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ABSTRACT

Current multi-task adversarial text attacks rely on white-box access to shared in-
ternal features and assumption of homogeneous multi-task learning framework.
As a result, these attacks are less effective against practical scenarios involving
black-box feedback APIs and heterogeneous multi-task learning. To bridge this gap,
we introduce Cluster and Ensemble Mutil-task Text Adversarial Attack (CEMA),
an effective black-box attack that exploits the transferability of adversarial texts.
Specifically, we initially employ cluster-oriented substitute model training, as a
plug-and-play framework, to simplify complex multi-task scenarios into more
manageable text classification attacks and train the substitute model. Next, we
generate multiple adversarial candidate examples by applying various adversarial
text classification methods. Finally, we select the adversarial example that attacks
the most substitute models as the final attack output. CEMA is evaluated on two
primary multi-task objectives: text classification and translation. In the classifica-
tion task, CEMA achieves attack success rates that exceed 60% while reducing the
total number of queries to 100. For the text translation task, the BLEU scores of
both victim texts and adversarial examples decrease to below 0.36 with 100 queries
even including the commercial translation APIs, such as Baidu Translate and Ali
Translate. Additionally, we derive the theoretical lower bound for CEMA’s success
rate, demonstrating that a successful attack increases with the number of candidate
substitute models.

1 INTRODUCTION

A multi-task textual adversarial attack misleads multiple tasks simultaneously through small pertur-
bations, increasing attack efficiency and impact. It poses significant risks to safety-critical systems,
leading to wrong decisions. Defending against such attacks is challenging due to the need for
multi-task robustness, making it a key issue in AI security (Liu et al., 2017; Lin et al., 2022).

Research on text multi-task adversarial examples typically concentrates on tasks of the same type,
particularly classification tasks (Liu et al., 2017). However, in real-world applications, multi-task
learning often involves tasks of different types. Existing adversarial attack methods generally
assume that attackers have access to the model architecture and shared layer information within
a unified model (Guo et al., 2020). However, most commercial and application-based models are
proprietary, with their architecture and parameters hidden from external attackers. Additionally,
current multi-task adversarial attack strategies primarily target models that employ a shared parameter
approach for managing multiple tasks. In contrast, multi-model and heterogeneous multi-task learning
approaches (Aoki et al., 2022) handle each task with a separate model, without direct parameter
sharing. As a result, most existing adversarial methods, designed to attack shared parameter models,
are ineffective against these systems because of the absence of a common layer to target.

Our goal is to perform multi-task textual adversarial attacks in realistic scenarios. Based on the
previous analysis, such a scenario should encompass a variety of tasks, with black-box model feedback
being more reflective of real-world conditions. Moreover, both parameter-sharing multi-task learning
systems and heterogeneous multi-task learning systems must be considered. Additionally, limiting
the number of queries is essential to conserve resources and reduce the risk of detection, making it a
key aspect of practical attack scenarios.
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In limited-access scenarios, a straightforward strategy is the transfer attack, which crafts adversarial
examples in a substitute model. Training effective substitute models becomes challenging in the
absence of a well-trained substitute model, particularly in multi-task learning, where limited access
to input-output pairs and poor transferability between tasks in heterogeneous settings pose significant
difficulties. Rather than mimicking the entire multi-task model, we propose focusing on building a
substitute model with strong discriminability. This approach allows a single substitute model to
generate adversarial examples that target all tasks simultaneously, even when trained with limited
data.

We propose CEMA (Cluster and Ensemble Multi-task Text Adversarial Attack), a framework that
leverages a small set of auxiliary texts sharing characteristics with the victim’s texts. Using a pre-
trained model, we vectorize texts and their outputs, perform clustering, and train substitute models
on these auxiliary texts and cluster labels. This converts the multi-task attack into a single-task text
classification problem. Repeating this process, we can obtain multiple substitute models. During the
adversarial example generation phase for victim texts, for each victim text, adversarial candidates are
generated for each victim text. The final adversarial example is selected based on its success across
the most substitute models.

Although the substitute model trained by CEMA differs from the victim model trained through
multi-task learning, our substitute model, demonstrates strong discriminative capability. For task
A, if an adversarial attack on the substitute model f sub successfully changes the cluster label of text
xi from 0 to 1, the label yAi shifts accordingly, indicating a successful attack on task A. We derive
and demonstrate that adversarial examples based on cluster labels, when effective against multiple
substitute models, can also transfer effectively to other tasks B,C, . . . , N .

During the experiment, we focus on text classification and translation within a multi-task learning
framework. For the text classification task, CEMA achieves an attack success rate (ASR) of over
60% with only 100 queries. In the text translation task, CEMA reaches a BLEU score of 0.14. Even
with limited auxiliary data that differs significantly from the training dataset, CEMA maintains an
ASR of up to 66.40% for classification tasks and a BLEU score of 0.27 for translation tasks. The
primary contributions are summarized as follows:

• To the best of our knowledge, we are the first to extend text adversarial attacks to the multi-
task setting by training cluster-oriented substitute models and employing transferability-
oriented adversarial example selection. The proposed CEMA method generates high-quality
adversarial examples for multiple tasks simultaneously with very few queries in black-box
scenarios.

• We present the first plug-and-play framework that converts a multi-task attack into a single-
task attack, enabling traditional methods to be easily adapted to multi-task scenarios. Fur-
thermore, our approach overcomes the limitations of existing multi-task attack methods,
which depend on shared layers in multi-task models. CEMA effectively handles multi-task
scenarios with heterogeneous models, whether they involve related or independent tasks.
Additionally, we derive a theoretical lower bound for CEMA’s success rate, showing that the
probability of success increases with the number of substitute models used.

• We demonstrate the effectiveness of CEMA through rigorous mathematical derivations, as
well as comprehensive experiments. The experimental results show the proposed CEMA
achieves an attack success rate (ASR) of over 60% in text classification tasks and a BLEU
score of less than 0.15 in translation tasks, indicating effective adversarial attack performance
in both cases.

2 PRELIMINARY

2.1 TRANSFERABILITY AND TRANSFER ATTACKS

Transfer attacks leverage adversarial examples to target different models without requiring direct
access, posing a significant security threat in black-box scenarios (Szegedy et al., 2014; Papernot
et al., 2017; Dong et al., 2018). Transferability refers to the phenomenon where adversarial examples
crafted for one model can successfully compromise other models as well (Zhang et al., 2020).
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2.2 MULTI-TASK LEARNING AND MULTI-MODEL MULTI-TASK LEARNING

Multi-Task Learning (MTL) involves simultaneously training multiple related tasks, enabling
models to share knowledge and improve generalization, particularly when data is limited. MTL
has been extensively applied in fields such as natural language processing and computer vision,
resulting in more robust models. However, challenges such as task interference and balancing
shared information across tasks remain. Recent advancements seek to mitigate these challenges and
enhance MTL’s overall effectiveness. Multi-Model Multi-Task Learning extends the traditional
MTL framework by utilizing separate models for each task, providing greater flexibility and better
handling of task heterogeneity. This approach minimizes negative transfer and allows for task-
specific optimizations. However, it also increases computational complexity and the difficulty of
integrating outputs from different models. Current research focuses on hybrid methods that balance
task specialization with shared learning, aiming to optimize model architectures and enhance resource
efficiency.

3 THREAT MODEL

❶Victim Model: In this paper, we explore a more practical scenario of Multi-Model Multi-Task
Learnin, focusing on the tasks of text classification and translation. We utilize publicly available
APIs from the Hugging Face platform as the victim models for our attacks. Specifically, we target the
SST5 and Emotion datasets for text classification, and we select DistilBERT and RoBERTa models
trained on these datasets, referred to as dis-sst5, ro-sst5, dis-emotion, and ro-emotion, respectively.
For the translation task, we target the opus-mt model for English-to-Chinese translation and the
t5-small model for English-to-French translation. The URLs of these models are provided in Table 8
in the Appendix. Meanwhile, to simulate a more realistic attack scenario, we employ two commercial
translation APIs: Baidu Translate for English-to-French translation and Ali Translate for English-
to-Chinese translation. We design three multi-task victim models using these base models. Victim
Model A comprises two classification models and one translation model: dis-sst5, dis-emo, and
opus-mt. Victim Model B also comprises two classification models and one translation model:
ro-sst5, ro-emo, and t5-small. Victim Model C consists of two commercial translation APIs: Baidu
Translate and Ali Translate. ❷Attacks’s Goal The objective of our attack is to compromise the
performance of all tasks within a multi-task model. Adversarial examples are designed to generate
inputs that universally degrade the model’s performance across all tasks, rather than targeting a
single task. This means the attacker seeks to create an input that not only disrupts one specific
task but also negatively impacts the performance of other tasks within the model. In the context
of multitask learning, specifically for text classification, the objective is to ensure that the original
text and the adversarial example produce different output labels in the target model, i.e. yadv ̸= yori.
For the translation task within multi-task learning, the goal is to ensure that the original text and
the adversarial example lead to a significant semantic divergence in the generated translations, i.e.
argmin BLEU(yadv, yori). ❸ Adversary Capabilities: We analyze the adversary’s capabilities from
three perspectives: query access, API feedback, and auxiliary data.(1) Query Access: Query access
refers to the adversary’s ability to interact with the target model before delivering the final adversarial
input. We assume the attacker has up to 100 opportunities to query the victim model, with each query
generating output results for all tasks. (2) API feedback: In a practical multi-task text adversarial
attack, the attacker has no access to the internal information of the model and can only obtain
the final output results of the model. Therefore, the API feedback serves as a black-box response,
providing predicted labels for the classification task and the translated text (e.g., French output for
English-to-French translation). (3) Auxiliary Data: From the perspective of data quantity, we assume
that the attacker can acquire only a limited amount of Auxiliary Data, specifically 100 unlabeled texts.
In terms of data distribution, we explore two scenarios: (a) The 100 unlabeled texts are sampled from
the same distribution as the victim’s texts, such as the 100 unlabeled texts in the validation dataset.
(b) The 100 unlabeled texts and the victim’s texts come from datasets of the same nature but with
different distributions.

4 METHOD

As shown in Figure 1, our method, CEMA, consists of the following steps: ❶ Representation
Learning (Section 4.1). We convert the auxiliary texts and their outputs from multiple tasks into
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Figure 1: The Overview of CEMA. ❶ CEMA assigns cluster labels to auxiliary texts through a
clustering method. These text-label pairs are then used to train the substitute model. This process
allows CEMA to efficiently transform a multi-task scenario into a single-task text classification
scenario, with only 100 queries to the black-box multi-task model. ❷ To improve attack effectiveness,
CEMA applies multiple attack methods to the substitute models, generating candidate adversarial
examples to refine the selection process. CEMA also trains several substitute models, selecting the
final adversarial example based on its success across the majority of them.

vector form using representation learning. ❷ Clustering to Generate cluster labels (Section 4.2).
After determining the optimal number of clusters, we apply a clustering algorithm to the vector
representations of the auxiliary texts and their outputs, assigning a cluster label to each auxiliary text.
❸ Training Substitute Models (Section 4.3). We train substitute models f sub using auxiliary texts as
input and their corresponding cluster labels as output. ❹ Generation of Adversarial Candidates
(Section 4.4). We apply various text adversarial attack methods to the substitute model f sub to
generate multiple adversarial candidates. ❺ Final Adversarial Example Selection (Section 4.5). By
repeating steps ❶, ❷, and ❸, we can train multiple substitute models, f sub

1 , f sub
2 , . . . , f sub

M . We select
the adversarial candidate that successfully attacks the most substitute models as the final adversarial
example.

4.1 REPRESENTATION LEARNING

In a multi-task model, both the input text and output labels need to be appropriately vectorized
to effectively capture the relevant information. This section details the specific approach used for
learning the representations of input text and output labels. Pre-trained models are extensively utilized
in NLP for textual feature extraction (Tabassum & Patil, 2020; Han et al., 2021). These models are
highly effective as they are trained on large-scale datasets, enabling them to learn general language
patterns and representations. Furthermore, concatenating multiple text representations allows for the
simultaneous encoding of multiple texts (Devlin et al., 2019). Accordingly, we leverage a pre-trained
model to vectorize both the input text and output labels, generating their respective embeddings.
These embeddings are subsequently concatenated to form a unified representation that captures the
information from both the input text and the output labels.

As outlined in lines 1-5 of Algorithm 1, we begin by querying the multi-task model to retrieve the
output text for each task. Next, auxiliary text with corresponding output results are vectorized by
pre-trained models to extract relevant features for subsequent clustering process. We define the
multi-task model as fv, which deals with the set of tasks A,B, . . . , N . The pre-trained model is
defined as fpre. The attacker is assumed to have access to a small set of auxiliary texts X , which share
the same distribution as the victim texts. For each auxiliary text xi in X , we query fv to obtain the
corresponding outputs yAi , y

B
i , . . . , yNi . Next, we use the pre-trained model fpre to vectorize xi and

{yAi , yBi , . . . , yNi }, resulting in the vectors {Exi ,EyA
i
, . . . ,EyN

i
}. These vectors are concatenated

to form the final vector Ei, representing xi and its outputs yAi , y
B
i , . . . , yNi . Thus, Ei is defined as

4
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follows:

Exi
= fpre(xi),EyJ

i
= fpre(y

J
i ),Ei = Concat(Exi

,EyA
i
, . . . ,EyN

i
), (1)

where the Concat indicates the concatenation of {Exi
,EyA

i
, . . . ,EyN

i
}.

4.2 CLUSTER NUMBER AND CLUSTER LABELS

In Section 4.1, we obtain the representations for each text input and output. We then perform a
clustering analysis on these representations, with the number of clusters being a crucial parameter.
Before clustering, we determine the optimal number of clusters by selecting the value that maximizes
strong discriminative capability to each cluster group. When the number of clusters is 2, the two
clusters can be interpreted as class CA and CA. (Boongoen & Iam-On, 2018). Therefore, we set the
number of clusters to 2. After determining the number of clusters to be 2, we perform clustering
analysis on the 100 vectors using the Spectral clustering method (Zhang et al., 1996). For each vector
Ei, we derive its corresponding cluster label yclu

i , which is later assigned as the pseudolabel for xi.

Algorithm 1: The substitute model Training Process
Input: The dataset to be attacked D = {x1, x2, · · · , xn}, where xi is the input text; embedding

function fE ; clustering function fc; number of clusters k; training epoch emax; targeted
model ft

Output: The substitute model f sub

1 for i = 1 to n do
2 yAi , y

B
i , . . . , yNi = ft(xi) ▶ Input xi to the targeted model ft to obtain the corresponding

label yt
i

3 E(xi) = fE(xi) ; EyJ
i
= fpre(y

J
i )

4 Ei = Concat(Exi
,EyA

i
, . . . ,EyN

i
)

5 Eall = [E1,E2, · · · ,En] ▶ Representation learning
6 Perform a cluster analysis on Eall and refine the internal parameters of the clustering model fc
7 for i = 1 to n do
8 Input Ei into the clustering algorithm to generate the corresponding pseudolabel

ypse
i = fc(Ei) ▶ Obtaining cluster labels and pseudo labels

9 The victim text cluster label pairs data: PD = {(x1, y
pse
1 ), (x2, y

pse
2 ), · · · , (xn, y

pse
n )}

10 for i = 1 to emax do
11 Train the substitute model f sub on PD to adjust the parameters θf sub :

θf sub ← train(f sub,PD) ▶ Train substitute model
12 return The substitute model f sub = f sub(PD; θf sub)

4.3 SUBSTITUTE MODEL TRAINING

Once the cluster labels are obtained, we employ the auxiliary texts paired with their respective cluster
labels to train a substitute model. This approach effectively converts the multi-task text adversarial
attack scenario into a conventional text classification adversarial attack scenario. The substitute model
f sub is trained with the auxiliary texts serving as input data and the cluster labels as the corresponding
output labels. The process is shown in lines 10-12 of Algorithm 1. We provide a detailed description
of the training of the substitute model with the transformer-based architecture. This substitute model
consists of 12 hidden layers with a dimensionality of 768. The activation function “GELU” is used,
The dropout rate is 0.4. The training process is optimized with the AdamW optimizer (Yao et al.,
2021), with batch size set to 64 and learning rate set to 6e− 3, over 5 epochs. More details about the
substitute model architecture are presented in Appendix E.

4.4 CANDIDATE ADVERSARIAL EXAMPLE GENERATION

Once the substitute model is generated, we apply several adversarial text attack methods to f sub.
These methods produce multiple adversarial examples. We then define criteria to select the final
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adversarial examples from the candidates generated. In this section, we begin by explaining the
importance of generating multiple adversarial candidate examples. We assume that m adversarial
text attack methods are used to generate m adversarial examples on the substitute model f sub

1 . These
adversarial examples are denoted as x∗1

i , x∗2
i , . . . , x∗m

i . Each example has a corresponding probability
of successfully attacking the victim model, denoted as p∗1i , p∗2i , . . . , p∗mi . The minimum probability
among these is denoted as p∗min, where p∗min = min(p∗1i , p∗2i , . . . , p∗mi ). We calculate the probability,
ps, that at least one of these adversarial examples successfully attacks the victim model as follows:

ps = 1− (1− p∗1i )(1− p∗2i ) · · · (1− p∗mi ) = 1−
m∏
j=1

(1− p∗ji ) (2)

We analyze the trend of ps as the number of adversarial examples, m, increases.

ps = 1− (1− p∗1i )(1− p∗2i ) · · · (1− p∗mi )

≥ 1− (1− p∗min)(1− p∗min) · · · (1− p∗min) = 1− (1− p∗min)
m (3)

As m increases, the probability (1− p∗min)
m decreases and approaches 0. Conversely, the probability

1 − (1 − p∗min)
m increases and approaches 1. Since ps is a probability, it must satisfy 0 ≤ ps ≤ 1

(Kolmogoroff, 1933). Combining this result with equation (3), we derive the following formula:

1− (1− p∗min)
m ≤ ps ≤ 1 (4)

As m increases towards infinity, equation (4) undergoes the following changes:

lim
m→∞

1− (1− p∗min)
m = 1, then 1 ≤ ps ≤ 1,which means ps = 1. (5)

Equation (5) demonstrates that as m approaches infinity, the probability of a successful attack reaches
100%. In contrast, (3) illustrates that the attack success rate increases gradually with the growth of m.
These findings emphasize the necessity and importance of generating multiple adversarial candidate
examples.

4.5 TRANSFERABILITY-ORIENTED ADVERSARIAL EXAMPLE SELECTION

In Section 4.4, we demonstrate that generating additional adversarial candidate examples increases
the likelihood of finding a successful adversarial example, which can then effectively attack the
victim model. This section focuses on the process of selecting the most likely successful adversarial
example from the generated candidates. We explore the criteria and methods used to identify the
most effective example.

We first select the adversarial candidate with the highest transferability as the final example. To
evaluate transferability, we train multiple substitute models and count the number of successful
attacks against them. Ultimately, we choose the adversarial candidate that successfully attacks the
most substitute models as the final adversarial example. The detailed steps are presented as follows: ❶
Training Multiple Substitute Models: We randomly sample 80% of the 100 auxiliary text-cluster la-
bel pairs to form the training set for a new substitute model. This process is repeated w times, yielding
w substitute models, denoted as f sub

1 , f sub
2 , . . . , f sub

w . ❷ Calculating the Transferability Score: For
each victim text xk, we generate m adversarial candidate examples, denoted as {x∗1

k , x∗2
k , . . . , x∗m

k }.
The transferability score for x∗j

k is calculated as follows:

Ikij =

 1, f sub
i

(
x∗j
k

)
̸= f sub

i (xk);

0, f sub
i

(
x∗j
k

)
= f sub

i (xk);
Ikj =

w∑
i=1

Ikij j = argmax
j

Ikj . (6)

where f sub
i

(
x∗j
k

)
represents the output label of x∗j

k is produced by the substitute model f sub
i . Sim-

ilarly, f sub
i (xk) is the output label of xk generated by the same model. If f sub

i

(
x∗j
k

)
̸= f sub

i (xk),

then x∗j
k successfully attacks the substitute model f sub

i . Therefore, Ikj measures the number of
substitute models that x∗j

k successfully attacks. The adversarial example that successfully attacks
the largest number of substitute models is then selected as the final adversarial example. In other
words, adversarial examples capable of attacking multiple substitute models demonstrate greater
transferability and higher probability of successfully attacking the victim model fv .
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Figure 2: The average ASR and BLUE of CEMA under various clustering methods and vectorization
methods.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Dataset: We evaluate the effectiveness of our method using the SST5 and Emotion datasets. The
Emotion dataset, containing six emotions, is sourced from Twitter. The SST5 dataset, used for
sentiment analysis, includes five categories from movie reviews. Detailed statistics are provided
in Appendix F, Table 7. Baselines: Since no prior black-box text adversarial attack focuses on
multi-task scenarios, we select traditional textual attack methods. For text classification, we use
BAE (Garg & Ramakrishnan, 2020), FD (Papernot et al., 2016), Hotflip (Ebrahimi et al., 2018b),
SememePSO (Zang et al., 2020), and TextBugger (Ren et al., 2019). For text translation, we select
Hotflip (Trans) (Ebrahimi et al., 2018b), kNN (Michel et al., 2019), Morphin (Tan et al., 2020),
RA (Zou et al., 2019), Seq2Sick (Cheng et al., 2020), and TransFool (Sadrizadeh et al., 2023). CEMA
operates with substantially fewer queries. For a fair comparison, we limit all baseline methods to
10 final queries when attacking the target text. Preliminary details about these methods are listed in
Tables 9a and 9b in Appendix H. Metrics: We use the following metrics to evaluate our method: ❶
ASR (Attack Success Rate): A higher ASR indicates a more effective attack. ❷ Average Query:
Fewer queries suggest a better attack method. ❸ BLEU (Bilingual Evaluation Understudy): A
lower BLEU score signifies a more successful disruption of translation quality.

5.2 COMPARISON OF RESULTS BETWEEN CEMA AND BASELINES

Given the absence of multi-task adversarial methods for black-box outputs in translation tasks, we
compare the CEMA method with existing adversarial techniques for text translation and classification.
The results, presented in Table 1 and Table 2, demonstrate that CEMA achieves state-of-the-art
(SOTA) performance in the SST5 and Emotion datasets across the victim models A, B, and C.
For each dataset, 100 queries are made per task, with SST5 containing 2, 210 texts and Emotion
2, 000, averaging 0.045 and 0.05 queries per task, respectively. Remarkably, in this black-box,
low-access scenario, CEMA achieved an ASR of over 59% on classification tasks, with a maximum
of 80.80%. Furthermore, in translation tasks, CEMA’s BLEU score was below 0.16, outperforming
the second-best method by a considerable margin. CEMA also achieved SOTA results against the
victim model C (Baidu and Ali Translate) using only 100 auxiliary texts. As commercial translators
are closed-source, we compared the black-box attack algorithms Morphin and TransFool. CEMA
consistently outperformed the second-best attack algorithm, with BLEU scores below 0.35, using
just 100 queries.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The attack performance of CEMA. Text classification tasks use the ASR(%)↑ metric, while
text translation tasks use the BLEU↓ metric. Other adversarial attack methods can only be applied to
their specific tasks, whereas CEMA simultaneously attacks all tasks.

Dataset SST5 Emotion

Victim Model Victim Model A Victim Model B Victim Model A Victim Model B

Text Classification dis-sst5 (A) ro-sst5 (B) dis-sst5 (A) ro-sst5 (B)

Metric ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓

Bae 42.71 21.43 39.14 21.48 31.55 26.98 28.50 25.31
FD 25.20 12.56 22.30 9.71 47.10 29.88 20.75 12.09

Hotflip 41.50 11.52 29.03 11.74 46.85 9.80 41.65 10.14
PSO 45.14 11.04 41.50 12.38 46.05 8.92 44.95 8.94

TextBugger 30.36 31.46 20.85 30.32 35.10 11.41 29.40 11.37
Leap 32.55 9.75 30.07 9.54 26.30 7.01 15.50 6.93

CT-GAT 29.37 20.92 24.80 37.54 25.90 21.42 26.75 21.33
HQA 46.11 29.35 39.64 29.08 37.35 29.74 35.85 21.47

CEMA 73.57 0.05 75.66 0.045 80.80 0.05 60.40 0.05

Text Classification dis-emotion (A) ro-emotion (B) dis-emotion (A) ro-emotion (B)

Metric ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓

Bae 39.81 27.33 14.65 28.06 32.25 21.84 32.95 21.83
FD 35.43 29.22 9.55 16.54 22.30 12.81 17.50 18.43

Hotflip 33.39 10.86 22.80 12.28 29.00 14.28 28.05 14.40
PSO 41.90 9.02 35.25 9.45 39.50 11.83 37.65 12.10

TextBugger 30.00 11.35 40.95 11.35 20.85 30.32 21.45 30.33
Leap 21.00 6.93 26.00 7.01 40.58 9.73 37.65 9.78

CT-GAT 39.32 21.36 33.45 21.49 28.10 26.06 30.85 25.34
HQA 37.76 21.44 31.95 29.44 37.40 22.44 36.40 23.16

CEMA 62.27 0.05 64.01 0.045 65.40 0.05 59.6 0.05

Text Translation opus-mt(en-zh) (A) t5-small(en-fr) (B) opus-mt(en-zh) (A) t5-small(en-fr) (B)

Metric BLEU↓ Queries↓ BLEU↓ Queries↓ BLEU↓ Queries↓ BLEU↓ Queries↓

Hotflip(trans) 0.24 9.76 0.24 9.45 0.20 9.36 0.19 9.81
KNN 0.31 6.19 0.31 6.19 0.61 13.34 0.28 6.08

Morphin 0.30 6.79 0.37 11.1 0.27 5.06 0.22 3.84
RA 0.25 3.18 0.19 4.26 0.23 2.79 0.21 2.11

Seq2sick 0.38 4.45 0.46 6.05 0.62 7.09 0.29 4.05
TransFool 0.77 3.32 0.44 3.91 0.81 3.89 0.67 3.58

CEMA 0.14 0.05 0.18 0.05 0.15 0.05 0.23 0.05

Table 2: Attack performance of different methods on victim model C. Victim model C consists of
two commercial closed-source translation models, namely Alibaba Translate and Baidu Translate.

Data Victim Model C Baidu Translate (en-fr) (C) Ali Translate (en-zh) (C)

Methods BLEU↓ Queries↓ BLEU↓ Queries↓

Morphin 0.54 40.48 0.60 48.45
SST5 TransFool 0.51 23.53 0.59 31.20

CEMA 0.29 0.045 0.15 0.045

Morphin 0.40 27.79 0.55 12.70
Emotion TransFool 0.36 12.70 0.49 30.91

CEMA 0.35 0.05 0.29 0.05

5.3 THE IMPACT OF CLUSTER NUMBER

In CEMA, we use two clusters. To assess the impact of increasing the number of clusters, we
also conducted experiments with three and four clusters. As illustrated in Figure 3, increasing the
number of clusters reduces attack performance. When the number of clusters increased from 2 to 4,
the average ASR decreased from 58.83% and 64.55% to 46.20% and 52.10%, respectively, while
the average BLEU score increased from 0.16 and 0.18 to 0.41 and 0.32. Clearly, the best attack
performance is achieved when using two clusters. As discussed in Section 4.2, two clusters provide
the highest discriminative ability and optimal attack performance in the binary-class substitute model.
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Table 3: Performance of CEMA under different number setting of candidate adversarial examples.

Data Example
Number

Victim Model A Victim Model B

dis-sst5 (A) dis-emoton (A) opumt(en-zh) (A) ro-sst5 (B) ro-emotion (B) t5-small(en-fr) (B)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓

SST5 3 73.57 62.27 0.14 75.66 64.01 0.18
1 50.42 29.23 0.30 43.79 24.73 0.35

Emotion 3 80.80 65.40 0.15 60.40 59.60 0.23
1 29.20 34.80 0.31 39.20 47.20 0.39

Table 4: Performance of CEMA under various clustering methods.

Data Clustering
Method

Victim Model A Victim Model B victiom Model C

dis-sst5 dis-emotion opus-mt
(en-zh) ro-sst5 ro-emotion t5-small

(en-fr)

Baidu
Translate

(en-fr)

Ali
Translate
(en-zh)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

Spectral 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.13
Kmeans 72.97 61.17 0.12 74.96 63.63 0.17 0.32 0.11SST5
BIRCH 74.27 62.77 0.09 73.26 60.57 0.15 0.23 0.16

Spectral 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.21
Kmeans 77.20 50.80 0.18 59.30 61.65 0.23 0.37 0.15Emotion
BIRCH 76.35 52.65 0.13 64.01 56.55 0.27 0.43 0.21

5.4 THE IMPACT OF CANDIDATE ADVERSARIAL EXAMPLE NUMBER

CEMA utilizes three attack methods: DWB, FD, and Textbugger. Each method generates three
adversarial examples for each victim text. To assess the impact of reducing the number of examples,
we conducted experiments using only Textbugger. As shown in Table 3, attack performance declines
as the number of adversarial examples decreases. This reduction occurs because a smaller adversarial
space leads to lower ASR and higher BLEU scores, consistent with the analysis in Appendix E. When
the number of attack algorithms increases from one to three, the average ASR rises by 30.39%, while
the average BLEU score decreases by 0.16. These results suggest that increasing the number of attack
algorithms enhances overall attack performance.

5.5 THE IMPACT OF CLUSTERING METHODS

In CEMA, we use spectral clustering as the primary method. To assess the impact of different

Figure 3: The average ASR and BLUE
of different numbers of clusters. Fewer
clusters result in better attack perfor-
mance.

clustering techniques on experimental results, we also im-
plement K-means (Krishna & Murty, 1999) and BIRCH
clustering (Zhang et al., 1996). As shown in Figure 2
and Table 4, the ASR in the classification task exhibits
only slight variations between different clustering meth-
ods. These changes remain minimal. In contrast, in the
translation task, the BLEU score fluctuates more signifi-
cantly depending on the clustering method used. Although
these fluctuations are more pronounced, no consistent pat-
tern emerges. No single clustering method consistently
achieves SOTA attack performance across all scenarios.
The average ASR for the Spectral, KMeans, and BIRCH
clustering methods is 67.71%, 65.21%, and 65.05%, re-
spectively, while the corresponding average BLEU scores
are 0.21, 0.20, and 0.21. Therefore, we conclude that while clustering methods do influence attack
performance, their impact is largely random and does not consistently favor one method over another.

5.6 THE IMPACT OF VECTORIZATION METHODS

Given that our multi-task framework includes a translation task, we utilize the multilingual pre-trained
model mT5 (Xue, 2020) for text vectorization. Additionally, we employ the XLM-R (Conneau, 2019)
pre-trained model and the one-hot (Rodrı́guez et al., 2018) encoding method. One-hot encoding
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Table 5: Performance of CEMA under various vectorization methods.

Data Vectorization
Method

Victim Model A Victim Model B Victim Model C

dis-sst5 dis-emotion opus-mt
(en-zh) ro-sst5 ro-emotion t5-small

(en-fr)

Baidu
Translate

(en-fr)

Ali
Translate
(en-zh)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

mT5 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.13SST5
XLM-R 73.55 61.09 0.17 74.90 63.44 0.19 0.38 0.11
one-hot 73.57 61.24 0.11 75.09 62.90 0.13 0.23 0.15

mT5 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.21Emotion
XLM-R 81.05 64.95 0.19 53.80 53.75 0.19 0.37 0.16
one-hot 81.05 65.65 0.18 62.35 59.90 0.27 0.43 0.25

Table 6: Zero-shot attack performance of CEMA. In a zero-shot scenario, attackers do not have
access to auxiliary data with the same distribution as the victim texts. When the victim texts are SST5
data, attackers only need to recognize that they are sentiment-related, allowing them to collect 100
unlabeled texts from sentiment-related datasets, such as the Emotion dataset, as auxiliary texts.

Victim Model A Victim Model B Victim Model C

dis-sst5 dis-emotion opus-mt
(en-zh) (A) ro-sst5 (A) ro-emotion (A) t5-small

(en-fr)
Baidu Translate

(en-fr)
Ali Translate

(en-zh)

Victim
Data

Access
Data ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

SST5 SST5 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.15
Emotion 64.00 60.80 0.18 59.20 52.00 0.22 0.36 0.27

Emotion Emotion 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.29
SST5 66.40 36.00 0.21 48.80 46.40 0.36 0.44 0.42

converts categorical data into binary vectors, with each category represented by a unique vector
where one element is set to 1 and all others to 0. To reduce the risk of data leakage, we restrict
the use of one-hot encoding to 100 samples from the additional dataset. As shown in Figure 2 and
Table 5, different vectorization methods have no significant impact on attack performance in the
classification task. In the translation task, while vectorization methods cause fluctuations in attack
results, these variations are irregular, and no single method consistently achieves SOTA performance
across all datasets and victim models. Specifically, the average ASR for the mT5, XLM-R, and
one-hot vectorization methods is 67.71%, 65.81%, and 67.72%, respectively, while the average BLEU
scores are 0.21, 0.22, and 0.22, respectively. Therefore, we conclude that vectorization methods do
not substantially influence attack performance.

5.7 ZERO-SHOT ATTACK OF CEMA

In this section, we evaluate CEMA’s effectiveness under more stringent conditions, where the attacker
can only access data related to the training set. For example, both the SST5 and Emotion datasets are
related to sentiment analysis, but their label spaces and distributions differ significantly. To test this,
we used 100 unlabeled texts from the Emotion validation set as auxiliary data for the SST5 attack,
and vice versa. The experimental results, presented in Table 6, show that even with limited auxiliary
data and significant differences between the auxiliary data and victim texts, CEMA achieves an attack
success rate of 66.40% and a BLEU score of 0.27. The findings indicate that an attacker requires
only partial knowledge of the training dataset and gather the relevant data from the Internet. Utilizing
CEMA, they can then execute a substantial attack on the multi-task system.

6 CONCLUSION

In this paper, we present a more practical multi-task learning scenario where attackers can only access
final black-box outputs through limited queries. To address this challenge, we propose the CEMA
method, which achieves state-of-the-art (SOTA) performance in experimental evaluations with just
100 queries and black-box outputs. Furthermore, CEMA can incorporate any text classification attack
algorithm, and its performance improves as the number of attack algorithms increases. In the future,
we aim to extend CEMA to multi-task models across other modalities.
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This appendix includes our supplementary materials as follows:

- Related Work in Section A.

- Manifold-Based Analysis of Adversarial Examples’s transferability in Section B

- Derivation of the maximum entropy distribution in Section C

- Union Bound Theorem and Detailed Proof in Section D

- More detail of substitute model architecture in Section E

- More detail of Data in Section F

- Url of the data and model used in Section G

- Details of Baselines in Section H

A RELATED WORK

A.1 TEXT CLASSIFICATION ADVERSARIAL ATTACK

In historical textual adversarial research, the predominant methods revolve around scenarios with
singular output results (Waghela et al., 2024; Han et al., 2024; Zhu et al., 2024; Kang et al., 2024).
These studies focus on the techniques for morphing the original text into adversarial counterparts,
including the manipulation of pivotal chars (Ebrahimi et al., 2018b; Gil et al., 2019; Ebrahimi et al.,
2018a; Gao et al., 2018; Ren et al., 2019; Jin et al., 2020; Li et al., 2019), words (Wang et al.,
2022; Guo et al., 2021; Meng & Wattenhofer, 2020; Sato et al., 2018; Cheng et al., 2019; Lee et al.,
2022; Li et al., 2020; Hu et al., 2024; Liu et al., 2024; 2023; Li et al., 2019) and sentence. These
methods are segmented into three distinct categories based on the response from the target model,
encompassing white-box attacks, soft-label black-box attacks, and hard-label black-box attacks. In
white-box attacks, adversaries gain full access to all relevant information about the target model.
The Hotflip (Ebrahimi et al., 2018b) sequentially replaces crucial words based on their calculated
importance scores. The FD method (Papernot et al., 2016) constructs adversarial examples depending
on the model’s gradient information. In soft-label black-box attacks, numerous methods are geared
towards disturbing the words in accordance with output probabilities (Lee et al., 2022; Maheshwary
et al., 2021b; Wang et al., 2021; Li et al., 2020). Bert-ATTACK (Li et al., 2020) focuses on word
attacks using a refined Bert model. SememePSO (Zang et al., 2020) enhances the search landscape
to construct adversarial examples. Bae (Garg & Ramakrishnan, 2020) is an attack strategy centered
on BERT to replace words. Simultaneously, the DeepWordBug (DWB) method (Gao et al., 2018)
prioritizes the words for assault based on the output probabilities. Hard-label adversarial attacks
present a more realistic scenario. HLGA (Maheshwary et al., 2021a) employs stochastic starting
words and employs a genetic algorithm to craft adversarial examples. HQA-attack (Liu et al., 2024)
starts by maximally restoring original words, reducing disruption. It then uses synonyms of remaining
altered words to enhance the adversarial example.

A.2 NEURAL MACHINE TRANSLATION ADVERSARIAL ATTACK

Neural Machine Translation (NMT) models, which automatically convert input sentences into trans-
lated output, have achieved remarkable results by employing deep neural networks like Transformers
(Bahdanau, 2014; Vaswani, 2017). These models are now extensively used across various applications
due to their high performance. However, erroneous outputs generated by NMT models can lead to
significant risks, particularly in security-sensitive contexts. Recent research has explored adversarial
attacks targeting NMT models to address these concerns. Character-level NMT models are highly
vulnerable to character manipulations such as typos in a block-box setting (Belinkov & Bisk, 2017;
Ebrahimi et al., 2018a). as well as pushing/removing words from the translation. However, character
manipulations and typos are easily detected by humans or review strategies. Hence, most adversarial
attacks against NLP and NMT systems use a word replacement strategy instead. Seq2sickCheng et al.
(2020) proposes a projected gradient method combined with group lasso and gradient regularization,
conducting non-overlapping attacks and targeted keyword attacks. Similarly, Transfool (Sadrizadeh
et al., 2023) also uses the gradient projection method, defining a new optimization problem and
linguistic constraints to compute semantic-preserving and fluent attacks against NMT models. Mor-
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phin (Tan et al., 2020) generates plausible and semantically similar adversaries by perturbing the
inflections in clean examples to investigate the robustness of NLP models to inflectional perturbation.
kNN (Michel et al., 2019)is a white-box untargeted attack against NMT models that substitutes some
words with their neighbors in the embedding space. RGZou et al. (2019)investigates the issue by
generating adversarial examples through a new paradigm based on reinforcement learning, which
generates more reasonable tokens and secures semantic constraints.

A.3 MUTIL-TASK ADVERSARIAL ATTACK

A Multi-task Adversarial Attack is an adversarial machine learning strategy designed to generate
examples that deceive multiple models or systems simultaneously (Guo et al., 2020; Ghamizi et al.,
2022), rather than just one. As far as we know, there is currently no related work on multi-task
adversarial attacks in the field of text. In other fields, MTA (Guo et al., 2020) is designed to generate
adversarial perturbations for all three pre-trained classifiers simultaneously by leveraging shared
knowledge among tasks. There is an attack method (Sobh et al., 2021) that targets visual perception
in autonomous driving, which is applied in a wide variety of multi-task visual perception deep
networks in distance estimation, semantic segmentation, motion detection, and object detection.
MTADV (Wang et al., 2024) is a multitask adversarial attack against facial authentication, which is
effective against various facial data sets.

B TRANSFERABILITY OF ADVERSARIAL EXAMPLES: A MANIFOLD-BASED
ANALYSIS

In this section, we present a rigorous mathematical analysis of the transferability of adversarial
examples between a surrogate model and a victim model. Specifically, we analyze a scenario in
which adversarial examples are generated on a surrogate model trained with cluster labels obtained
through clustering. Despite the dissimilarity between the surrogate and victim models, the adversarial
examples exhibit strong transferability. We use manifold theory to provide a deeper understanding of
this phenomenon, focusing on the shared geometric properties between the models.

B.1 THE MANIFOLD HYPOTHESIS AND DATA GEOMETRY

The manifold hypothesis posits that high-dimensional data, such as images or text, actually lie on
or near a lower-dimensional manifold embedded in the high-dimensional input space. Let x ∈ Rn

represent a data point in the high-dimensional input space. The hypothesis assumes that x lies
on a manifold M ⊂ Rn, where dim(M) = d ≪ n. This implies that, although the data exists
in a high-dimensional space, its intrinsic dimensionality is much lower, captured by the manifold
structure.

Formally, we assume the existence of a differentiable embedding ϕ that maps points from a low-
dimensional latent space z ∈ Rd to the high-dimensional input space Rn:

x = ϕ(z), z ∈ Rd, x ∈M (7)

The manifoldM provides a lower-dimensional representation of the data’s intrinsic structure. This
assumption is central to understanding how adversarial examples exploit local geometries of the data.

B.2 TANGENT SPACE AND ADVERSARIAL PERTURBATIONS

For each point x ∈M, the manifold has a tangent space TxM, which is a linear approximation of
the manifold at x. The tangent space can be described as the image of the differential map Dϕ(z) at
the point z:

v ∈ TxM iff
d

dt
ϕ(z + tv)

∣∣∣
t=0
∈ TxM (8)

In adversarial attacks, the perturbation η ∈ Rn is added to the input x, causing it to move off the
manifold or within the neighborhood ofM. The goal of adversarial perturbation is to make the
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modified sample x′ = x+ η fool the classification model. Typically, we constrain the perturbation η
to lie within a small ball around x, i.e., ∥η∥ ≤ ϵ.

Given the manifold structure, the perturbation η can be viewed as lying in the tangent space TxM:

x′ = x+ η, η ∈ TxM (9)

This means that the perturbation η primarily affects the local geometry of the data, altering the input
within the locally linear approximation of the manifold.

B.3 OPTIMIZATION OF ADVERSARIAL PERTURBATIONS

The goal of generating adversarial examples is to find a perturbation η that maximizes the loss
function L(f(x), y), where f is the classification model, x is the input, and y is the true label. The
perturbation is constrained by ∥η∥ ≤ ϵ, ensuring that the modification to the input is imperceptible.

Mathematically, this problem can be formulated as the following optimization problem:

η = arg max
∥η∥≤ϵ

L(f(x+ η), y) (10)

To approximate this solution, we apply a first-order Taylor expansion of the loss function around x:

L(f(x+ η), y) ≈ L(f(x), y) +∇xL(f(x), y)
T η (11)

Thus, the adversarial perturbation is chosen to align with the gradient of the loss function
∇xL(f(x), y). The optimal perturbation η is given by:

η = ϵ · ∇xL(f(x), y)

∥∇xL(f(x), y)∥
(12)

Therefore, the adversarial example x′ is:

x′ = x+ ϵ · ∇xL(f(x), y)

∥∇xL(f(x), y)∥
(13)

B.4 MANIFOLD LEARNING IN SURROGATE MODELS

In transfer-based attacks, a surrogate model fproxy is often trained on auxiliary data using cluster
labels obtained through clustering. Assume that the clustering algorithm divides the data into two
clusters corresponding to two pseudo-classes, M1 ⊂ Rn and M2 ⊂ Rn, representing different
regions of the input manifoldM. These pseudo-classes are determined based on data similarities
(e.g., through a clustering algorithm such as k-means).

Let the cluster labels be denoted by ŷi ∈ {0, 1}, so that:

xi ∈M1 if ŷi = 0, xi ∈M2 if ŷi = 1 (14)

The surrogate model fproxy is then trained to separate these two clusters by learning a decision
boundary between the manifoldsM1 andM2:

fproxy(x) =

{
0, if x ∈M1

1, if x ∈M2
(15)

This model learns the local geometric structure of the auxiliary data manifold and attempts to separate
the data based on the clustering-derived labels.
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B.5 VICTIM MODEL’S MANIFOLD REPRESENTATION AND TRANSFERABILITY

The victim model ftarget is trained on the same or a similar data distribution. Let the victim model
learn two classes corresponding to two regions of the data manifold,Mtarget,1 andMtarget,2. These
manifolds can be expressed as transformations of the original data manifoldM through mappings
gtarget,1 and gtarget,2:

Mtarget,1 = gtarget,1(M), Mtarget,2 = gtarget,2(M) (16)

Although the class labels between the surrogate and victim models differ, the geometric structure of
the underlying data manifold remains largely similar. Therefore, if the decision boundaries learned
by the surrogate model in regionsM1 andM2 coincide with regions of high sensitivity in the victim
model, adversarial examples generated on the surrogate model can transfer effectively.

B.6 GEOMETRIC TRANSFERABILITY OF ADVERSARIAL EXAMPLES

In regions where the geometric properties of the surrogate and victim models are similar, adversarial
examples generated on fproxy can also transfer to ftarget. Specifically, let the decision boundaries of
the surrogate model and victim model be denoted as ∂Mproxy and ∂Mtarget, respectively. If these
boundaries are geometrically close in some region of the manifold, i.e.,

∂Mproxy ≈ ∂Mtarget locally, (17)

then adversarial perturbations that cross ∂Mproxy are likely to also cross ∂Mtarget.

B.7 JACOBIAN MATRICES AND GRADIENT TRANSFER

A key geometric aspect of adversarial transferability is the similarity in the local gradient fields of the
surrogate and victim models. This can be measured through the Jacobian matrices of the models,
denoted as Jproxy(x) and Jtarget(x), respectively. In regions where these Jacobian matrices are similar,
i.e.,

Jproxy(x) ≈ Jtarget(x), ∀x ∈M, (18)

the adversarial perturbation η that is effective for the surrogate model will also be effective for the
victim model, thus enhancing the transferability of adversarial examples.

B.8 CONCLUSION

Through the detailed mathematical formulas and geometric explanations, we arrive at the following
conclusions:

• Manifold Hypothesis: Data resides on low-dimensional manifolds, and both the surrogate
model and the victim model learn different decision boundaries on these manifolds.

• Tangent Space Perturbations: Adversarial examples are generated by perturbing within
the tangent space TxM of the data manifold, with the perturbation optimized in the direction
of the gradient.

• Shared Geometric Properties: The surrogate and victim models share local geometric prop-
erties of the manifold (e.g., curvature, Jacobian matrices), which leads to the transferability
of adversarial examples.

• Locality of Adversarial Perturbations: The adversarial perturbation impacts local vulnera-
ble regions in the surrogate model, which often correspond to similar vulnerable regions in
the victim model, ensuring successful transfer.

• Training on cluster labels: The surrogate model trained with cluster labels derived from
clustering learns local geometric structures of the data manifold, and these structures are
shared with the victim model, explaining the high transferability of adversarial examples
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generated from the surrogate model, even though the global structures of the two models
differ.

C DERIVATION OF THE MAXIMUM ENTROPY DISTRIBUTION

The aim of this section is to derive the probability distribution pi that maximizes entropy under
specific constraints. This derivation follows from the Maximum Entropy Principle, which asserts
that, given incomplete information, the probability distribution that best represents the current state
of knowledge is the one with the maximum entropy.

C.1 DEFINITION OF ENTROPY

The Shannon entropy for a discrete probability distribution is defined as:

S(p) = −
∑
i

pi log pi (19)

where pi represents the probability of state i, subject to the constraint that the probabilities sum to
one:

∑
i

pi = 1 (20)

C.2 CONSTRAINTS

In addition to the normalization constraint
∑

i pi = 1, we consider an additional constraint on the
expected value of a physical observable f , such that its expected value ⟨f⟩ is known. This constraint
is expressed as:

∑
i

pifi = ⟨f⟩ (21)

Thus, we aim to find a probability distribution pi that maximizes the entropy S(p), while satisfying
both the normalization condition and the expectation constraint.

C.3 APPLICATION OF LAGRANGE MULTIPLIERS

To incorporate these constraints into the maximization of entropy, we employ the method of Lagrange
multipliers. The Lagrange multipliers λ0 and λ1 correspond to the normalization and expectation
constraints, respectively. The Lagrangian is defined as:

L(pi, λ0, λ1) = −
∑
i

pi log pi + λ0

(∑
i

pi − 1

)
+ λ1

(∑
i

pifi − ⟨f⟩

)
(22)

C.4 MAXIMIZATION OF THE LAGRANGIAN

To maximize the entropy, we differentiate the Lagrangian with respect to pi, yielding:

∂L
∂pi

= −(log pi + 1) + λ0 + λ1fi (23)

Setting this derivative equal to zero to find the extremum, we obtain:

−(log pi + 1) + λ0 + λ1fi = 0 (24)
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which simplifies to:

log pi = λ0 − 1 + λ1fi (25)

Exponentiating both sides yields the general form of the probability distribution:

pi = eλ0−1+λ1fi (26)

Introducing a constant A = eλ0−1, this becomes:

pi = Aeλ1fi (27)

C.5 NORMALIZATION AND DETERMINATION OF A

The normalization condition
∑

i pi = 1 allows us to solve for the constant A. Substituting pi =
Aeλ1fi into the normalization condition, we get:

A
∑
i

eλ1fi = 1 (28)

Hence, A is given by:

A =
1∑

i e
λ1fi

(29)

Thus, the probability distribution that maximizes entropy under the given constraints is:

pi =
eλ1fi∑
i e

λ1fi
(30)

C.6 DETERMINATION OF λ1

The Lagrange multiplier λ1 is determined using the expectation constraint:∑
i

pifi = ⟨f⟩ (31)

Substituting pi =
eλ1fi∑
i e

λ1fi
into this constraint yields:

∑
i fie

λ1fi∑
i e

λ1fi
= ⟨f⟩ (32)

This implicit equation must be solved to determine the value of λ1. Typically, this equation requires
numerical methods for its solution. The value of λ1 ensures that the expectation constraint is satisfied.

C.7 CONCLUSION

The resulting distribution that maximizes entropy, subject to both normalization and expectation
constraints, is:

pi =
eλ1fi∑
i e

λ1fi
(33)

where the Lagrange multiplier λ1 is determined by the equation:
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∑
i fie

λ1fi∑
i e

λ1fi
= ⟨f⟩ (34)

This form of the probability distribution is widely used in statistical mechanics and information theory.
For instance, in statistical mechanics, the Boltzmann distribution arises as a specific case of this
general result. The maximum entropy principle thus provides a systematic approach to determining
the most likely distribution, given incomplete information and known constraints.

D UNION BOUND THEOREM AND DETAILED PROOF

The Union Bound is a fundamental result in probability theory that gives an upper bound on the
probability of the union of several events. Formally, for a given set of events A1, A2, . . . , An in a
probability space, the Union Bound states:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai) (35)

D.1 PROOF

We will prove this statement using induction and basic properties of probability theory, such as
additivity and monotonicity. We break the proof into several key steps for clarity.

D.1.1 STEP 1: BASE CASE FOR TWO EVENTS

We begin by proving the Union Bound for two events A1 and A2. Using the inclusion-exclusion
principle, we know:

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) (36)

Since probabilities are non-negative, we know that:

P (A1 ∩A2) ≥ 0 (37)

Thus, we have:
P (A1 ∪A2) ≤ P (A1) + P (A2) (38)

This inequality establishes the Union Bound for two events. We now extend this reasoning to more
than two events.

D.1.2 STEP 2: GENERAL CASE FOR THREE EVENTS

Next, we consider the union of three events A1, A2, A3. Again, by the inclusion-exclusion principle,
we can write:

P (A1 ∪A2 ∪A3) =P (A1) + P (A2) + P (A3)− P (A1 ∩A2)− P (A1 ∩A3)

− P (A2 ∩A3) + P (A1 ∩A2 ∩A3)
(39)

As before, all intersection terms are non-negative, i.e., P (A1 ∩ A2) ≥ 0, P (A1 ∩ A3) ≥ 0,
P (A2 ∩A3) ≥ 0, and P (A1 ∩A2 ∩A3) ≥ 0. Thus, we have the following inequality:

P (A1 ∪A2 ∪A3) ≤ P (A1) + P (A2) + P (A3) (40)

This confirms the Union Bound for three events.

D.1.3 STEP 3: GENERAL CASE FOR n EVENTS

We now extend this reasoning to n events. Let A1, A2, . . . , An be events. We aim to show:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai) (41)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using the property of monotonicity, we know that:

P

(
n⋃

i=1

Ai

)
= P (A1 ∪

(
n⋃

i=2

Ai

)
) (42)

Applying the inclusion-exclusion principle recursively, we can extend the argument to any finite
number of events:

P (A1 ∪ (A2 ∪ · · · ∪An)) =P (A1) + P

(
n⋃

i=2

Ai

)
− P

(
A1 ∩

(
n⋃

i=2

Ai

))
(43)

Since P (A1 ∩ (
⋃n

i=2 Ai)) ≥ 0, we have:

P (A1 ∪ (A2 ∪ · · · ∪An)) ≤ P (A1) + P

(
n⋃

i=2

Ai

)
(44)

Now, by applying this same logic to the remaining n− 1 events, we continue to decompose the union
step by step:

P

(
n⋃

i=2

Ai

)
≤ P (A2) + P

(
n⋃

i=3

Ai

)
(45)

Repeating this process for all events, we get:

P

(
n⋃

i=1

Ai

)
≤ P (A1) + P (A2) + · · ·+ P (An) (46)

Thus, the Union Bound holds for any finite number of events.

D.1.4 STEP 4: FORMAL PROOF BY INDUCTION

To formalize the argument, we will use mathematical induction.

Base Case: For n = 2, as shown in Step 1, the Union Bound holds:

P (A1 ∪A2) ≤ P (A1) + P (A2) (47)

Inductive Step: Assume that the Union Bound holds for n events. That is, assume:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai) (48)

We need to prove that the Union Bound holds for n+ 1 events, i.e., for A1, A2, . . . , An+1, we need
to show:

P

(
n+1⋃
i=1

Ai

)
≤

n+1∑
i=1

P (Ai) (49)

We can write:

P

(
n+1⋃
i=1

Ai

)
= P

((
n⋃

i=1

Ai

)
∪An+1

)
(50)

By the inclusion-exclusion principle, we know:

P

((
n⋃

i=1

Ai

)
∪An+1

)
=P

(
n⋃

i=1

Ai

)
+ P (An+1)− P

((
n⋃

i=1

Ai

)
∩An+1

)
(51)

Since P ((
⋃n

i=1 Ai) ∩An+1) ≥ 0, we get:

P

((
n⋃

i=1

Ai

)
∪An+1

)
≤ P

(
n⋃

i=1

Ai

)
+ P (An+1) (52)
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By the inductive hypothesis:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai) (53)

Thus, we have:

P

((
n⋃

i=1

Ai

)
∪An+1

)
≤

n∑
i=1

P (Ai) + P (An+1) =

n+1∑
i=1

P (Ai) (54)

This completes the inductive step.

D.2 CONCLUSION

By induction, we have proven that the Union Bound holds for any finite number of events
A1, A2, . . . , An. This result shows that the probability of the union of events

E SUBSTITUTE MODEL ARCHITECTURE

Our substitute model comprises 12 transformer blocks, each with 768 hidden units and 12 self-
attention heads. Each transformer block consists of the following substructures:

• Self-Attention Layer: The hidden size of the self-attention layer is 768.
• Position-wise Feed-Forward Network: The network first projects the output of the attention

layer to a 3072-dimensional space using a fully connected layer, followed by a ReLU
activation for non-linearity, and finally projects the 3072-dimensional space back to a
768-dimensional space via another fully connected layer.

• Layer Normalization and Residual Connection:
– Layer Normalization: Applied to the output of each sub-layer to stabilize training.
– Residual Connection: Adds the normalized output to the input of the sub-layer.

F DETAILS OF DATA

Table 7: The statistics of datasets.

Dataset Train Test classes Labels name

SST5 8544 2210 5 Very positive, Positive, Neutral, Negative, Very negative
Emotion 16000 2000 6 Sadness, Joy, Love, Anger, Fear, Surprise

G URL

Table 8: Details of the methods in the Baselines.

Model Url

Distilbert https://huggingface.co/joeddav/distilbert-base-uncased-go-emotions-student
BERT https://huggingface.co/bhadresh-savani/bert-base-go-emotion

Roberta https://huggingface.co/bsingh/roberta_goEmotion
A https://huggingface.co/SamLowe/roberta-base-go_emotions
B https://huggingface.co/Prasadrao/xlm-roberta-large-go-emotions-v3
C https://huggingface.co/SchuylerH/bert-multilingual-go-emtions
D https://huggingface.co/bergum/xtremedistil-l6-h384-go-emotion

H DETAILS OF BASELINES
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https://huggingface.co/Prasadrao/xlm-roberta-large-go-emotions-v3
https://huggingface.co/SchuylerH/bert-multilingual-go-emtions
https://huggingface.co/bergum/xtremedistil-l6-h384-go-emotion


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: The details of the methods employed in the baseline comparisons. The Perturbed Level
indicates the target of the attack methods, where “word” denote the specific words targeted for
perturbation, and “char” refer to the characters within a word that are altered by the attack method.

(a) Information on the classification attack method used as the baseline.

Methods Perturbed Level Gradient Soft-labels Hard-labels Knowledge

Bae Word % " " black-box
Bert-Attack Word % " " black-box

DWB Char % " " black-box
FD Char " " " white-box

Hotflip Char " " " white-box
SememePSO Word % " " black-box
TextBugger Char+Word " " " white-box
TextFooler Word % " " black-box

CEMA Char+Word % % " black-box

(b) Information on the translation attack method used as the baseline.

Methods Perturbed Level Gradient Soft-labels Hard-labels Knowledge

Hotflip(Trans) Char " % % white-box
kNN Word " % % white-box

Morphin Word % % " black-box
RA Word " % % white-box

Seq2Sick Word " % " white-box
TransFool Word % % " black-box

CEMA Char+Word % % " black-box
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