) ≤
L for all w ∈ Rn. Then, the effective step size ηeff,t = ηr̂t adapts to the local curvature of f .
Specifically, in regions of low curvature (small L(wt)), ηeff,t tends to be larger, allowing for larger
steps, while in regions of high curvature (large L(wt)), ηeff,t tends to be smaller, resulting in more
conservative updates.

Proof. The adaptive behavior of ACSS stems from its relationship with the local curvature of the
function, as captured by the local Lipschitz constant L(wt). To understand this relationship, let’s
examine how the effective step size ηeff,t is influenced by L(wt).

Recall from Theorem 5 that 1
L ≤ ηeff,t ≤ 2

µ+L for all iterations t. We can refine this bound by
considering the local properties of f at wt. First, let’s consider the lower bound on ηeff,t. The
normalized radius of curvature rt is defined as ∥gt∥

∥gt−g′
t∥

. By applying the mean value theorem and
using the locally L(w)-Lipschitz continuous gradient assumption, we can bound the denominator:

∥gt − g′t∥ = ∥∇f(wt)−∇f(wt − ηgt)∥ ≤ L(wt)∥ηgt∥ = L(wt)η∥gt∥ (10)

This inequality allows us to establish a lower bound on rt: rt ≥ 1
L(wt)η

. Consequently, we can
bound ηeff,t from below:

ηeff,t = ηr̂t ≥ min

{
ηrmax,

1

L(wt)

}
(11)

The upper bound on ηeff,t remains 2
µ+L as given in Theorem 5. Additionally, we know that ηeff,t ≤

ηrmax by definition. Combining these bounds and using the assumption rmax ≤ 2
η(µ+L) , we can

express the range of ηeff,t as:

min

{
2

µ+ L
,

1

L(wt)

}
≤ ηeff,t ≤

2

µ+ L
(12)

This refined bound reveals the adaptive nature of ACSS:

1. In regions of low curvature, where L(wt) is small, the lower bound 1
L(wt)

becomes larger. This
allows ηeff,t to take on larger values, potentially approaching 2

µ+L . As a result, ACSS can take larger
steps in these flatter regions of the loss landscape.

2. Conversely, in regions of high curvature, where L(wt) is large, the lower bound 1
L(wt)

becomes
smaller. This constrains ηeff,t to smaller values, ensuring that ACSS takes more conservative steps
in these highly curved areas of the loss landscape.

Through this mechanism, ACSS naturally adapts its step size to the local geometry of the function,
balancing between rapid progress in flat regions and careful navigation in curved regions.
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C GENERALIZED ALGORITHM: OPT-ACSS

For any optimizer OPT, we can derive an ACSS version using Algorithm 2. The key modification in
the weight and state update steps of the existing optimizer is the substitution of the gradient at time
t, gt, with r̂tgt/|gt|. Using this adaptation, we can incorporate the ACSS mechanism into various
optimizers.

Algorithm 2: Arbitrary optimizer OPT with adaptive curvature step size (OPT-ACSS)
Input: Function f : Rn ×D → R, initial parameters w0 ∈ Rn, base learning rate η, maximum

radius rmax, number of iterations T , batch size B, Optimizer parameter update
function: UpdateParams, Optimizer weight update function: UpdateWeights

Output: Optimized parameters wT

Initialize optimizer state S0 according to the specific optimizer;
for t = 0 to T − 1 do

Sample a mini-batch Bt from D;
Compute gradient gt = ∇wf(wt,Bt) and next point gradient g′t = ∇wf(wt − ηgt,Bt);
Compute normalized radius of curvature rt =

||gt||
||gt−g′

t||
;

Compute capped radius r̂t = min{rmax, rt};
Compute ACSS-adjusted gradient g̃t = r̂t × gt

||gt|| ;
Update optimizer state St = UpdateState(St−1, g̃t);
Compute update ∆wt = UpdateWeights(St, g̃t);
Update parameters wt+1 = wt +∆wt;

end
return wT

This generalization allows for integration of ACSS into various existing optimization algorithms
such as SGD, Adam, AdaGrad, and RMSProp, enhancing their performance with its curvature-based
step size adjustment.

D LIMITATIONS

While ACSS offers significant benefits in terms of optimization performance, it’s important to ac-
knowledge its primary limitation: increased computational time per iteration. This additional com-
putational cost arises from the need to compute a secondary gradient and perform additional calcu-
lations to determine the adaptive step size. To quantify this limitation, we provide both experimental
and theoretical evidence of the additional time required by ACSS methods compared to their non-
ACSS counterparts.

D.1 EXPERIMENTAL EVIDENCE

Wall-Clock Time Experiments: To quantify the computational overhead of ACSS methods com-
pared to their non-ACSS counterparts, we conducted comprehensive wall-clock time experiments.
Table 3 presents the results of these experiments, focusing on the mean time taken to complete 2
epochs on the IMDB dataset using various optimizers.

These results offer several insights:

1. Computational Overhead: As expected, ACSS methods require more computation time
than their non-ACSS counterparts. On average, ACSS methods take approximately 1.37
times longer to complete the same number of epochs.

2. Consistency Across Optimizers: The overhead ratio is relatively consistent across differ-
ent optimization algorithms, ranging from about 1.33 to 1.46 times the non-ACSS version’s
runtime.

3. Memory Efficiency Trade-off: While there is a computational time overhead, it’s crucial
to emphasize that the primary trade-off that the ACSS method provides is in memory ef-
ficiency. Our method achieves results equivalent to several second-order methods while
maintaining a significantly lower memory footprint.
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Table 3: Mean time to complete 2 epochs on the IMDB dataset using various optimizers
Wall-clock time Wall-clock time Ratio of

Optimizer (Mean) (Std Deviation) Times Taken
SimpleSGD 91.0175 5.0617
SimpleSGDCurvature 122.5004 2.6835 1.3459
Adam 86.4103 0.1938
AdamCurvature 121.6974 1.3342 1.4084
HeavyBall 85.5865 0.5449
HeavyBallCurvature 120.9661 0.1746 1.4134
NAG 85.6665 0.1808
NAGCurvature 125.0773 1.5621 1.4600
Adagrad 88.1545 0.5783
AdagradCurvature 119.6787 0.5171 1.3576
Adadelta 91.4525 1.0088
AdadeltaCurvature 124.8485 0.3255 1.3652
RMSProp 89.4943 1.8763
RMSPropCurvature 125.4326 0.8316 1.4016
RMSPropMomentum 89.9954 0.7421
RMSPropMomentumCurvature 124.8127 0.2511 1.3869
AdamW 89.5067 0.8976
AdamWCurvature 125.9545 4.0044 1.4072
NAdam 91.6765 0.1706
NAdamCurvature 125.4949 1.8784 1.3689
NAdamW 91.1489 2.7840
NAdamWCurvature 124.9436 0.9476 1.3708
AMSGrad 91.5774 2.1047
AMSGradCurvature 121.5177 2.3766 1.3269

D.2 THEORETICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

To complement our empirical results, we provide a theoretical analysis of the computational com-
plexity of ACSS compared to standard SGD.

Theorem 11 (Computational Complexity of ACSS vs. SGD). Let f : Rn → R be the objective
function for a neural network, n be the number of parameters, and B be the mini-batch size. Let Cgc
represent the cost of gradient computation per sample per parameter.

The ratio of computational cost per iteration for ACSS vs SGD is approximately 2, assuming Cgc ≫
1. In other words:

CostACSS

CostSGD
≈ 2 (13)

Proof. We analyze the computational cost of each step in both SGD and ACSS:

Operation Description Cost (FLOPs)
c1 Gradient Computation (SGD & ACSS) Bn · Cgc
c2 Secondary Gradient Computation (ACSS only) Bn · Cgc

c3, c4 Norm Calculation (ACSS only) 2n+ 1
c5 Ratio Computation (ACSS only) 1
c6 Gradient Normalization (ACSS only) n
c7 Parameter Update (SGD & ACSS) n

Table 4: Computational cost breakdown for SGD and ACSS operations

Summing up for SGD:
CostSGD = c1 + c7 = Bn · Cgc + n FLOPs
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Summing up for ACSS:

CostACSS = c1 + c2 + c3 + c4 + c5 + c6 + c7

= Bn · Cgc +Bn · Cgc + (2n+ 1) + (2n+ 1) + 1 + n+ n

= 2Bn · Cgc + 7n+ 3 FLOPs

The additional overhead of ACSS is therefore:

∆Cost = CostACSS − CostSGD

= (2Bn · Cgc + 7n+ 3)− (Bn · Cgc + n)

= Bn · Cgc + 6n+ 3 FLOPs

Given that Cgc ≫ 1 in practice, the dominant term in both algorithms is Bn ·Cgc. ACSS effectively
doubles this term, leading to approximately twice the computational cost of SGD per iteration.

This theoretical analysis aligns with our empirical observations, confirming that ACSS introduces a
significant but consistent computational overhead compared to standard optimization methods.

In conclusion, while ACSS methods introduce a computational overhead of approximately 1.37
times longer runtime, this is balanced by significant memory efficiency. By providing second-order-
like benefits without increasing memory footprint, ACSS offers a valuable alternative for large-scale
problems and memory-constrained scenarios. This makes ACSS particularly useful when memory
constraints outweigh computational time considerations, introducing a new option for balancing
time and memory trade-offs in optimization.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COLA DATASET PERFORMANCE:

In our experiments with the CoLA (Corpus of Linguistic Acceptability) dataset, we evaluated the
performance of various optimizers with and without the Adaptive Curvature Step Size (ACSS)
method over five epochs. The ACSS variants consistently outperformed their traditional counter-
parts throughout the training process.

RMSProp and RMSProp-ACSS initially performed similarly (0.634 vs 0.636), but by the fifth epoch,
the ACSS version significantly outperformed the standard version (0.522 vs 0.611). Adagrad showed
more modest improvements with ACSS, yet still consistently outperformed its standard counter-
part. Adam-based optimizers (Adam-ACSS, AMSGrad-ACSS, AdamW-ACSS, NAdam-ACSS,
NAdamW-ACSS) demonstrated similar performance patterns, starting with slightly higher losses but
showing consistent improvement over the epochs. By the fifth epoch, these ACSS variants achieved
lower losses (around 0.528-0.534) compared to their non-ACSS counterparts (0.596-0.605).

Key Takeaways: Table 5 shows a significant outperformance of the ACSS optimizers where the
best performing optimizers have only reached a training loss of 0.591 (Adagrad), whereas eight of
the ACSS versions beat this training loss at epoch 5.

Table 5: Training Loss over 10 Epochs for CoLA Dataset with a simplified RNN Model. Notice
that many of the best models are ACSS versions. Furthermore, the decrease in training loss is often
much higher for the ACSS versions of the optimizer.

Optimizer Name Regular Optimizer ACSS Version of Optimizer
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Adadelta 0.610±0.00 0.605±0.00 0.601±0.00 0.597±0.00 0.593±0.00 0.684±0.03 0.645±0.01 0.627±0.01 0.619±0.00 0.616±0.00

Adagrad 0.611±0.00 0.608±0.00 0.604±0.00 0.599±0.01 0.591±0.01 0.613±0.00 0.601±0.00 0.596±0.00 0.591±0.00 0.588±0.00

Adam 0.611±0.00 0.608±0.00 0.605±0.00 0.603±0.00 0.596±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

AdamW 0.611±0.00 0.608±0.00 0.606±0.00 0.602±0.01 0.597±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

AMSGrad 0.611±0.00 0.608±0.00 0.606±0.00 0.602±0.00 0.596±0.01 0.620±0.00 0.600±0.00 0.583±0.00 0.560±0.00 0.528±0.01

HeavyBall 0.624±0.00 0.611±0.00 0.610±0.00 0.610±0.00 0.609±0.00 0.621±0.00 0.608±0.00 0.603±0.00 0.599±0.00 0.595±0.00

NAdam 0.612±0.00 0.609±0.00 0.608±0.00 0.605±0.00 0.602±0.01 0.623±0.00 0.606±0.00 0.592±0.00 0.569±0.01 0.534±0.01

NAdamW 0.611±0.00 0.609±0.00 0.608±0.00 0.607±0.00 0.605±0.00 0.623±0.00 0.606±0.00 0.592±0.00 0.568±0.01 0.534±0.01

NAG 0.624±0.00 0.611±0.00 0.610±0.00 0.610±0.00 0.609±0.00 0.621±0.00 0.608±0.00 0.603±0.00 0.599±0.00 0.595±0.00

RMSProp 0.634±0.02 0.617±0.01 0.614±0.01 0.611±0.00 0.611±0.00 0.636±0.00 0.602±0.00 0.584±0.00 0.557±0.01 0.522±0.01

RMSPropMomentum 0.635±0.02 0.626±0.04 0.614±0.01 0.612±0.00 0.610±0.00 0.638±0.00 0.604±0.00 0.587±0.01 0.561±0.01 0.525±0.02

SimpleSGD 0.662±0.01 0.630±0.00 0.622±0.00 0.618±0.00 0.616±0.00 0.611±0.00 0.608±0.00 0.606±0.00 0.605±0.00 0.603±0.00
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F DETAILS OF TESTING FUNCTIONS FOR ACSS OPTIMIZATION

We provide details on the four functions used to test the ACSS based optimizer below.

F.1 THE ROSENBROCK FUNCTION

The function is depicted with contour lines, where darker colors indicate lower values. Each subplot
displays the path taken by a different optimizer. The plots indicate that the ACSS versions of the op-
timizers navigate the function’s characteristic narrow, parabolic valley more effectively, by reducing
the step size as appropriate. The learning rate is set to 1.5× 10−3, and the iterates start at (−1.5, 2).

F.2 THE EASOM FUNCTION

The Easom function features a broad, flat area with a sharp depression at its global minimum (π, π).
With a learning rate of 2.0×10−3 and 200 iteration steps, standard optimizers remain near the initial
point. In contrast, ACSS versions achieve convergence, showing ACSS’s capability to accelerate
optimization in low-gradient scenarios.

F.3 THE ACKLEY FUNCTION

The Ackley function presents a flat outer region with numerous local minima and a steep central hole
containing the global minimum at (0,0). With a learning rate of 5 × 10−3 and 25 iterations, ACSS
versions of optimizers demonstrate superior navigation of the loss landscape, adaptively reducing
step size near convergence.

F.4 THE THREE-HUMPED CAMEL FUNCTION

The Three-Hump Camel function has three local minima and a global minimum at (0, 0). Using
1.0 × 10−2 learning rate for 300 steps, Heavyball and Nesterov methods overshoot, while ACSS
versions self-correct, showing enhanced optimization in this complex landscape.
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Figure 8: Optimizer performance on challenging optimizer benchmarking functions.
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