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A APPENDIX A

A.1 GENERAL PROMPT AND REASONING TRACE OF IDS—AGENT

The general prompt of the IDS-Agent is illustrated in Figure 3. The process begins with instructing
the IDS—-Agent to load network traffic data and perform feature preprocessing. Afterward, we utilize
a range of classifiers to analyze the data. To enhance decision-making, the IDS—-Agent retrieves
prior successful examples from its knowledge base for comparison. In cases where discrepancies
arise between the predictions of different models, we prompt the IDS—-Agent to consult internal or
external knowledge bases for additional insights to resolve the conflict. Finally, the IDS-Agent
consolidates the findings and presents the result in a structured JSON format. Figure 4 provides an
example of the reasoning trace produced by the IDS-Agent during this process.

General Prompt:

You are a helpful assistant that can implement multi-step tasks, such as intrusion detection. | will give you the traffic features, you

are asked to classify it using tools. The final output must be in a JSON format according to the classifier results. You should plan

first such as:

1. Load the traffic features from the CSV file. You can use the load_data_line tool to obtain the complete traffic.

2. Preprocessing the feature. This can be done using the data_preprocessing tool. Input the traffic in the original format.

3. load classifiers for classification. This can be done using the classifier tool. You can use multiple classifiers. The tool params
include a classifier name, which must be one from {model_names} and the preprocessed features.

4. Retrieve previous successful reasonings to help you predict. This can be done using the memory_retrieve tool with the
classifier's names and their classification results as input.

5. When there are discrepancies/disagreements for different models, you can search from vector database/google/wiki to get
more information about the difference of attacks to help you make decisions.

6. At the end, you should summarize the results from these classifiers and provide a final result. Summarize the classification
with Balance sensitivity, which means balancing the false alarm rate and the missing alarm rate. The predicted label should
be the original format of classifier prediction. The final output format **must** be:

Final Answer:

“json

{'line_number’: \line_number,

‘analysis': str, \here is the Analysis,

'predicted_label_top_1": str,

'predicted_label_top_2": str,

'predicted_label_top_3": str,

=

User Input:

Now, classify the traffic from file name {file_name} with index {line_number}

Figure 3: General prompt and user input

A.2 ADDITIONAL CASE STUDIES

The cases in Figure 5 and Figure 6 highlight the enhanced reasoning ability of IDS-Agent with
the knowledge retriever. It is shown that IDS—-Agent not only considers the top-1 predictions but
also the second and third predictions and their confidences. Moreover, in these examples, when
the models have discrepancies in the predictions, the IDS—-Agent automatically accesses external
databases to extract additional knowledge, aiding in feature analysis and supporting its final decision.
By leveraging these external knowledge sources, the IDS—-Agent gains a deeper understanding of
complex attack patterns and anomalies, enhancing both accuracy and decision-making. This dynamic
capability allows the IDS-Agent to better adapt to new or evolving threats in the IoT environment.

A.3 THE PERFORMANCE OF DIFFERENT ML CLASSIFIERS

Table 6 shows the F-score of different ML classifiers on the ACI-IoT’23 dataset as well as our method.
Among the six classifiers, MLP achieves the highest F-score of 0.96. The IDS-Agent outperforms
all six classifiers and the majority vote method. Moreover, we achieve a high F-score on the UDP
Flood attack, while the majority method only has an F-score of 0.55.

Table 7 shows the F-score of different ML classifiers on the CIC-IoT’23 dataset as well as our
method. Among the six classifiers, Random Forest achieves the highest F-score of 0.75. For the
IDS-Agent, we use the GPT-40 as the core LLM. It is shown that our attack achieved a higher
F-score compared with the majority vote classifier. Moreover, we achieved a higher F-score on the
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Thought: | have obtained the classification results from all five classifiers. Heﬁ

are the predictions:
Thought: | need to follow the plan to classify the traffic features\
from line number 230. | will start by loading the traffic features Now, | will summarize the results and determine the final predicted labels
from the CSV file. based on the highest confidence scores from the classifiers.
Action: load_data_line ### Summary of Predictions:
Action Input_:("lin; number": 230} - **DDoS-SlowLoris**: Predicted by Random Forest (0.9100), K-Nearest
Observation: flow_duration: 4.198554983, Header_Length: Neighbors (1.0000), and MLP (0.8543).
10051.49, ... - **DDoS-HTTP_Flood**: Predicted by Logistic Regression (0.2586), MLP
Thought: | have successfully loaded the traffic features from line (0.1033), and Support Vector Classifier (0.6331).
number 230. Now, | will proceed to preprocess the loaded traffic - **Recon-PortScan**: Predicted by Logistic Regression (0.1300) and K-Nearest
features to prepare them for classification. Neighbors (0.0000).
Action: data_preprocessing - **BenignTraffic**: Predicted by Support Vector Classifier (0.2320).
Action Input: {"traffic_features": "flow_duration: 4.198554983, #i#H# Final Decision:
Header_Length: 10051.49,..”} The most consistent prediction across the classifiers is **DDoS-SlowLoris**,
Observation: [-0.355, -0.3088, ...] which received the highest confidence scores from multiple models.
Thought: | have successfully preprocessed the traffic features. Now, | will prepare the final output in the required JSON format.
Now, | will proceed to classify the preprocessed features using
multiple classifiers to determine if the traffic record is an attack. Ei‘r?al Answer:
Action: classifier Json
Action Input: {"modelname": "Random Forest", "traffic_features":
[-0.355, -0.3088, ...]} "line_number": 230,
Observation: Top predictions: DDoS-SlowLoris: 0.9100, DDoS- "analysis": "The traffic features indicate a high likelihood of a DDoS-
HTTP_Flood: 0.0600, DoS-HTTP_Flood: 0.0200 SlowLoris attack based on the predictions from multiple classifiers, particularly
Thought: | have obtained the classification results from the thf Ranfiom Forest and K-‘r:le"arest Neighbor.s“models.",
Random Forest model. Now, | will classify the same preprocessed “pred!cted_label_top_l‘ IDD°5'5|°WL°”5 .
features using additional classifiers to gather more predictions. predicted_label_top_2": "DDoS-HTTP_Flood",

K J "predicted_label_top_3": "Recon-PortScan"
\ Y

Figure 4: An example of the reasoning trace and final answer.

Thought: | have obtained predictions from all classifiers. Now, | will summarize the results to determine the final classification.

The predictions from the classifiers are as follows:

- Random Forest: DDoS-SYN_Flood (0.6458)

- K-Nearest Neighbors: DoS-SYN_Flood (1.0000)

- Logistic Regression: DDoS-SYN_Flood (0.6473)

- MLP: DDoS-SYN_Flood (0.7261)

- Support Vector Classifier: DDoS-SYN_Flood (0.6329)

- Decision Tree: DDoS-SYN_Flood (0.6736)

The majority of classifiers predict "DDoS-SYN_Flood" as the top label. However, K-Nearest Neighbors predicts "DoS-SYN_Flood"

with a certainty of 1.0000. To resolve this discrepancy, | will search for more information regarding the features of DDoS and DoS

attacks to understand the differences better.

Action: knowledge_retriever

Action Input: {"query": "What are the features of DoS and DDoS attacks and their differences?”

Observation: DoS (Denial-of-Service) and DDoS (Distributed Denial-of-Service) attacks have several features and key differences:

**Features of DoS Attacks:**...

**Features of DDoS Attacks:**...

**Key Differences: **

- **Source of Attack:** DoS attacks come from one source, while DDoS attacks come from multiple sources.

- **Volume of Traffic:** DDoS attacks typically generate a larger volume of traffic, making them more damaging.

- **Detection and Mitigation:** DDoS attacks are harder to detect and eliminate quickly due to their distributed nature, whereas
DoS attacks can be easier to manage since they originate from a single source.

Overall, DDoS attacks are generally considered more severe and challenging to defend against compared to DoS attacks.

Final Answer:

{

"line_number": 83,

"analysis": "The majority of classifiers predict 'DDoS-SYN_Flood', indicating a distributed denial-of-service attack. The K-Nearest

Neighbors classifier predicts 'DoS-SYN_Flood' with high certainty, but given the nature of the features and the consensus among

other classifiers, 'DDoS-SYN_Flood' is deemed the more appropriate classification.",

"predicted_label_top_1": "DDoS-SYN_Flood",

"predicted_label_top_2": "DoS-SYN_Flood",

"predicted_label_top_3": "DDoS-SynonymousIP_Flood"

}

Figure 5: Additional case study on the DDoS attacks of the IDS—-Agent. From the final analysis, it is
shown that the IDS-Agent not only considers the predicted labels but also considers the confidence
of different classifiers.

benign traffic compared with six classifiers and the majority vote method, which means our method
has a lower false alarm rate, which is an important metric for intrusion detection. Figure 7 shows the
confusion matrix of the majority voting classifier and IDS-Agent.
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Table 6: The F-score of different ML classifiers on the ACI-10T’23 dataset. For the IDS-Agent,
we use the GPT-4o0 as the core LLM.

Model RF LR KNN MLP DT SVC Majority Vote IDS-Agent
Benign 090 059 091 091 091 0.80 0.91 0.91
DNS Flood 095 010 080 095 091 091 1.00 0.95
Dictionary Attack 1.00 0.71 098 095 1.00 0.92 1.00 1.00
ICMP Flood 1.00 098 098 1.00 095 0.98 0.98 0.98
OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 098 098 097 098 097 098 1.00 1.00
Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SYN Flood 1.00 1.00 1.00 1.00 098 1.00 1.00 1.00
Slowloris 1.00 043 100 1.00 1.00 0.97 1.00 1.00
UDP Flood 060 0.00 045 074 050 0.00 0.55 0.80
Vulnerability Scan  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Macro Avg 095 071 092 096 093 0.87 0.96 0.97

Table 7: The F-score of different ML classifiers on the CIC-1oT’23 dataset. For the IDS-Agent, we
use the GPT-40 as the core LLM.

Model DT KNN LR MLP RF SVC Majority Vote IDS-Agent
BenignTraffic 079 077 079 075 075 073 0.74 0.84
DDoS-ACK_Fragmentation 0.98 095 095 093 095 0.98 0.95 1.00
DDoS-HTTP_Flood 058 053 024 079 0.68 038 0.69 0.70
DDoS-ICMP_Flood 098 095 098 095 1.00 1.00 1.00 1.00
DDoS-ICMP_Fragmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-PSHACK_Flood 1.00 1.00 098 1.00 1.00 1.00 1.00 0.95
DDoS-RSTFINFlood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-SYN_Flood 072 0.08 0.63 073 076 0.64 0.75 0.75
DDoS-SlowLoris 076 0.74 0.00 0.89 079 044 0.79 0.82
DDoS-SynonymousIP_Flood 0.70 0.74 0.70 0.72 0.74 0.65 0.74 0.78
DDoS-TCP_Flood 0.69 0.08 066 067 0.69 0.67 0.67 0.71
DDoS-UDP_Flood 071 023 077 075 071 074 0.71 0.74
DDoS-UDP_Fragmentation 097 095 095 097 097 097 0.97 0.95
DoS-HTTP_Flood 065 079 073 085 0.76 0.89 0.83 0.84
DoS-SYN_Flood 062 057 031 072 076 037 0.72 0.80
DoS-TCP_Flood 032 060 0.00 0.00 032 0.00 0.17 0.33
DoS-UDP_Flood 053 065 055 052 048 046 0.48 0.46
MITM-ArpSpoofing 054 058 0.09 0.60 058 058 0.62 0.67
Mirai-greeth_flood 095 098 090 097 097 1.00 0.97 0.95
Mirai-greip_flood 098 097 0.89 098 098 1.00 0.98 0.95
Mirai-udpplain 095 098 1.00 098 098 1.00 0.98 1.00
Recon-HostDiscovery 0.54 045 040 048 055 0.39 0.47 0.53
Recon-OSScan 030 030 0.08 0.00 0.15 0.10 0.17 0.15
Recon-PortScan 041 036 024 031 044 031 0.37 0.31
Macro Avg 074 068 0.62 0.73 0.75 0.68 0.70 0.75
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Thought: | have obtained the predictions from multiple classifiers. Here are the results:

**Random Forest**: - MITM-ArpSpoofing: 0.4200 - BenignTraffic: 0.2500 - Recon-PortScan: 0.1300

**K-Nearest Neighbors**: - Recon-PortScan: 0.4000 - MITM-ArpSpoofing: 0.4000 - BenignTraffic: 0.2000

**Logistic Regression**: - BenignTraffic: 0.3689 - MITM-ArpSpoofing: 0.3105 - DoS-UDP_Flood: 0.1391

**MLP**: - MITM-ArpSpoofing: 0.4019 - BenignTraffic: 0.3296 - Recon-HostDiscovery: 0.1095

**Support Vector Classifier**: - BenignTraffic: 0.6327 - MITM-ArpSpoofing: 0.2328 - Recon-HostDiscovery: 0.0855

6. **Decision Tree**: - Recon-OSScan: 1.0000 - Recon-PortScan: 0.0000 - DDoS-UDP_Flood: 0.0000

Now, | will analyze the results to determine the final classification. The predictions show a mix of benign and attack classifications, with some
classifiers leaning towards "MITM-ArpSpoofing" and others towards "BenignTraffic." The Decision Tree classifier is particularly confident in
classifying it as "Recon-OSScan."To resolve the discrepancies, | will search for more information regarding the features of the attacks and benign
traffic to make a more informed decision.

Action: knowledge_retriever

Action Input: {"query": "what is the features of MITM-ArpSpoofing and how to detect it"

Observation: The features of MITM-ARP-Spoofing include: 1. **Interception of Communication**: The attacker positions themselves between
two network devices, allowing them to intercept and potentially modify the data being transmitted.

2. **ARP Cache Poisoning**: The attacker sends falsified ARP messages to both devices, associating their MAC address with the IP address of the
other device, thus redirecting traffic through their machine....

Final Answer:

{

"line_number": 83,

"analysis": "The traffic features indicate a potential MITM-ArpSpoofing attack based on the predictions from multiple classifiers, particularly
Random Forest and MLP. The Decision Tree classifier also suggests a reconnaissance attack, but the overall consensus leans towards MITM.",
"predicted_label_top_1": "MITM-ArpSpoofing",

"predicted_label_top_2": "BenignTraffic",

"predicted_label_top_3": "Recon-PortScan",

}

o>

Figure 6: Additional case study on the MITM attacks of the IDS—-Agent. From the final analysis, it
is shown that the IDS—-Agent not only considers the top 1 prediction but also considers the second
and third predictions.

A.4 DETAILS FOR SENSITIVITY CUSTOMIZATION

We adjust the detection sensitivity by prompting the core LLM with "Summarize the classification
with {sensitivity} sensitivity, {sensitivity details}". Here, ‘sensitivity details’ will be ‘discover the
attack as the priority’, ‘balance the false alarm rate and the missing alarm rate’, and ‘do not alert
unless you are very sure’, for ‘sensitivity’ being ‘aggressive’, ‘balanced’ and ‘conservative’. The
detection performances of IDS-Agent for different detection sensitivities are shown in Table 8. It is
shown that the ‘Aggressive’ command achieves a higher recall on the attacks while the ‘Conservative’
command achieves a higher recall on the benign examples. The classification results, detailed in
Table 8 of the appendix, show that the IDS-Agent effectively follows these sensitivity instructions
without requiring expert intervention or additional tuning.

Table 8: The classification results of different detection sensitivities.

Sensitivity ‘ Aggressive ‘ Balance ‘ Conservative
Metrics ‘ Precision Recall Fl-score ‘ Precision Recall Fl-score ‘ Precision Recall Fl-score
Benign 0.96 0.90 0.92 0.87 0.96 0.91 0.60 0.98 0.75

DNS Flood 0.91 1.00 0.95 0.91 1.00 0.95 0.94 0.80 0.86

Dictionary Attack 0.91 1.00 0.95 1.00 1.00 1.00 1.00 0.65 0.79
ICMP Flood 0.95 1.00 0.89 0.95 1.00 0.98 0.95 1.00 0.98
OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SYN Flood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Slowloris 0.95 1.00 0.98 1.00 1.00 1.00 1.00 0.40 0.57

UDP Flood 1.00 0.80 0.89 1.00 0.53 0.69 1.00 0.47 0.64

Vulnerability Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Macro Avg 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.85 0.87

A.5 THE ZERO-DAY ATTACK DETECTION DETAILS

We prompt GPT-4o to classify an example as an unknown attack if multiple classifiers output low
confidence for their top predictions or if there are conflicting predictions among different classifiers.
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This is based on our observation that, for unknown attacks, machine learning models typically exhibit
relatively low confidence levels, as shown in Figure 8. Specifically, we instruct the LLM to consider
an example as a potential unknown attack if more than two models have low confidence (e.g., below
a threshold of 0.7). Moreover, if more than two models have low confidence or if different models
produce significantly divergent predictions, we direct IDS—Agent to search the knowledge base for
characteristics of the most probable predicted attacks. If the traffic features do not match these attack
characteristics, we confirm the example as an unknown attack and provide this as the final output.

A.6 THE INFLUENCE OF HYPERPARAMETERS

To assess the influence of different values of A; and A5 in Eq. 1, we conducted experiments by
varying these parameters and measuring the impact on retrieval effectiveness and overall classification
performance. Table 9 summarizes the results of our experiments. The experimental results indicate
that both recency and content similarity are crucial for effective LTM retrieval. A balanced approach,
where A\ and A5 are equal, provides the best performance, suggesting that the agent benefits from
considering both embedding similarity and recency.

Table 9: Performance metrics for different values of A\; and \s.

A1 A2 Accuracy (%) Precision (%) Recall (%)

0.1 09 97.2 97.2 96.5
05 05 98.0 98.2 97.2
09 0.1 97.3 97.1 96.1
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Figure 7: The confusion matrix of majority voting classifier and IDS-Agent on the CIC-IoT’23

dataset.
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Random Forest on Dataset 1 (In-distribution)

Random Forest on Dataset 2 (Out-of-distribution)
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Figure 8: The confidence distributions of difference classifiers on the in-distribution dataset and

out-of-distribution dataset.
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