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ABSTRACT

It is commonly believed that, in a real-world environment, samples can only be
drawn from observational and interventional distributions, corresponding to Layers
1 and 2 of the Pearl Causal Hierarchy. Layer 3, representing counterfactual
distributions, is believed to be inaccessible by definition. However, Bareinboim,
Forney, and Pearl (2015) introduced a procedure that allows an agent to sample
directly from a counterfactual distribution, leaving open the question of what other
counterfactual quantities can be estimated directly via physical experimentation.
We resolve this by introducing a formal definition of realizability, the ability to draw
samples from a distribution, and then developing a complete algorithm to determine
whether an arbitrary counterfactual distribution is realizable given fundamental
physical constraints, such as the inability to go back in time and subject the same
unit to a different experimental condition. We illustrate the implications of this
new framework for counterfactual data collection using motivating examples from
causal fairness and causal reinforcement learning. While the baseline approach
in these motivating settings typically follows an interventional or observational
strategy, we show that a counterfactual strategy provably dominates both.

1 INTRODUCTION

The Pearl Causal Hierarchy, or PCH, is an important recent milestone in our understanding of
causality (Pearl & Mackenzie, 2018; Bareinboim et al., 2022). The three layers of the PCH represent
the distinct regimes of seeing, doing, and imagining, with regard to an environment. Consider
an environment involving a decision variable X and an outcome Y . Layer 1 (L1) represents
observational distributions, such as P (Y | x). Layer 2 (L2) represents interventional distributions,
such as P (Y ; do(x)), using the do() operator. Layer 3 (L3) represents counterfactual distributions
dealing with conflicting realities, such as P (Yx | x′, y′): the distribution of Y had X been fixed as x,
given that X,Y were in fact naturally observed to be x′, y′. Higher layers subsume lower ones, but
are underdetermined by them (Ibeling & Icard, 2020; Bareinboim et al., 2022).

Reasoning about L3-quantities plays a vital role in personalized decision-making (Mueller & Pearl,
2023), analysing a causal effect into direct and indirect pathways (Pearl, 2001; Rubin, 2004), and
constructing explanations for decisions, among other topics, in applications such as healthcare
(Mueller & Pearl, 2024), economics (Li & Pearl, 2019), epidemiology (Robins & Greenland, 1992)
etc. Suppose an economist were interested in estimating P (yx | x′), an important L3-quantity
called the effect of the treatment on the treated, or ETT (Heckman & Robb Jr., 1985; 1986). One
approach to computing such quantities is through identification (Pearl, 2000, §3.2.4): leveraging
causal knowledge about the environment, typically a causal graph or parametric assumptions, to
infer the higher-layer quantity using lower-layer data. This approach fails when the quantity is
nonidentifiable, e.g. ETT in the general setting (Shpitser & Pearl, 2009; Correa et al., 2021).

However, another approach uses physical experimentation to attempt to directly draw samples from
the relevant distribution, P (Yx, X) in the case of ETT, and then uses statistical methods to estimate
P (Yx = y,X = x′). This approach is only possible if there is some sequence of physical actions
by which an agent can measure these random variables simultaneously for a single unit. It is
generally believed to be feasible to draw samples only from L1- and L2-distributions, the latter by
interventions like randomized controlled trials (RCT), à la Fisher (Fisher, 1935), and the former by
simply observing the natural behaviour of the system. L3-distributions like P (Yx, X) are deemed
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non-realizable in general, as the potential response Yx and natural decision X belong to different
”worlds”. Once a unit naturally adopts decision X = x′, Yx cannot be evaluated in the do(x) regime
for the same unit.1 However, Bareinboim, Forney & Pearl have shown it is feasible to draw samples
from the ETT distribution P (Yx, X) through a counterfactual randomization procedure (Bareinboim
et al., 2015; Forney et al., 2017). This leaves open the possibility that other L3-distributions, say
perhaps P (Yx, X, Y ), are also realizable through clever experimental setups, allowing one to estimate
important quantities like the probability of sufficiency, P (yx | y′, x′) (Pearl, 1999).

This brings us to the central question motivating this work: from which L3-distributions is it possible
to draw samples given fundamental physical constraints like the inability to travel back in time and
subject the original unit to a different experimental condition? We resolve this open question with a
rigorous formal treatment of the realizability of an L3-distribution (Def. 3.4).

Our main contributions in this work are as follows:

• In Sec. 2 we introduce a physical procedure called counterfactual randomization (Def. 2.3) by
which an agent can gather counterfactual data, subsuming previous similar notions.

• In Sec. 3 we develop the CTF-REALIZE algorithm (Algo. 1) to determine whether an L3-
distribution is physically realizable. We prove the algorithm is complete (Thm. 3.5), and derive
important corollaries characterizing realizable distributions (Cors. 3.7,3.8). For instance, we show
that our main result generalizes an influential notion in the causal inference literature, known as
the fundamental problem of causal inference (Holland, 1986).

• In Sec. 4 we discuss important practical implications of counterfactual realizability. The tradi-
tional route of computing L3-quantities through identification often fails. Our work suggests
opportunities for novel experiment-design ideas to directly estimate these quantities, as illustrated
through Examples 1,2 and 3. More concretely,

– In Sec. 4.1, we describe an application in causal fairness, where the naive approach of
constraining a classifier using an interventional (L2) fairness metric fails to prevent disparities
in outcomes across groups, but where a counterfactual (L3) approach works.

– In Sec. 4.2, we show how counterfactual randomization can be used to improve RL algo-
rithms. The baseline approach in a multi-arm bandit setting is to use allocation procedures
(e.g., UCB, EXP3, Thompson Sampling) to discover which arm x optimizes the expected
outcome E[Y ; do(x)], which is an interventional (L2) strategy (Sutton & Barto, 1998; Latti-
more & Szepesvári, 2020). It turns out there are provably superior strategies (w.r.t expected
outcome) based on directly optimizing counterfactual (L3) objectives, as we demonstrate in
Example 3. We prove optimality of our proposed strategy in a bandit setting with a generic
causal template (Thm. 4.2, Cor. 4.3 in Raghavan & Bareinboim (2025)).

Proofs and experiment details are in the full technical report (Raghavan & Bareinboim, 2025).

Preliminaries. We denote variables by capital letters, X , and values by small letters, x. Bold
letters, X, are sets of variables and x sets of values. P (x) is shorthand for P (X = x). 1[.] is the
indicator function. We use Structural Causal Models (SCM) to describe the generative process
for a system of interest (Bareinboim et al., 2022, Def. 1)(Pearl, 2000). An SCM M is a tuple
⟨V,U,F , P (u)⟩. V is the set of observable variables. U is the set of unobservable variables
exogenous to the system, distributed according to PM(U). F = {fV } is a set of functions s.t.
each fV causally generates the value of V ∈ V as V ← fV (UV ,PaV ), where UV ⊆ U and
PaV ∈ V \ V . EachM induces a causal diagram G (Bareinboim et al., 2022, Def. 13), which
is a graph containing a vertex for each V ∈ V, a directed edge from each node in PaV to V ,
and a bidirected edge between V, V ′ if UV ,UV ′ are not independent. Given a graph G, GXW is
the result of removing edges coming into variables in X, and edges coming out of W. We use
standard terminology like parents, descendants of a node (see App. A). Our treatment is limited to
recursive SCMs, which implies acyclic diagrams, with finite discrete domains over V. The do(x)
operator indexes a sub-modelMx where the functions generating variables X are replaced with
constant values x. A variable Y ̸∈ X evaluated in this regime is called a potential response, denoted

1E.g., ”The problem with counterfactuals like [P (Yx | x′)] is [that] . . . we simply cannot perform an
experiment where the same person is both given and not given treatment.” (Shpitser & Pearl, 2007) Also,
”By definition, one can never observe [counterfactuals], nor assess empirically the validity of any modeling
assumptions made about them...” (Dawid, 2000)
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Yx. (W⋆ = w) denotes an arbitrary counterfactual event, e.g. (Yx = y ∧ Yx′ = y′ ∧ X = x′′).
The probability of such an event is given by the L3-valuation (Bareinboim et al., 2022, Def. 7):

PM(W⋆ = w) =
∑

u

(∏
Wt∈W⋆

1[Wt(u) = w]

)
PM(u), with w taken from w.

2 DATA-COLLECTION PROCEDURES

In this section, we define a procedure, counterfactual randomization, that extends the scope of
traditional Fisherian experimentation (discussed below). Consider a system of interest modeled by
unknown SCMM. Interventions and counterfactual events are typically defined in terms of symbolic
operations onM. To conceptually separate this from the physical constraints experienced by an
agent (natural or artificial), we define the following physical actions that an agent can perform in the
system. These are simply the physical counterparts to symbolic procedures.

We call each discrete episode of the system’s behaviour a unit. Examples of units are patients in a
clinical trial, neighbourhoods in a social science experiment, rounds played on a slot machine etc.
We index units w.l.o.g. by i = 1, 2, 3..., which constitute a target population in the system.

Definition 2.1 (Physical actions). (1) SELECT(i): randomly choosing, without replacement, a unit i
from the target population, to observe in the system; (2) READ(V )(i): measuring the realized feature
V (i) of unit i, produced by a causal mechanism fV ∈ F operating on i; (3) RAND(X)(i): erasing
and replacing i’s natural mechanism fX for a decision variable X with an enforced value drawn from
a randomizing device having support over Domain(X). ■

READ(V )(i) = v and RAND(X)(i) = x are also overloaded to refer to the values read and enforced,
respectively. RAND(X)(i) is the standard Fisherian randomization of a decision variable X , corre-
sponding to the symbolic procedure of a stochastic intervention on X (Correa & Bareinboim, 2020).2

As RAND(X)(i) erases the unit i’s natural decision, READ(X)(i) will yield the value randomly
assigned to unit i. The discovery of this procedure marked an important achievement in the history of
science and experiment-design (Fisher, 1925; 1935). Since the use of a randomizing device eliminates
by design any confounding between the assigned decision and the unit’s latent attributes U(i), it
allows researchers to estimate causal effects.

X Y

X
x

Y

Figure 1: (Top) Causal dia-
gram with decision variable
X; (Bottom) Procedure of
randomizing the actual de-
cision without erasing the
unit’s natural decision.

It is evident that the actions in Def. 2.1 are sufficient for an agent to
physically draw samples from any L1- or L2-distribution, as discussed
in App. C.1. Until recently, it was generally presumed these were
the only physical actions possible on units in a system. However, we
discuss some important extensions of experimental capabilities next.

Counterfactual data-collection procedures. In an early work from
the causal reinforcement learning literature, Bareinboim, Forney &
Pearl describe an experimental setting in which it is possible to both
randomize a unit’s actual decision, and also record the natural decision
the unit would have normally taken (Bareinboim et al., 2015; Forney
et al., 2017). Subsequently, this procedure has been used to establish
benchmarks in counterfactual decision making (Zhang & Bareinboim, 2022). These settings involve
an agent introspecting to gauge their natural choice, or otherwise revealing their natural choice by
some indication, e.g. physical gestures prior to decision-time. Importantly, this form of randomization
does not erase the unit’s natural choice of decision variable X , as schematically illustrated in Fig. 1.

Building on the idea, we formalize this into a more general extension of the agent’s capabilities: the
ability to intervene on a variable X’s value as perceived by its causal children. To illustrate this,
consider the L3-quantity known as natural direct effect, or NDE, which is used in mediation analysis
to measure the effect of X on Y via a ”direct” path, as opposed to an ”indirect” path via a mediator
Z (Pearl, 2001) – highly relevant in several fields, as discussed in Sec. 1. The NDE is generally
considered as identifiable from experimental data only under certain conditions (Pearl, 2001; Correa
et al., 2021). The following example details an experiment design where it is possible to compute the
NDE even when these identification conditions are not met, by randomizing the perception of X .

2If the device used for enforcing the value of X is a constant function, this action simply becomes WRITE(X :

x)(i), corresponding to the atomic intervention do(x). See Preliminaries in Sec. 1.
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Example 1 (Mediation analysis). A computer vision company’s tool is being evaluated for an
automated speeding ticket system that uses footage from traffic cameras. But the government’s
audit team has a concern: it is possible the model is trained on footage with a strong correlation
between the color of the car and speeding (perhaps due to color preference of different socioeconomic
neighbourhoods), and unfairly penalizes certain car colors.

This amounts to a hypothesis that X (car’s color) affects Y (AI decision to issue a ticket) via a
direct path as opposed to the indirect path via Z (speeding). The indirect path describes the causal
effects of, say, how pedestrians and other drivers react to a red car and affect its speeding. This
hypothesis is true iff NDE is measured to be non-0, where NDE is defined as the following expression:
NDEx,x′(y) = P (yx′Zx

) − P (yx) (Pearl, 2001). The second term, P (yx), can be estimated from
a Fisherian randomization of X (say, an experiment recruiting drivers and assigning them random
cars). Inconveniently, the first term, P (yx′Zx

), is nonidentifiable for Fig. 2(a), even using RCT data.
So it is unclear how to make progress with this hypothesis test.

X
W

Z

Y

X

Z

Y
x

Figure 2: (a) ”Expanded” dia-
gram for Example 1, where W
is counterfactual mediator for
X; (b) Randomizing the value
of X as perceived by Y .

However, the audit team recognizes there exists a special mediator,
viz. the features W in the video which reveal the car’s color to the
model (say, RGB values of pixels in the video frames). They use
standard video-editing tools to randomly swap the color of the car in
the footage. By randomly assigning a particular car W ← red, they
are able to affect the mechanism fY ’s perception of X:

P (YW=red | X = blue) est. from L2 data (1)
=P (YW=red,Z | X = blue) Z : natural value (2)
=P (YW=red,ZX=blue | X = blue) consistency property (3)
=P (YX=red,ZX=blue | X = blue) Def. 2.2, X ≡W (4)
=P (YX=red,ZX=blue) d-separation (5)

Eq. 4 is justified because W controls Y ’s perception of X given a
fixed z (formalized in Lemma E.4 in the full technical report here).
Thus, they are able to directly sample from the L3-distribution P (Yx′Zx

, X) via a physical procedure,
and use identification rules to obtain P (yx′Zx

). Using the formula for NDE, they can evaluate whether
a car’s color has a direct effect on the odds of getting a speeding ticket. ■

Here, one is able to randomize X as perceived by one of its children, by leveraging the variable
W (RGB values) that fully encodes information about X (color) and mediates its effect on Y . We
capture this intuition with the following (informal) definition.
Definition 2.2 (Counterfactual mediator (informal)). We call W a counterfactual mediator of X
w.r.t Y ∈ Ch(X) if the value of X can be retrieved from W by the mechanism generating Y . ■

Other examples of interventions on perceived attributes via counterfactual mediators include changing
details on a job application (name, pronouns, keywords) to simulate a perceived alternate demographic
identity (Bertrand & Mullainathan, 2003), or editing specific portions of text input to a language
model (Feder et al., 2022). Randomizing perception has been discussed in Pearl et al. (2016, §4.4.4).
For a detailed discussion of the causal semantics of intervening on perceptions, and the related
literature, see (Plecko & Bareinboim, 2024, App. D.1). We also provide a rigorous treatment in App.
E of the full technical report, including a formal Def. E.2 of a counterfactual mediator.

This important extension to experimental capabilities is captured in the following definition of a new
physical action that an agent might be able to perform in an environment.
Definition 2.3 (Counterfactual (ctf-) randomization). CTF-RAND(X → C)(i): fixing the value of X
as an input to the mechanisms generating C ⊆ Ch(X)G using a randomizing device having support
over Domain(X), for unit i, given causal diagram G. ■

The key differences between the Fisherian RAND(X)(i) and CTF-RAND(X → C)(i) are (1)
CTF-RAND does not erase the unit i’s natural decision X(i); and (2) while RAND affects all chil-
dren of X , CTF-RAND does not affect Ch(X) \C. CTF-RAND can only be enacted under certain
structural conditions, viz., either in environments which permit the measurement of a unit’s natural
decision while simultaneously randomizing the actual decision (Bareinboim et al., 2015), or where
counterfactual mediators can be used to alter X as perceived by a subset of children. Whether the
agent is indeed able to perform this action thus depends on the specific experimental setting.
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Note: Def. 2.3 implies that it is possible to physically perform multiple randomizations involving
the same variable X on a single unit i, with each intervention affecting a different subset of children.
Further, CTF-RAND may only be performed w.r.t a graphical child variable; it is not possible to
bypass a child and directly affect a descendant’s perception of X .

3 COUNTERFACTUAL REALIZABILITY

Given the possibility of performing ctf-randomization (Def. 2.3), we are interested in knowing
which L3-distributions can be accessed directly by experimentation. In this section, we discuss the
constraints imposed by nature on an agent. We then formally define realizability and develop a
complete algorithm to determine whether an L3-distribution is realizable.

The most basic constraints experienced by the agent (natural or artificial) are physical. Each mecha-
nism fV ∈ F represents some physical process that transforms a unit i according to the laws of nature.
For instance, taking a drug, X , produces a side effect in the patient, Y , by a biochemical reaction
fY (X,UY ), which depends on the drug and the patient’s latent health condition, UY . Once patient i
has been subjected to mechanism fY under X = x, there appears to be no way to go back in time and
subject the same patient to mechanism fY under X = x′. Even if technologically feasible to reverse
the process (e.g., by taking an antidote to the drug), the latent factors U = u might have changed
after the experiment (e.g., the patient could have developed tolerance to the drug). Repeating the
experiment on this patient is tantamount to testing a new unit with unknown latent features U = u′.3
This observation is made more formal through the following assumption.
Assumption 3.1 (Fundamental constraint of experimentation (FCE)). A unit i in the target population
can physically undergo a causal mechanism fV ∈ F at most once. ■

Remark 3.2. The FCE assumption entails that a unit i can only be submitted to a particular mechanism
fV (PaV ,UV ) under a single set of experimental conditions, received as input to fV . By implication,
the physical actions in Defs. 2.1, 2.3 can only be performed at most once per unit i. ■

Once unit i has been subjected to fV , it is not possible to re-run fV with differently fixed inputs.
READ(V )(i) thus only yields one value for i. Although ctf-randomization permits multiple interven-
tions involving the same variable X , each such intervention can only be performed once, since it
impacts different child mechanisms that can each only occur once for unit i. We also assume that the
agent can only perform the physical actions in Defs. 2.1, 2.3, up to isomorphism.
Definition 3.3 (I.i.d sample). Given an L3-distribution Q = P (W⋆) and a sequence of physical
actions A(i) performed on unit i in an environment modeled by SCMM, producing a vector of
realized values W(i)

⋆ = w for the variables in W⋆, the vector is said to be an i.i.d sample from Q if
PC(W

(i)
⋆ = w | A(i)) = PM(W⋆ = w),∀w, where PC is the probability measure over the beliefs

of the acting agent C, and the l.h.s is the probability of physical actions A(i) producing the vector w
when performed on some unit i. ■

Definition 3.4 (Realizability). Given a causal diagram G and the set of physical actions A, an
L3-distribution P (W⋆) is realizable given A and G iff there exists a sequence of actions A from
A by which an agent can draw an i.i.d sample (Def. 3.3) from PM(W⋆), for anyM∈M(G), the
class of SCMs compatible with G. ■

We emphasize the distinction between realizability and identifiability. Identifiability (Pearl, 2000,
Def. 3.2.3) from G states that a distribution (say, P (v; do(x))) can be uniquely computed from the
available data (say, P (v)) for any SCM compatible with the assumptions in G. Realizability of a
distribution states that it is physically possible for an agent to actually gather data samples according
to this distribution.

We next develop an algorithm to decide whether a distribution is realizable. As an intuition pump,
suppose that an agent is able to perform CTF-RAND(V → C),∀V,C ∈ Ch(V ), w.r.t an input causal
diagram, and wants to obtain samples from P (Zx,Wt). Consider the diagram G2 in Fig. 3. By
performing CTF-RAND(T →W ) and CTF-RAND(X → Z), the distribution is realizable. However,
suppose the input diagram is G1. A necessary condition to measure Zx for a unit is for mechanism fA

3In the philosophy of science literature, similar ideas have been discussed under the topic of the temporal
asymmetry of causation (Reichenbach, 1956, §III-IV).
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Algorithm 1 CTF-REALIZE

1: Input: L3-distribution Q = P (W⋆); causal
diagram G; action set A

2: Output: I.i.d sample W
(i)
⋆ from Q; FAIL if

Q is not realizable given G,A
3: Fix a topological ordering Top(G)
4: SELECT(i) for a new unit i
5: for V in order Top(G) do
6: INTV ← ∅ {Interventions for V }
7: OUTPUTV ← ∅ {Index in output vector}
8: for each term Wt in expression W⋆ do
9: if V ∈ An(W )GT

and V ̸= W then
10: Call COMPATIBLE(V,Wt) Alg. 2
11: end if
12: if V = W then
13: Add {Wt} to OUTPUTV

14: end if
15: end for

16: for each {action : tag} ∈ INTV do
17: Perform the randomization on unit i
18: If the random-generated value ̸= tag,

discard the unit and return to Line 4
19: end for
20: for each Wt ∈ OUTPUTV do
21: if {RAND(V ) : .} ∈ INTV then
22: Return FAIL
23: else
24: Perform READ(V )(i) = v′

25: Assign v′ to each index W
(i)
t in out-

put vector W(i)
⋆ = w

26: end if
27: end for

28: end for

29: Return i.i.d sample W
(i)
⋆ = w

to receive the natural value of T , illustrated in green. While a necessary condition to simultaneously
measure Wt is for fW to receive At, which in turn requires fA to receive a fixed t, shown in red. This
conflict in necessary conditions renders the query non-realizable.4

T

t nat.

A

X

W Z

T

t nat.

X

W Z

Figure 3: Testing realizability of
P (Zx,Wt) for G1 (left) and G2 (right).
G1 yields conflicting requirements.

This ”edge-coloring” intuition is formalized in Algo. 1.
The algorithm CTF-REALIZE takes as input an L3-
distribution P (W⋆), a graph G, and a set of physical ac-
tions A the agent is able to perform in the environment
(viz., the RAND and CTF-RAND actions which are possi-
ble in the environment). It returns an i.i.d sample if the
distribution is realizable, and FAIL otherwise.

The algorithm works as follows (a more detailed walk-
through is presented in App. C.2 of the full technical
report): going over each node V in topological order, the
inner loops gather the necessary and sufficient conditions
needed w.r.t V for realizing each Wt in the input query W⋆. If there is a conflict in the necessary
conditions for evaluating two terms (as we saw for P (Zx,Wt) in Fig. 3, G1), the query is non-
realizable. The algorithm is fully general and does not make assumptions about the ability to perform
any particular interventions. If the agent cannot perform any counterfactual randomization, the
algorithm returns FAIL for non-L2 queries. If the agent cannot perform any interventions at all, the
algorithm returns FAIL for non-L1 queries (we assume the ability to READ all variables). Details
about the time and space complexity of Algo. 1 are provided in App. C.3 of the technical report.
Theorem 3.5 (Correctness and Completeness). An L3-distribution Q = P (W⋆) is realizable given
action set A and causal diagram G iff the algorithm CTF-REALIZE(Q,G,A) returns a sample. ■

A further question we may ask is which L3-distributions are realizable if we assume maximum
experimental capabilities, notably, the ability to perform separate ctf-randomization for each child of
each variable. Given a causal diagram G, we define the maximal feasible action set A†(G) as the set
containing all of the following actions: SELECT(i), READ(V )(i) ,∀V , and CTF-RAND(X → C)(i)

,∀X and C ∈ Ch(X). A†(G) thus gives the agent the most granular interventional capabilities.
Definition 3.6 (Ancestors of a counterfactual (Correa et al., 2021)). Given a causal diagram G and a
potential response Yx, the set of (counterfactual) ancestors of Yx, denoted An(Yx), consists of each

4To be clear, the input to the algorithm is a graph and an accurate set of actions the agent can perform in
the environment. If the graph is per G1 in Fig. 3, then CTF-RAND(T → Z) is not possible in this environment.
Marginalizing out A and providing graph G2 as input does not help.
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P (Y )
P (X,Y )

P (Y ; do(x))

P (X,Y ; do(z))

P (Yx, X)

Cor. 3.7: An(W⋆) has
same variable twice

P (Yx, X, Y )

P (U)

Layer 1
(realizable)

P (V): Lem. C.1

Layer 2
(realizable)

P (V; do(x)): Lem. C.3

Layer 3
(partially realizable)

SCM
(unknown)

Figure 4: Pearl Causal Hierarchy (PCH) induced by an unknown SCMM. An L3-distribution is
realizable given a graph G and the maximal feasible action set A†(G) iff the ancestor set An(W⋆)
does not contain the same variable under different regimes.

Wz s.t. W ∈ An(Y )GX
, and z = x ∩An(W )GX

. For a set W⋆, An(W⋆) is defined to be the union
of the ancestors of each potential response in the set. ■

Corollary 3.7. An L3-distribution Q = P (W⋆) is realizable given causal diagram G and action
set A†(G) iff the ancestor set An(W⋆) does not contain a pair of potential responses Wt,Ws of the
same variable W under different regimes. ■

For instance, if W⋆ = {Zx,Wt} w.r.t graph G1 in Fig. 3, then An(W⋆) = {Zx, A, T,Wt, At},
which contains both A,At. Thus, P (W⋆) is not realizable even with maximal experimentation
capabilities. In App. C.4 of the technical report, we provide further examples of using the CTF-
REALIZE algorithm, and the graphical criterion, to demonstrate the realizability of the ETT
distribution P (Yx, X), the non-realizability of the probability of sufficiency distribution P (Yx, X, Y ).

We believe this is an important contribution to causal inference. Cor. 3.7 provides a graphical criterion
to delineate how far up the PCH an agent can go via experimental methods, in principle. Often,
counterfactuals have been criticized as being hypothetical, untestable, or unscientific assumptions.
Our analysis counters this claim, as summarized in Fig. 4.

Corollary 3.8 (Fundamental problem of causal inference (FPCI) (Holland, 1986)). The distribution
Q = P (Yx, Yx′) is not realizable given maximal feasible action set A†(G), for any causal diagram
G, and any variables X,Y ∈ Desc(X). ■

The FPCI is an influential notion in the literature, and is often taken as a primitive, or in an axiomatic
fashion. We show that it is rather a specific consequence of the more general FCE assumption 3.1,
and follows from Thm. 3.5 and Cor. 3.7. By itself, the FPCI does not translate to an operational
criterion for determining which L3-distributions are realizable (Def. 3.4). For instance, it does not
clarify that a distribution with potential responses under conflicting regimes like P (Yx, Zx′) may
indeed be realizable via counterfactual randomization, as we show in Example 2. It also does not tell
us that P (Zx,Wt) may be realizable given causal diagram G2 in Fig. 3, but not realizable given G1.

4 APPLICATIONS: COUNTERFACTUAL DECISION-MAKING AND FAIRNESS

Next, we highlight the practical relevance of our results with some concrete use-cases. We already
discussed in Example 1 how realizability can be used to design experiments for performing mediation
analysis of direct and indirect effects, an important task in several fields. We now discuss applications
in causal fairness analysis and causal reinforcement learning (RL). Our goal is to underscore
that the standard/baseline approaches in these areas, even among approaches that incorporate coun-
terfactual reasoning, typically use observational (L1) or interventional (L2) data only, whereas a
counterfactual (L3) data-collection approach can lead to demonstrably better results. We include in
App. F of the full technical report the specification of SCMs used and algorithms implemented.

4.1 CAUSAL FAIRNESS - USING COUNTERFACTUAL DATA FOR FAIRER DECISIONS

Causal fairness analysis is a burgeoning field and a full survey is beyond the scope of this paper
(see, e.g., Plecko & Bareinboim (2024) for a review of related works). We limit our discussion to an
example where counterfactual realizability is directly relevant.
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A common concern is that models trained to make automated decisions often reveal problematic
biases (Angwin et al., 2016; Kodiyan, 2019, e.g.). The causal approach to address this is typically
to constrain a classifier to obey some causally-sensitive fairness measure, µ (Plecko & Bareinboim,
2024, Def. 3.3). Some measures in the literature involve L3-quantities, and thus face the familiar
issue of nonidentifiability (Kusner et al., 2017; Imai & Jiang, 2023). Other approaches acknowledge
this limitation and try to construct interventional fairness measures that solely use L2-quantities
(Salimi et al., 2019). We present next an example where relying only on L2-data can misleadingly
approve a classifier as fair, but where a realizable L3 fairness measure actually ensures fairness. This
scenario is inspired by a classic experiment in labor economics (Bertrand & Mullainathan, 2003).

Example 2 (Causal fairness). A college is developing an automated system to screen candidates
in the first round of college applications, receiving as input a standardized CV per candidate. The
system contains two models: model 1 outputs Y and model 2 outputs Z, which are binary decisions
of whether the applicant cleared the first review stage for admission and for financial scholarship,
respectively. The two models are respectively trained using data from previous years where an
admissions team and a separate scholarship team reviewed applications manually. The college wants
to ensure fairness w.r.t X , a candidate’s race (a binary variable, for simplicity). In particular, they
want to ensure equitable financial access to education for all qualified candidates: a candidate of race
X = 1 who cleared the admissions screening (Y = 1) but was rejected for financial aid (Z = 0)
should still receive Z = 0 had they been of race X = 0. The causal diagram is in Fig. 5(a), where
the models’ decisions Y, Z might reflect the unconscious race bias of the two committees in previous
years (including possibly shared biases, represented by the latent confounder).

Figure 5: (a) Causal diagram
for Example 2; (b) P (Yx, Zx′)
is realizable using the interven-
tions CTF-RAND(X → Y ) and
CTF-RAND(X → Z); (c) His-
togram of 1000 classifiers trained
on L2 (blue) and L3 (orange) fair-
ness measures. L2 classifiers show
statisically significant discrimina-
tion (µctf > 0.05).

The L3 fairness measure they ought to minimize is thus

µctf = |P (Yx1
= 1, Zx1

= 0)− P (Yx1
= 1, Zx0

= 0)| (6)

But the second term P (yx, z
′
x′) is nonidentifiable from the

causal diagram in 5(a). So the college instead uses the following
L2 measures, as an approximation for the fairness condition:

µint1 =|P (Y = 1; do(x1)).P (Z = 0; do(x1)) (7)
− P (Y = 1; do(x1)).P (Z = 0; do(x0))|

µint2 =|P (Y = 1, Z = 0; do(x1)) (8)
− P (Y = 1, Z = 0; do(x0))|

They train the models, adding µint1 + µint2 as a penalty in the
objective. µint1, µint2 are estimated using a holdout set of fake
CVs, with the intervention do(x) being enacted by randomly
choosing an applicant name from an equivalence class which
stereotypically indicates one unique race group X = x, e.g.
names like Lakisha and Jamal for Blacks, or last names like
Nguyen or Xi for Asians (cf. Bertrand & Mullainathan (2003)).
Since the holdout set’s CV body is independent of X , any
effect of X on Y and Z is solely via the perception of race
from the candidate name. We show in 5(c) simulations of such
an optimization. In blue is the distribution of the true score
µctf , when the models are trained using µint1, µint2. Out of
1000 simulations of classifiers, we see µctf > 5% for nearly
half the L2 simulations, indicating statistically significant discrimination roughly 50% the time.

However, the distribution P (Yx, Zx′) is indeed realizable (Def. 3.4) via the interventions
CTF-RAND(X → Y ), CTF-RAND(X → Z). The data science team notices that they can sepa-
rately and simultaneously randomize the candidate name as an input to the respective models, and
enact these interventions, as shown in 5(b). Thus, they are able to directly use the counterfactual
measure µctf as a fairness constraint in training. Results from 1000 simulations show that the
classifiers trained directly using µctf (shown in orange) nearly always meet the fairness requirement.

Details of the implementation are in App. F.2 here. Note: as in the original experiment, this example
requires the structural assumption of race being revealed at the screening stage only by candidate
name, which may be more defensible in highly standardized and controlled application processes. ■
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4.2 CAUSAL RL - COUNTERFACTUAL POLICIES FOR OPTIMAL DECISION-MAKING

Table 1: Performance of differ-
ent strategies in Example 3.

Strategy E[Y ]

Behavioral pol-
icy (L1)

0.65

Naive randomiza-
tion (L2)

0.7

ETT baseline
strategy (L3)

0.75

Optimal L3 strat-
egy (this work)

0.80

Consider a multi-arm bandit problem in which X represents the
choice of bandit arm and Y the outcome. The default online
learning approach is for the agent to adopt an algorithm like
EXP3, UCB or Thompson Sampling to converge to some arm
x⋆ := argmaxx E[Y ; do(x)] (Lattimore & Szepesvári, 2020; Sutton
& Barto, 1998). Even in methods that explicitly incorporate causal
knowledge, the common approach is to use a combination of offline
(L1) and online (L2) data to converge more efficiently to the L2 opti-
mization target argmaxx E[Y ; do(x)] (Zhang & Bareinboim, 2017,
e.g.). It was already shown in (Bareinboim et al., 2015; Forney et al.,
2017) that it is possible to perform better by deploying a counterfac-
tual strategy based on sampling each unit’s natural choice X = x′

and randomizing actual choice in the same round, thus seeking to
converge to argmaxx E[Yx | x′],∀x′, as we discussed in Sec. 2. We
call this the ETT baseline strategy, as it relies on drawing samples
from the L3 ETT distribution, P (Yx, X), mentioned in Sec. 1.

Figure 6: (a) Causal diagram for
Example 3; (b) P (Yx, X,Dx′′)
is realizable using the interven-
tions CTF-RAND(X → Y ) and
CTF-RAND(X → D); (c) Cumulative
Regret (CR) for L1 strategy (blue)
and Thompson Sampling algorithms
implementing naive L2 (yellow, green),
ETT baseline (red), and optimal L3

strategy (purple); (d) Optimal Arm
Probability (OAP) for all algorithms.

We improve on this baseline by showing how an agent
can leverage the realizability (Def. 3.4) of more nuanced
counterfactuals like P (Yx, X,Dx′′) to construct superior
counterfactual strategies. The following scenario involves
an agent faced with adversarial latent confounding.

Example 3 (Counterfactual bandit policies). Consider
a user of a social media platform which uses surveillance
and predictions to increase user engagement through ad-
dictive notifications and recommendations (Zuboff, 2018).
The user chooses every evening whether to use the plat-
form via desktop (X = 0) or mobile (X = 1). Y is
a binary indicator of whether she stays within her self-
determined social media usage limit per day. She also
notices that she receives ads when she logs in each evening
as D (0: streaming service, 1: food delivery ads). The
usage type X affects D,Y , as shown in Fig. 6(a).

On average, the user experiences E[Y ] = 0.65 from the
observational (L1) policy of following her natural incli-
nation each day. She suspects that the company could
be tracking and exploiting her latent preferences, so she
decides to randomize her daily choice and pick the best
”arm”. Sure enough, this naive L2 strategy breaks the adversarial confounding, and incurs a bet-
ter avg. performance of E[Y ; do(x)] = 0.7,∀x. She then decides to test the ETT-based strategy
(L3) described earlier, by recording what she naturally feels like doing each day (X = x′), and
subsequently randomizing her actual choice on the same day to optimize E[Yx | x′], getting an
avg. performance of 0.75. However, at this point, she notices that she can do even better. The
L3-distribution P (Yx, X,Dx′′) is realizable (Def. 3.4), since she can perform another counterfactual
randomization, by sampling her natural choice (X = x′), randomly logging in to just see what ads
she gets (Dx′′ = d), and again randomizing how she actually uses the platform that day to get Yx.
This strategy seeks an optimal x⋆ = argmaxx E[Yx | x′, dx′′ ], which performs best as shown in
Table 1. Details of the SCM, latent confounders, and the optimal L3-strategy are in App. F.3 here.

Simulations in the online setting corroborate this finding. Fig. 6(c,d) shows the cumulative regret
(CR) and optimal arm probability (OAP) over 2000 iterations averaged over 200 epochs (CI=95%).
We adapt Thompson Sampling to implement the strategies in Table 1. Details of implementation are
in App. F.3.1 here. The optimal L3 strategy (purple) performs best, improving on the performance of
the baseline ETT-based strategy (red). Naive randomizations, the standard L2 bandit strategy, are
shown in yellow and green. All other algorithms fail to improve in OAP after 2000 iterations. ■
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We make two remarks. First, the optimal counterfactual strategy is not simply a contextual Thompson
Sampling, where X,Dx′′ are used ”merely” as extra context variables per round; indeed, treating this
merely as a contextual bandit problem is one of the naive L2-strategies that we test (green plot in Fig.
6(c-d)), which ignores the counterfactual relationship between these variables and incurs dramatically
higher regret, as we discuss in App. F.3.1 here.

Second, an interesting follow-up is whether we can guarantee that our strategy based on maximizing
E[Yx | x′, dx′′ ] is optimal in this problem. Perhaps there are more refined L3-distributions like
P (Yx, X,Dx, Dx′′) etc. that could yield better algorithms? It turns that this is indeed optimal, since
most other L3-distributions are not realizable (Def. 3.4). We prove this claim for all bandit problems
that fit a generic template, in Thm. 4.2 of the technical report. Thereby, we avoid having to conduct
an intractable search over the space of all possible L3-strategies, trying to assess their realizability.

5 DISCUSSION

Finally, we discuss some important implications, future directions, and limitations of our work.

Identification and bounding. Much work has been done in the area of L3 identification and estima-
tion (Shpitser, 2008; Correa et al., 2021; Geneletti & Dawid, 2011). A natural extension to our work is
to investigate the relationship between realizability and identification: which additional L3-quantities
now become identifiable if the environment permits even some counterfactual randomization? This
warrants an update to existing identification algorithms to allow (some) L3-data as input. Another
fascinating research question involves ”partial identification”, where an input query is tightly bounded
within a range that can be computed from available data (Zhang et al., 2022): how would the new
L3-data further tighten the bounds for nonidentifiable L3-quantities?

Experiment design. One of the goals of this paper is to instigate new experiment design ideas that
leverage ctf-randomization (Def. 2.3) and go beyond the standard RCT methodology, as in Examples
1-2. For instance, the increasingly automated HR pipeline in companies suggests opportunities for
targeted interventions to randomize demographic details in virtual interviews, in standardized aptitude
tests, or in performance-evaluation systems for remote workers, to track fairness metrics.

Causal reinforcement learning (CRL). While counterfactual strategies have been studied in CRL,
the literature currently focuses on ETT-related strategies based on optimizing E[Yx | x′] (Bareinboim
et al., 2015; Forney et al., 2017; Zhang & Bareinboim, 2022)(Richardson & Robins, 2013, §5.1).
We presented an important extension by formalizing ctf-randomization (Def. 2.3) via counterfactual
mediators (Def. 2.2), subsuming the previous approach. An ETT-based approach only allows one
randomization of a variable X , affecting all downstream mechanisms. Our approach recognizes
the possibility of isolating specific causal pathways and randomizing X multiple times per unit,
demonstrably surpassing the ETT baseline in Example 3. We proved in Thm. 4.2 of the technical
report an optimality guarantee for our proposed strategy in bandit problems. Generalizing this to
sequential decision-making settings with arbitrary graphs is an important, non-trivial extension.

Limitations. The first obvious limitation of our framework is that it requires causal knowledge in
the form of a graph (or equivalent). This is a standard assumption, needed to make progress in several
areas of causal machine learning. Subsequent work could accommodate partial knowledge or model
misspecification. Second, it may not always be feasible to perform counterfactual randomization
(Def. 2.3) in a given setting. This is why Algo. 1 and Thm. 3.5 are general and do not assume this
capability a priori. But where it is possible, even in principle, our work pinpoints opportunities for
novel experiment design, as discussed above.

6 CONCLUSION

In this paper, we tackle the open question of which counterfactual distributions are directly accessible
by experimental methods - what we define as the realizability of a distribution. Countering prevalent
belief, we provide a complete algorithm and a graphical criterion for when a counterfactual can indeed
be physically sampled from (Fig. 4). We demonstrate the practical relevance of this new framework
with examples from causal fairness and causal RL, highlighting that ignoring this possibility could
lead to poor outcomes. We believe that switching from an interventional to a counterfactual mindset
could help researchers spot opportunities for counterfactual randomization that permit exciting new
types of experiments, and improved, more personalized decisions.

10

https://causalai.net/r113.pdf
https://causalai.net/r113.pdf
https://causalai.net/r113.pdf
https://causalai.net/r113.pdf


Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This research is supported in part by the NSF, ONR, AFOSR, DoE, Amazon, JP Morgan, and
The Alfred P. Sloan Foundation. We thank Juan D. Correa and the anonymous reviewers for their
thoughtful comments.

REFERENCES

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias:
There’s software used across the country to predict future criminals. And it’s bi-
ased against blacks. 2016. URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
approach. In Advances in Neural Information Processing Systems, pp. 1342–1350, 2015.

Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s Hierarchy and the
foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea Pearl,
pp. 507–556. Association for Computing Machinery, New York, NY, USA, 1st edition, 2022.

Marianne Bertrand and Sendhil Mullainathan. Are Emily and Greg more employable than Lakisha
and Jamal? A field experiment on labor market discrimination. Working Paper 9873, National
Bureau of Economic Research, July 2003. URL http://www.nber.org/papers/w9873.

J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal effect identification and
surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New
York, NY, 2020. AAAI Press.

Juan Correa, Sanghack Lee, and Elias Bareinboim. Nested counterfactual identification from arbitrary
surrogate experiments. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 6856–6867.
Curran Associates, Inc., 2021.

A Philip Dawid. Causal Inference Without Counterfactuals (with Comments and Rejoinder). Journal
of the American Statistical Association, 95(450):407–448, 2000.

Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-
Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E. Roberts, Brandon M.
Stewart, Victor Veitch, and Diyi Yang. Causal inference in natural language processing: Estima-
tion, prediction, interpretation and beyond. Transactions of the Association for Computational
Linguistics, 10:1138–1158, 2022. doi: 10.1162/tacl a 00511. URL https://aclanthology.
org/2022.tacl-1.66.

Ronald A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, 1925.

Ronald A. Fisher. The Design of Experiments. Oliver and Boyd, Edinburgh, 1935.

Andrew Forney, Judea Pearl, and Elias Bareinboim. Counterfactual Data-Fusion for Online Rein-
forcement Learners. In Proceedings of the 34th International Conference on Machine Learning,
2017. ISBN 9781510855144. doi: http://dx.doi.org/10.1037/a0022750.

Sara Geneletti and A. Philip Dawid. Defining and identifying the effect of treatment on the treated.
In Causality in the Sciences. Oxford University Press, 03 2011.

James J. Heckman and Richard Robb Jr. Alternative Methods for Evaluating the Impact of Inter-
ventions. In J J Heckman and B Singer (eds.), Longitudinal Analysis of Labor Market Data.
Cambridge University Press, New York, NY, 1985.

James J. Heckman and Richard Robb Jr. Alternative Methods for Solving the Problem of Selection
Bias in Evaluating the Impact of Treatments on Outcomes. In H. Wainer (ed.), Drawing Inference
From Self Selected Samples, pp. 63–107. Springer-Verlag, New York, NY, 1986.

11

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.nber.org/papers/w9873
https://aclanthology.org/2022.tacl-1.66
https://aclanthology.org/2022.tacl-1.66


Published as a conference paper at ICLR 2025

P W Holland. Statistics and Causal Inference. Journal of the American Statistical Association, 81
(396):945–960, 12 1986.

Duligur Ibeling and Thomas Icard. Probabilistic reasoning across the causal hierarchy. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10170–10177, 2020.

Kosuke Imai and Zhichao Jiang. Principal Fairness for Human and Algorithmic Decision-Making.
Statistical Science, 38(2):317 – 328, 2023.

Akhil Alfons Kodiyan. An overview of ethical issues in using ai systems in hiring with a case study
of amazon’s ai based hiring tool. ResearchGate preprint, pp. 1–19, 11 2019.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
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A GRAPHICAL TERMINOLOGY

Structural Causal Models (SCM) and causal diagrams are described in the preliminaries in Sec. 1.
See (Bareinboim et al., 2022) for full treatment. We use the following graphical kinship nomenclature
w.r.t causal diagram G:

• Parent(s) of V , denoted PaV : the set of variables {V ′} s.t. there is a direct edge V ′ → V
in G. PaV does not include V .

• Children of V , denoted Ch(V ): the set of variables {V ′} s.t. there is a direct edge V → V ′

in G. Ch(V ) does not include V .

• Ancestors of V , denoted An(V ): the set of variables {V ′} s.t. there is a path (possibly
length 0) from V ′ to V consisting only of edges pointing toward V , V ′ → ...→ V . An(V )
is defined to include V .

• Descendants of V , denoted Desc(V ): the set of variables {V ′} s.t. there is a path (possibly
length 0) from V to V ′ consisting only of edges pointing toward V ′, V → ... → V ′.
Desc(V ) is defined to include V .

• Non-descendants of V , denoted NDesc(V ): the set V \Desc(V ). NDesc(V ) does not
include V .

Given a graph G, GXW is the result of removing edges coming into variables in X, and edges coming
out of W.

B SUB-ROUTINE OF CTF-REALIZE ALGORITHM (ALGO. 1)

Algorithm 2 COMPATIBLE (sub-routine)

1: Input: V ∈ V of G; Wt ∈W⋆ of Q
2: for each C ∈ Ch(V ) do
3: if C ∈ An(W ) then
4: if V ∈ T then
5: Let v := value of V in subscript t
6: Find smallest C ∋ C s.t.

CTF-RAND(V → C) ∈ A
7: if {CTF-RAND(V → C) : .} ∈

INTV and its label is not ”v” then
8: Return FAIL
9: else

10: Add {CTF-RAND(V → C) : v}
to INTV , with the label ”v”

11: end if
12: if no such C ∋ C s.t.

CTF-RAND(V → C) ∈ A then
13: if {RAND(V ) : .} ∈ INTV and its

label is not ”v” then
14: Return FAIL
15: else if RAND(V ) ̸∈ A then
16: Return FAIL
17: else
18: Add {RAND(V ) : v} to INTV ,

with the label ”v”
19: end if

20: end if
21: end if
22: if V ̸∈ T then
23: for each C ∋ C s.t.

CTF-RAND(V → C) ∈ A do
24: if {CTF-RAND(V → C) : .} ∈

INTV and its label is not ”Natural”
then

25: Return FAIL
26: else
27: Add {CTF-RAND(V → C) :

Natural} to INTV , with the la-
bel ”Natural”

28: end if
29: end for
30: if {RAND(V ) : .} ∈ INTV and its

label is not ”Natural” then
31: Return FAIL
32: else if RAND(V ) ∈ A then
33: Add {RAND(V ) : Natural} to

INTV , with the label ”Natural”
34: end if
35: end if
36: end if
37: end for

For a detailed walkthrough of the algorithm and sub-routine, refer to Appendix C.2 of the full
technical report here.
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The full technical report also contains detailed examples of applying the algorithm to different graphs
and queries, in its Appendix C.4 (Raghavan & Bareinboim, 2025).

C ASSUMPTIONS AND REALIZABILITY PROOFS

For a summary of all the structural assumptions we make in this paper, and proofs of the results, refer
to Appendix D of the full technical report here.

C.1 REALIZABILITY OF L1- AND L2-DISTRIBUTIONS

It is widely known and acknowledged that it is possible to draw samples fromL1- andL2-distributions:
the former by simply observing a system’s natural behaviour, and the latter by intervening in the
system through interventions like Fisherian randomization.

Still, we find it educational to derive these proofs from first principles. This sub-section is not strictly
needed to follow the main contributions in Secs. 2 and 3.

We define the probability measure PC(.) from the perspective of an exogenous agent (i.e., an agent
external to the system) C’s beliefs about the environment, distinguished by superscript from PM(.),
the true unknown distribution.

Since unit selection is randomized, SELECT(i) yields an unbiased sample of a unit with latent features
distributed according to the target population frequency P (u). I.e., PC(U(i) = u | SELECT(i)) =

PM(u). We also assume that target population size is large enough that SELECT(i) does not
significantly change the distribution of the remaining population.

Further, we assume that the actions READ(V )(i) and RAND(V )(i) do not disrupt any other mechanism
fV ′ for unit i.

Lemma C.1 (Observational sample). An agent C can draw an i.i.d sample distributed according to
the L1 query P (V) associated with an SCMM, by the following actions:

i. SELECT(i)

ii. READ(V)(i) = v ∼ P (V)

Given N i.i.d samples, the consistent unbiased estimate of P (v) is

P̂ (v) :=
1

N

∑
i

∏
v∈v

1[READ(V )(i) = v] (9)

Proof. This follows directly from the definitions of the actions. SELECT(i) chooses a unit at random
from the population. By Remark D.3, PC(U(i) = u | SELECT(i)) = PM(u). For randomly selected
unit i,

PC(READ(V)(i) = v | SELECT(i)) (10)

=
∑
u

PC(U(i) = u | SELECT(i)). (11)

PC(READ(V)(i) = v | U(i) = u, SELECT(i)) Chain rule

=
∑
u

PC(U(i) = u | SELECT(i)).1M[V(u) = v] Def. 2.1(ii) (12)

=
∑
u

PM(u).1M[V(u) = v] Rem. D.3 (13)

= PM(v) Definition (14)
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I.e., this record is an i.i.d. sample from PM(V). Now consider the estimator below.

P̂ (v) :=
1

N

∑
n

∏
v∈v

1
C[READ(V )(i) = v] (15)

=
1

N

∑
n

∑
u

∏
v∈v

1
M[U(i) = u].1M[V (u) = v] (16)

Un-biasedness is established by taking expectation on either side, w.r.t the agent C’s actions (choice
of units to observe):

EC[P̂ (v)] = EC

[
1

N

∑
n

∑
u

∏
v∈v

1
M[U(i) = u].1M[V (u) = v]

]
(17)

=
∑
u

1

N
EC

[∑
n

1
M[U(i) = u]

∏
v∈v

.1M[V (u) = v]

]
Linearity of expectation (18)

=
∑
u

1

N
EC

[∑
n

1
M[U(i) = u]

] ∏
v∈v

1
M[V (u) = v] V (u) constant wrt C (19)

=
∑
u

1

N

[
N.PM(u)

] ∏
v∈v

IM[V (u) = v] Def. 2.1(i), Rem. D.3 (20)

= PM(v) Definition (21)

Consistency is established by the fact that as N (target population size)→∞, and N (sample size)
→∞,

1

N

∑
n

IM[U(i) = u]→ PM(u) (22)

■

Lemma C.2. The L2 distribution of an atomic intervention is equivalent to the L2 distribution of the
corresponding conditional stochastic intervention.

PM(v; do(x)) = PM(v|x;σX) (23)

=
∑
u

1[VσX
(u) = v | XσX

= x]︸ ︷︷ ︸
1⃝

. P (u)︸ ︷︷ ︸
2⃝

(24)

Proof. The step from the r.h.s of Eq. 23 to Eq. 24 is derived as follows: in the submodelMσX
, if we

are given that X has been randomly assigned x, then the remaining variables are deterministically
generated as a function of u and x via their respective equations. The probability mass is collected
over all the u which produce the output v over all these equations.

PM(v|x;σX) =
∑
u

I[VσX
(u) = v | XσX

= x].PM(u) (25)

Notice: if v is incompatible with x, the indicator in the r.h.s evaluates to 0. Next, we prove. Eq. 23.

InMσX, as defined, X is assigned according to an independent random vector. Notate this vector as
XσX

and let the distribution of this vector be PσX
(X), defined by the assignment frequency over the

target population.

MσX is defined such that the target population is split into groups, each assigned (XσX
= x) for

some x. Note, the assignment vector XσX
is independent of the latent features U across the target

population iff each finite group assigned (XσX
= x) has the same distribution of latent features

P (U) as in the overall target population.

The above discussion handles the finite size of the target population. Starting with the r.h.s of Eq. 23,

PM(v|x;σX) =
P (v,x;σX)

P (x;σX)
=

{
P (v;σX)/P (x;σX) if v compatible with x

0 otherwise
(26)
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Evaluating for when v is compatible with x:

P (v;σX)

P (x;σX)
=

P (v;σX)

PσX
(x)

(27)

=

∑
u

(
P (u)

∏
Vi∈V\X P (vi | pai,ui).PσX

(x)

)
PσX

(x)
Truncated factorization product

(28)

=
∑
u

P (u)
∏

Vi∈V\X

P (vi | pai,ui) (29)

= PM(v; do(x)) Truncated factorization product
(30)

Eq. 28 uses the fact that each sub-group assigned (XσX
= x), by independence, has the same

frequency of latent features P (u). ■

Lemma C.3 (Interventional sample). An agent C can draw an i.i.d sample distributed according to
the L2 query P (V; do(x)) associated with an SCMM, by the following actions:

i. SELECT(i)

ii. RAND(X)(i)

iii. If RAND(X)(i) = x, then READ(V)(i) = v ∼ P (V; do(x)), else repeat i-iii.

Given Nx i.i.d samples, the consistent unbiased estimate of Eq. 24 is given by

P̂ (v; do(x)) =

1

Nx

∑
i︸ ︷︷ ︸

2⃝

1[READ(V)(i) = v, RAND(X)(i) = x]︸ ︷︷ ︸
1⃝

, (31)

Proof. The proof steps are similar to the ones used for the Observational i.i.d sample case. Note that
Remark D.3 still hold since even though the agent is conditioning on the value randomly assigned to
a particular unit i, this value is independent of the unit’s latent features U(i). ■
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