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Compiler Design 

We have built a light-weight compiler (Fig. 1), which is exploited to analyze the script 
codes and further mapped them to visual presentation codes and automatic virtual 
camera operations. The compiler consists of Syntax checking, camera tracking. The 
rendering component of ScaleTraversal is developed on GPU rendering and OpenGL 
libraries. For example, the rendering parts of the general-purpose data presentations 
are mainly implemented on OpenGL libraries. However, volume data rendering and 
the lighting effect are implemented based on GPU rendering, which makes the 
demonstration animation smooth.  
 
The compiled results will be transferred to the rendering component to generate 
presentation animations. ScaleTraversal is designed like a programming library, 
which can be changed and added more rendering functions in future. 
 

 

Figure 1. A design diagram of the compiler of ScaleTraversal. (a) A DSL script codes sample (b) A 

trie tree is constructed for lexical analysis. (c) Some extracted identifiers and keywords to be 

analyzed by the trie tree. (d) The state diagram of the spelling checking parser. (e) A binary tree is 

built to analyze the parallel expression semantically. 



Super Object Combination Strategy 

Typically, the CPU processes the data, state, and other information of one object each 
time to the command buffer as a “Draw Call”. “Draw Call” is a frequently-used data 
sharing strategies in GPU programming. They are appended to the command buffer 
by CPU, and the GPU reads them from the command buffer and executes them.  
 
If there are a large number of individual objects in the rendering space, the CPU will 
spend a lot of time on pushing the “Draw Calls”, resulting in FPS decreasing across 
the overall animation. We create a super object combination strategy to save the data 
and state information of multiple objects in batch, while the CPU only needs to push 
the super object each time (G3). Several objects in an identical tissue in a given scale 
level can be combined into a super object, as shown in Figure 2. The strategy 
significantly reduces the number of “Draw Calls” and further increases the FPS of 
animation rendering (G3). 
 

 

Figure 2. We use super object which is the combination of objects to reduce the frequency of “Draw 

Call”. When the rendering information of different objects is combined and packaged to generate a 

super object, they will use only one “Draw Call” of the super object. 

Evaluation: Edge Bundling Comparison 

In line rendering part, we modify the classic edge bundling algorithm by taking the 
semantic information of biomedical knowledge into consideration. For example, in the 
encephalic region scale, all the bundling directions should start from an encephalic 
region to another encephalic region. The original fibers rendered without any edge 
bundling algorithm, the bundled fibers generated by the modified algorithm by 
considering semantic information, and the further improved fibers by reducing visual 
clutter can be seen in Figure 3 (a), Figure 3 (b) and Figure 3 (c), respectively. The 
domain experts really appreciate the bundling effect customized by ScaleTraversal. 



 

Figure 3. The comparison results of the line rendering approaches by using the fiber scale data. (a) 

The original fibers rendered without edge bundling. (b) The bundled fibers generated by the 

modified edge bundling algorithm. We modify the edge bundling algorithm [19] by taking the 

semantic information of biomedical knowledge into consideration. (c) The visual clutter is further 

reduced by querying the fibers between encephalic regions. 

 

 

Figure 4. The third animation customization case by using all seven scales step by step. It includes 

brain envelop scale (L1), encephalic region scale (L2), fiber scale (L3), cortical column scale (L4), 

neuron scale (L5), chromosome scale (L6) and DNA scale (L7). The top icons are visualized in the 

animation space indicating which scale and where the current position the virtual camera are 

locating. The bottom sub-figures are the corresponding snapshots. 



Animation Example: The Third Animation Example 

The third case demonstrates the customized data animation across all the scales step 
by step, as shown in Figure 4. It includes brain envelop scale (L1), encephalic region 
scale (L2), fiber scale (L3), cortical column scale (L4), neuron scale (L5), chromosome 
scale (L6) and DNA scale (L7). The customization process is similar to the video edit 
process in Adobe Premiere. For more details about the second animation, please see 
the supplementary video of the submission. 

DSL-based Short Script Codes Design 

We have designed an interactive bi-functional user interface to customize multi-scale 
biomedical demonstration animations intuitively. It consists of a graphical (i.e, GUI 
controls) and a textual grammar (simple DSL codes). They are fully utilized to 
strengths of GUI's user friendliness and textual grammar's flexibility. The DSL-based 
short script codes will be embedded into the GUI interface of ScaleTraversal.  
 

DSL codes samples: 
setSurfaceStyle {metallic=float, smoothness=float, rgba=(float, float, float, float); 
Description: customize the surface style of the rendering, set the metallic and 
smoothness of brain envelope 
 
setLineStyle {maxr=float, minr=float, bundling=boolean, rgba=(float, float, float, 
float)}; 
Description: customize the line style of the rendering, set the maximum and 
minimum radius and choose whether to binding. The line bundling effect is shown in 
Figure 5. 
 

 

Figure 5. The illustration of edge bundling for the lines present in multi-scale biomedical data. We 

take the semantic information of biomedical knowledge into consideration. All the bundling 

directions should start from an encephalic region to another encephalic region. 

 



setPointStyle {maxr=float, minr=float, rgba=(float, float, float, float)}; 
Description: customize the point style of the rendering, set the size of each point 
 
fadeInScale {scale=string, duration=float seconds, interval=float seconds}; 
Description: access to deeper scale in animation transition by setting the level, 
duration and interval 
 
fadeOutScale {scale=string, duration=float seconds, interval=float seconds}; 
Description: back to superficial level in customized animation transition 
 
drawPoints (scale=string, at=string, sampling-rate=float) 
Description: draw point objects at a given functional area of the data in a specific scale. 
Lines are filtered with a given sampling-rate. 
 
drawLines (scale=string, at=string, sampling-rate= float) 
Description: draw lines at a given functional area of the data in a specific scale. Lines 
are filtered with a given sampling-rate. 
 
drawSurface (scale=string, at=string, sampling-rate= float) 
Description: draw surface objects at a given functional area of the data in a specific 
scale. Lines are filtered with a given sampling-rate. 
 
translate {position=string*float ,duration=float seconds, interval=float seconds}; 
Description: shift the camera lens across an interesting object or a complete scale by 
the given direction and length 
 
rotate {centre=string, axis=string, angle=float degrees, ,duration=float seconds, 
interval=float seconds}; 
 
zoom {times=float, duration=float seconds, interval=float seconds}; 
Description: zoom-in/zoom-out the camera lens 
 
parallel { 
    translate {direction=string, displacement=float ,duration=float seconds, 
interval=float seconds}=true/false; 
    rotate {centre=string, axis=string, angle=float degrees, ,duration=float seconds, 
interval=float seconds}=true/false; 
    scale {times=float, duration=float seconds, interval=float seconds}=true/false; 
}; 
Description: executed concurrently. 
Description: rotate the camera lens around an interesting object or a complete scale 
by the give centre, axis and angle. The parameter centre can be the centre of any of 
the brain function areas. 
 



 

There are 92 brain functional areas in total in the multi-scale brain 
data provided by the domain experts. The names of functional 
areas are parameters customized by GUI interface. Users just need 
to input the partial letters by fuzzy search: 

 
Precentral_L 
Precentral_R 
Frontal_Sup_L 
Frontal_Sup_R 
Frontal_Sup_Orb_L 
Frontal_Sup_Orb_R 
Frontal_Mid_L 
Frontal_Mid_R 
Frontal_Mid_Orb_L 
Frontal_Mid_Orb_R 
Frontal_Inf_Oper_L 
Frontal_Inf_Oper_R 
Frontal_Inf_Tri_L 
Frontal_Inf_Tri_R 
Frontal_Inf_Orb_L 
Frontal_Inf_Orb_R 
Rolandic_Oper_L 
Rolandic_Oper_R 
Supp_Motor_Area_L 
Supp_Motor_Area_R 
Olfactory_L 
Olfactory_R 
Frontal_Sup_Med_L 
Frontal_Sup_Med_R 
Frontal_Med_Orb_L 
Frontal_Med_Orb_R 
Rectus_L 
Rectus_R 
Insula_L 
Insula_R 
Cingulum_Ant_L 
Cingulum_Ant_R 
Cingulum_Mid_L 
Cingulum_Mid_R 
Cingulum_Post_L 
Cingulum_Post_R 
Hippocampus_L 



Hippocampus_R 
ParaHippocampal_L 
ParaHippocampal_R 
Amygdala_L 
Amygdala_R 
Calcarine_L 
Calcarine_R 
Cuneus_L 
Cuneus_R 
Lingual_L 
Lingual_R 
Occipital_Sup_L 
Occipital_Sup_R 
Occipital_Mid_L 
Occipital_Mid_R 
Occipital_Inf_L 
Occipital_Inf_R 
Fusiform_L 
Fusiform_R 
Postcentral_L 
Postcentral_R 
Parietal_Sup_L 
Parietal_Sup_R 
Parietal_Inf_L 
Parietal_Inf_R 
SupraMarginal_L 
SupraMarginal_R 
Angular_L 
Angular_R 
Precuneus_L 
Precuneus_R 
Paracentral_Lob_L 
Paracentral_Lob_R 
Caudate_L 
Caudate_R 
Putamen_L 
Putamen_R 
Pallidum_L 
Pallidum_R 
Thalamus_L 
Thalamus_R 
Heschl_L 
Heschl_R 
Temporal_Sup_L 



Temporal_Sup_R 
Temporal_Pole_Sup_L 
Temporal_Pole_Sup_R 
Temporal_Mid_L 
Temporal_Mid_R 
Temporal_Pol_Mid_L 
Temporal_Pol_Mid_R 
Temporal_Inf_L 
Temporal_Inf_R 
LGN_L 
LGN_R 


