
DynOMo: Online Point Tracking by Dynamic Online Monocular Gaussian

Reconstruction

Supplementary Material

In this supplementary material, we first provide addi-
tional details regarding our method in Sec. 6 and our im-
plementation in Sec. 7. We further present 2D and 3D point
tracking results on the iPhone dataset [10] in Sec. 8 and
provide more insights on our design choices with additional
ablation studies in Sec. 9, followed by discussions and vi-
sualizations of our failure cases in Sec. 10. Finally, we pro-
vide additional visualizations of our emergent trajectories
and 2D point tracking. We will release our code upon ac-
ceptance.

6. Method Details

Densification Mask. In our approach we exploit the den-
sification mask process from [14]. This means, we only add
new Gaussians for unobserved regions based on a densifi-
cation mask MD(p) computed by applying a threshold on
pixel densities, i.e.,

MD(p) = (
X

i2H

Ti↵i) < 0.5, (11)

Physically-Based 3D Regularization We build on the
physically-based priors from [24], i.e., the rigidity Lrigid,
isometry Liso, and rotation Lrot losses. All losses are ap-
plied to every Gaussian directly and computed over its k
nearest neighbors (kNN):

Lx =
1

k|G|
X

i2|G|

X

j2kNNi

wi,jLx,i,j (12)

where x 2 {rigid, rot, iso}, |G| is the number of Gaus-
sians, and wi,j is the weight term depending on the Gaus-
sians i and j. While [24] defines wi,j as the l2 distance in
3D space, we utilize a semantic-based weighting as defined
in Sec. 3.3 of the main paper.

The local short-term rigidity loss enforces close-by
Gaussians to undergo a similar rigid transformations when
observed from Gaussian i’s coordinate system. This as-
sumption holds if two Gaussians belong to the same object
even for non-rigid objects since it is applied only in a local
region. Lrigid is defined by:

Lrigid,i,j = ||(µj,⌧�1�µi,⌧�1)��Ri(µj,⌧�µi,⌧)||2 (13)

where �Ri is the relative rotation of Gaussian i from time
step ⌧ to ⌧ � 1 and is defined as �Ri = Ri,⌧�1R

�1
i,⌧

.
The short-term rotation loss further enforces the rotation of
close-by Guassians to undergo similar changes by:

Lrot,i,j = ||q̂j,⌧ q̂�1
j,⌧�1 � q̂i,⌧ q̂

�1
i,⌧�1||2 (14)

where q̂ is the normalized quaternion. While this constraint
is implicitly enforced by the rigidity loss, we show that ad-
ditionally adding rotation regularization leads to a slight
performance increase (cf . Sec. 4.3 of the main paper).
Finally, the long-term isometry loss additionally enforces
Gaussians to keep the initial distance to their kNN Gaus-
sians across time and is hence defined by:

Liso,i,j = ||µj,0 � µi,0||2 � ||µj,⌧ � µi,⌧ ||2 . (15)

We compare the impact of individual loss terms in Sec. 4.3
of the main paper.
Temporal Smoothness Regularization. We apply
smoothness regularization to Gaussian features fi, Gaussian
colors ci and means of the Gaussains of the background re-
gion, defined as:

Lsm,f = �f

X

i2|G|

||fi,⌧�1 � fi,⌧ ||1 (16)

Lsm,c = �c

X

i2|G|

||ci,⌧�1 � ci,⌧ ||1 (17)

Lsm,µb = �µb

X

i2|Gb|

||µi,⌧�1 � µi,⌧ ||1 (18)

where |G| is the set of Gaussians, |Gb| is the set of back-
ground Gaussians and the final smoothness regularization
is given by Lsm = Lsm,f + Lsm,c + Lsm,µb .

7. Implementation Details

Gaussian Initialization. We initialize Gaussian with
means µi by lifting the every second pixel defined by its
image coordinates to 3D given the depth map and the cam-
era projection matrix. We initialize the rotation to the unit
quaternion qi = (1, 0, 0, 0) and the scale to be dependent
on the distance as si = z

0.5⇤(fx+fy)
⇤ (1, 1, 1) where fx and

fy are the focal lengths in x and y direction of the camera.
For each pixel position we also unproject RGB color values
ci 2 R

3, the feature vectors fi 2 R
32 as well as the instance

id gi 2 R. This means, we obtain each of the previous infor-
mation per-pixel and then assign them to its corresponding
the unprojected 3D Gaussain. Since we assume each Gi to
be a particle in space, we intialize oi to be biased towards
being visible, i.e., we initialize oi =

e
0.7

1+e0.7
.

Nearest Neighbourhood Selection. For our Gaussian
forward propagation as well as for our semantics guided-
weighting of the physically-based priors (see Sec. 3.2 and

Sec. 3.4 of the main paper) we require a k nearest neighbor
(kNN) set for each Gaussian. We set k = 20. To determine
Ni, we first compute the 2kNN set based on l2 distance in
3D space within all Gaussians belonging to the same in-
stance. We then define Ni to be those Gaussians from the
2kNN with the smallest si,j , i.e., the smallest cosine dis-
tance between the Gaussians’ feature vectors. We utilize
this kNN set for both, Eq. 3 and 7 of the main paper.
Gaussian Optimization. We optimize our dynamic 3DGS
model using Adam [16] optimizer with a learning rate of
0.0016 for µi, 0.01 for qi, 0.0005 for oi, 0.001 for si, 0.001
for fi, 0.0025 for ci, 0.0001 for gi, and 0.001 for camera
pose. We set the reconstruction loss weights to �I = 1.0,
�F = 16, �D = 0.1 and �B = 3. For the physically-based
losses, we use the weights to �iso = 16, �rot = 16, and
�rigid = 128. We set �sm = 1 and the weighting within
the smoothness losses as �f = 20, �c = 20, �µb = 5. For
experiments on Panoptic Sports we run 500 iterations per
time step while for all other experiments we run 200 iter-
ations for Gaussian optimization as well as for the camera
optimization.
Off-the-shelf Data Preparation. Given any input RGB
image, we extract several other types of information from it
using off-the-shelf models. We extract its depth image using
the metric depth branch from DepthAnything [44], as well
as visual feature maps using Dinov2 [29] with ViT small
backbone followed by PCA to reduce the feature dimen-
sion from 384 to 32. For each image, we generate features
for five quadratical, overlapping crops to obtain higher res-
olution feature maps. We further assume a sparse instance
segmentation masks is provided. Those data are used either
to initialize the scene or provide optimization supervisions.
Average jaccard (AJ) metrics. AJ combines both metrics
by computing the fraction of

AJ =
X

h2{1,2,4,8,16}

TPh

GT + FPh

(19)

where TPh are the points that lies within the pixel distance
threshold h and whose visibility was computed correctly,
FPh are all other predicted points and GT is the number of
visible ground truth evaluation points.

8. Comparison on iPhone Dataset

To further comprehensively understand DynOMo’s perfor-
mance, we evaluate it for 2D and 3D point tracking on a
third benchmark, the iPhone dataset [10] in Tab. 4.
Dataset. The iPhone dataset [10] contains moving cam-
era, casual captures of real-world scenes recorded using an
iPhone. This setting is highly aligned with potential use
cases of mixed reality. Compared to Panoptic Sports [24]
and TAPVID-Davis [4], the dataset provides rgb images, li-
dar depth, camera poses of the moving camera, as well as

sparse 2D point correspondences across the entire video to
evaluate 2D and 3D point tracking.
Metrics. We follow the same evaluation protocol as in [39]
where the sparse correspondences are forward and back-
ward tracked across the sequence. 2D point tracking is eval-
uated using the TAPVID-Davis metrics, i.e., AJ, �avg,2D
as well as OA. However, instead of using thresholds of
{1, 2, 4, 8, 16}px, the authors use {4, 8, 16, 32, 64}px. For
3D point tracking, the authors evaluate the end point error
(EPE) which is the average l2 error in 3D reported in m over
predicted trajectories. Additionally, they report the fraction
of points within 5cm and 10cm to the ground truth trajec-
tories, i.e., �.05,3D and �.10,3D.
Baselines. Following SOM [39], we use their aligned
DepthAnything [44] depth maps. We downscale input
images by a factor of 0.5, initialize Gaussians for every
pixel position and adapt the visibility threshold accord-
ingly to 0.1. We compare two variants of our method.
For one variant, we use the refined camera poses from
SOM and for the other one, we use our optimized cam-
era poses. As shown in Tab. 4, we compare ourselves
to a set of existing offline 2D/3D point trackers. Being
highly relevant to our approach, SOM [39] also leverages
3D Gaussians as a dynamic scene representation and could
be viewed as an offline version of DynOMo. However, the
authors optimize their approach utilizing point trajectories
extracted by TAPIR [5] as supervision signal and, hence,
use correspondence-level supervisory signals similar to Co-
Tracker, TAPIR. In contrast to them, our online tracker
DynOMo shows emergent motion from online 3D Gaussian
reconstruction.
Refined Poses from [39]. Despite the online charac-
ter of our method and not requiring correspondence-level
supervision, DynOMo achieves on-par performance with
many existing approaches in 2D as well as in 3D. Inter-
estingly, for �avg,2D and AJ we even outperform all pre-
vious methods. In 3D, we perform better than the purely
view-reconstruction approaches, i.e., those approaches that
do not require correspondence-level supervision. Addition-
ally, we perform on par with CoTracker[13]+DA[44] under-
lining DynOMo’s ability to generate emergent trajectories.
Optimized Poses. Even if we optimize for camera pose
additionally, our EPE is highly competitive despite all other
approaches despite them utilizing ground truth or refined
camera poses. However, due to inaccuracies in our opti-
mized camera poses we observe a drop in performance es-
pecially for the high precision metrics like �.05,3D. Evaluat-
ing our accuracy of our optimized camera poses using ATE
RMSE, i.e., average translation error measures in root mean
square error we obtain an ATE RMSE of 10.49cm mirror-
ing the difficulty of optimizing camera poses for dynamic
sequences.
Ablating Aligned Depth and Refined Pose [39]. We

Method EPE # �.05,3D " �.10,3D " AJ " �avg,2D " OA "

HyperNeRF [32] 0.182 28.4 45.8 10.1 19.3 52.0
DynIBaR [22] 0.252 11.4 24.6 5.4 8.7 37.7
Deformable-3D-GS [45] 0.151 33.4 55.3 14.0 20.9 63.9
CoTracker [13]+DA [44] 0.202 34.3 57.9 24.1 33.9 73.0
TAPIR [5]+DA [44] 0.114 38.1 63.2 27.8 41.5 67.4
SOM [39] 0.082 43.0 73.3 34.4 47.0 86.6

DynOMo 0.161 33.5 58.1 35.9 58.0 65.1
DynOMo optimized pose 0.205 20.7 46.0 33.7 54.3 63.9

Ablating Pose and Depth

DynOMo original pose 0.171 32.1 55.1 35.7 56.7 66.4
DynOMo original lidar 0.198 32.9 53.0 33.2 54.5 65.0

Table 4. Iphone Dataset:. We compare the performance of DynOMo using the aligned DepthAnything [44] maps from [39] to other
approaches on the Iphone dataset [10]. Note, prior approaches are all offline and mostly require correspondece-level supervisory signal
for motion. We show DynOMo leads to emergent motion in 2D as well as in 3D. Additionally, we show that even with camera pose
optimization our EPE is highly competitive compared to the other approaches that all use ground truth or refined camera pose information.

Method AJ " �avg " OA "

DynOMo 45.8 63.1 81.1

Regularization Terms

w fixing ci, fi, and µb 30.8 45.3 75.4
w temporal smoothness oi, si, and gi 38.0 51.7 76.1
w/o temporal smoothness and fixing 35.4 50.1 70.2

Additional Ablations

isotropic Gaussians 42.7 59.8 79.2
Lemb w l1 distance 42.1 59.4 79.1
Fixing camera pose 40.7 57.9 77.2

Table 5. Additional Ablation of Single Part Importance: In this
table, we ablate additional design choices that have less impact on
the final performance compared to the ones discussed in Sec. 4.3
of the main paper.

show that utilizing the original LiDAR singal to supervise
DynOMo and the original poses provided by the iPhone
dataset leads only to a slight performance decrease in 3D
as well as in 2D mirroring DynOMo’s robustness.

9. Additional Ablation Studies

In this section, we provide additional ablation studies in
Tab. 5 to understand our method more comprehensively.
Temporal Smoothness Regularization Terms. We pro-
vide additional ablation studies on the temporal smoothness
regularization. To recap, in our setting we apply tempo-
ral smoothness on fi, ci and µb while we fix si, oi and
gi over time. In the main paper we show the performance
drop of not applying temporal smoothness, i.e., optimize
fi, ci and µb at every time step without additional supervi-
sion.We also show the performance drop of not, fixing si,

oi and gi, i.e., also optimizing them at every time step. We
now also provide experiments for fixing fi, ci and µb, ap-
plying temporal smoothness on si, oi and gi as well as not
applying temporal smoothness nor fixing values at all (see
section Regularization Terms in Tab. 5). We observe that all
three lead to significant performance degradation: (i) fixing
ci, fi, and µb leads to DynOMo not being able to adapt to,
e.g., temporal inconsistencies in image feature prediction or
slight color changes due to viewpoint changes; (ii) temporal
smoothness terms on oi, si, and gi can lead to, e.g., Gaus-
sians disappearing due to scale or opacity changes; (iii) not
applying any regularization allows the Gaussians to change
their attributes freely which allows them to ”cheat” to adapt
to the a new time frames supervisory signal.
Isotropic vs. Anisotropic Gaussians. Instead of using
anisotropic Gaussian distributions, [14] chose to use isp-
tropic Gaussian distributions for their use case of gener-
ating maps of static scenes. However, for non-rigid ob-
jects, this choice is less suited for two reasons: (i) compos-
ing non-rigid objects and motion with isotropic Gaussians,
i.e., small spheres, restricts the degrees of freedom to adapt
the geometry and geometrical changes; (ii) the rotation of
Gaussians actually does not matter for the reconstruction
losses, hence, it adds noisy signals in supervision signal.
This negatively impacts the rigidity loss, for which the ro-
tation signal is of major importance.
Penalizing Outliers for the Feature Map Reconstruc-

tion. Our experiments show that utilizing rendered feature
maps leads to significant performance improvement. Ren-
dering feature maps can be seen as a stronger, less ambigu-
ous supervisory signal than RGB colors that pulls the Gaus-
sians to the correct location to match a given time steps ob-
servation. We found that utilizing a l2 distance in computing
the feature reconstruction loss penalizes outlier Gaussians
in a stronger way (see ”Lemb w l1 distance” in Tab. 5).

Method MTE2D # S2D " �avg,2D " 2D %1 2D %8 2D %16 MTE3D # S3D " �avg,3D "

DynOMo-DA [44] 3.7 83.7 59.0 19.6 80.3 88.7 70.7 25.4 0.7
DynOMo-D-3DGS-D 6.3 85.7 61.8 25.3 83.6 90.3 26.1 73.0 12.7

Table 6. Impact of Different Depth Predictions: We compare utilizing DepthAnyhthing [44] metric depth prediction with rendered depth
predictions from [24] for the Panoptic Sports dataset [24]. Additionally to the main metrics, we also report the percentage of points within
1, 8 and 16px distance. We observe that for 2D point tracking the depth prediction approach does not have a major impact on the overall
performance. Meanwhile the performance drop is more significant for high precision metrics, e.g., 2D1%. Additionally, for 3D point
tracking, we observe a severe performance drop with respect to all metrics.

Method MTE2D # Survival2D " �avg,2D " MTE3D # Survival3D " �avg,3D "

↵-composition [39] 7.2 81.9 55.0 32.1 65.3 8.7
Closest 3D Gaussian 9.4 79.6 35.7 26.1 73.0 12.7
DynOMo (Closest 2D Projection) 6.3 85.7 61.8 24.1 71.0 10.1

Table 7. Choice of Gaussians in Trajectory Estimation: We compare different approaches for choosing the Gaussian to track. We find
that for 2D point tracking, our proposed choice of Gaussians based on the closest 2D Guassian projection achieves the best performance.
The performance of ↵-compositioning lags behind since it chooses Gaussians per timestamp without enforcing those Gaussians to belong
to the same point in 3D. When metric depth measurements are available, we choose the closest 3D Guassian directly in 3D, leading to
improved 3D tracking performance.

Disentangled Camera Motion. [38] showed that it is not
necessary to explicitly model camera motion, but it is suf-
ficient to entangle camera and object motion. However, in
Tab. 5 we demonstrate that not explicitly modeling camera
motion, i.e., fixing camera pose, leads to a significant per-
formance drop for DynOMo. Additionally, this feature is
important for real-world applications that require interac-
tion with the real world.
Different Depth Priors In our online monocular setting,
the depth information is directly used for the Gaussian
mean initialization as well as for the depth reconstruction
loss meanwhile also influences the physics-based loss func-
tions. Therefore, we study the impact of the depth map on
our tracking performance by comparing our DynOMo using
the zero-shot metric depth predictions from DepthAnything
[44] (DA) with using the depth predictions from [24] (D-
3DGS-D). Additionally to the metrics from the main paper,
we also report the percentage of points within 1, 8 and 16px
distance. As shown in Tab. 6, we only observe slight per-
formance difference using different depth maps for 2D point
tracking, since a correct 2D trajectory does not necessarily
require a correct 3D trajectory. This performance difference
is more observable in high precision metrics, i.e., fraction of
points within 1px distance. In contrast, for 3D point track-
ing, we observe a significant performance increase with bet-
ter depth estimation, i.e., D-3DGS-D. This suggests that our
method directly benefits from future monocular depth esti-
mation advancement.
Choice of Gaussians in Trajectory Estimation. We val-
idate our way of choosing Gaussians for trajectory estima-
tion (as introduced Sec 3.5 of the main paper) by comparing
to other ways of choosing Gaussians as introduced by other

works. Inspired by [38], SOM[39] computes the 3D trajec-
tory of a corresponding pixel p at time ⌧ by taking the set
of Gaussians H(p) into account that intersect with pixel p
at ⌧s:

X
⌧s!⌧

p
=

X

i2H(p)

Ti↵iµ
⌧

i
(20)

where µ
⌧

i
is the mean of Gi at time ⌧ and X

⌧s!⌧

p
is the 3D

location at time ⌧ corresponding to the trajectory starting
from p at ⌧s. For 2D point tracking, the authors project
X

⌧s!⌧

p
to the image plane:

X
⌧s!⌧

p,2D = W
⌧
X

⌧s!⌧

p
(21)

where W⌧s is the viewing transformation at ⌧ . We com-
pare DynOMo to the above explained approach from [39]
denoted as ↵-composition. Additionally, assuming 3D
ground-truth (GT) trajectories are available, instead of
choosing a 3D Gaussian for a query pixel based on its clos-
est 2D projection, we directly choose the 3D Gaussian clos-
est to the GT 3D Gaussian for tracking. As shown in Tab. 7,
↵-composition leads to worse performance in general, as
the 3D Gaussians are selected per timestamp and thus can
belong to different points in 3D. While choosing the Gaus-
sian based on the 3D means performs slightly better for
evaluation in 3D tracking, it’s performance in 2D is worse.
Furthermore, 3D GT trajectory information is not generally
available, e.g., for TAPVID-Davis. We therefore stick to
our proposed choice of Gaussian as in Sec 3.5.

po
in

t t
ra

ck
s

re
nd

er
in

g
po

in
t t

ra
ck

s
re

nd
er

in
g

po
in

t t
ra

ck
s

re
nd

er
in

g

ex
tr

em
e

oc
cl

us
io

ns
 a

nd

un
ob

se
rv

ed
 re

gi
on

s
ex

tr
em

e
m

ot
io

n,
 lo

w

te
xt

ur
e

ba
ck

gr
ou

nd
ex

tr
em

e
ob

je
ct

ac

ce
le

ra
tio

n

po
in

t t
ra

ck
s

re
nd

er
in

g

ex
tr

em
e

ca
m

er
a

m
ot

io
n,

lit

tle
 o

bs
er

ve
d

ba
ck

gr
ou

nd

Figure 4. Failure Cases of DynOMo: DynOMo struggles (i) to track points and add new Gaussians in sequences with extreme occlusions;
(ii) to track the camera position as well as the Gaussians in sequences with extreme camera and object motion as well as low background
texture; (iii) to track points when extreme acceleration changes occur; (iv) to track Gaussians and camera positions when solely little
background is observed but extreme camera motion occurs.

10. Failure Cases

In this section, we discuss and visualize several failure cases
of our method in Fig. 4 as well as point out potential solu-
tions. We hope those insights spark future research along
this direction to address those limitations.

Extreme Camera Motion. If camera poses are unknown,
we estimate the camera poses. However, for extreme
camera motion as well as background with little texture,

DynOMo struggles to reconstruct the motion appropriately
which is also a common failure case in SLAM methods.
Extreme Occlusions. In cases with sudden extreme
occlusions, DynOMo struggles to reconstruct the camera
pose. Additionally, due to our online monocular charac-
ter, DynOMo struggles to track points over long-term occlu-
sions. Utilizing a stronger constant velocity assumption or
exploiting fine-grained instance id’s can potentially help to
recover after occlusions.

po
in

t t
ra

ck
s

re
nd

er
in

g
po

in
t t

ra
ck

s
re

nd
er

in
g

po
in

t t
ra

ck
s

re
nd

er
in

g
po

in
t t

ra
ck

s
re

nd
er

in
g

hi
gh

ly
 n

on
-r

ig
id

,
sp

in
ni

ng
 m

ot
io

n
se

ve
ra

l o
cc

lu
si

on
 o

ve
r

th
e

se
qu

en
ce

ap
pe

ar
an

ce
 o

f s
ec

on
d

ob
je

ct
hi

gh
ly

 n
on

-r
ig

id

m
ot

io
n

of
 fi

ns

po
in

t t
ra

ck
s

re
nd

er
in

g

ch
an

gi
ng

 li
gh

tn
in

g
co

nd
iti

on
s

po
in

t t
ra

ck
s

re
nd

er
in

g

ex
tr

em
el

y
fa

st
 o

bj
ec

t
m

ot
io

n

Figure 5. Visualizations on TAPVID-Davis: We visualize renderings as well as point tracks on challenging scenes on TAPVID-Davis.
DynOMo is able to generate emerging trajectories despite facing non-rigid motion, occlusions, appearance of new objects, or fast motion.

emergent point trajectories in 3D renderings

point positions in 2D renderings

Figure 6. Visualizations on iPhone Dataset: We visualize renderings as well as point trajectories and point positions on casual captures
from the iPhone dataset. DynOMo is able to generate trajectories for challenging spinning motions and is able to track points in 2D.

Extreme Object Acceleration. For extreme object accel-
eration, DynOMo struggles to model the sudden change of
motion. This is due to the fact that we forward propagate
points to the next frame and our constant velocity assump-
tion breaks for sudden extreme velocity changes. Future
research could explore utilizing motion prediction models
for forward propagation to resolve this issue.

Previously Observed Regions. When adding new Gaus-
sians based on the densification concept, it can happen that
a new object enters the scene in front of a previously ob-
served concept. In such cases, no new Gaussians will be
added for the newly appearing concept. Towards this end,
[14] also exploits depth errors to add Gaussians. However,
this requires highly accurate depth prediction, which we do
not have access to in, e.g., the TAPVIS-Davis sequences.
We assume the advances in depth prediction models will
help in resolving this challenge.

Using Depth As Supervisory Signal. Since we are operat-
ing in a monocular and online setting, depth predictions are
the most important 3D information for DynOMo. However,
noisy depth maps can lead to degrading performance when
using them directly as supervisory signal, i.e., using a ren-
dered depth loss. Hence, we only exploit it moderately for
supervision. Additionally, we add Gaussians by lifting pixel
positions to the 3D space given using depth maps. How-

ever, since those depth maps are not precisely consistent
over time, the Gaussians may be added in a highly incorrect
location in the 3D space from which it is highly challenging
to recover. As also suggested by our ablation in Tab. 6, the
recent advances in depth prediction models will support in
solving this issue.
Spinning and Turning Objects. Similarly to adding Gaus-
sians for newly appearing objects, adding Gaussians for a
newly appearing side spinning objects is highly challeng-
ing since previously existing yet now occluded Gaussians
can be re-used to ”cheat”. Exploiting recent approaches in
zero-shot mesh prediction could help to populate the whole
mesh, i.e., the whole surface of a spinning object with Gaus-
sians.

11. Additional Visualizations

Finally, we present additional visualizations on TAPVID-
Davis in Fig. 5 as well as on the iPhone dataset Fig. 6. For
the TAPVID-Davis, we visualize emergent trajectories for
scenes with occlusions, appearing objects, highly non-rigid
motions, changing lightning conditions as well as extremely
fast object motion. On the iPhone dataset we show that
DynOMo is able to generate emergent trajectories as well
as to track points in a robust manner in 2D.

	. Introduction
	. Related Work
	. Dynamic Scene Reconstruction
	. Point Tracking

	. Method
	. Dynamic Gaussian Scene Representation
	. Monocular Online Tracking Pipeline
	. Reconstruction Supervision
	. 3D Regularization
	. Trajectory Estimation

	. Experiments
	. Evaluation on Panoptic Sports
	. Evaluation on TAPVid-DAVIS
	. The Magic Sauce

	. Conclusion
	. Method Details
	. Implementation Details
	. Comparison on iPhone Dataset
	. Additional Ablation Studies
	. Failure Cases
	. Additional Visualizations

