
Under review as a conference paper at ICLR 2022

A APPENDIX

B LOCALITY SENSTIVE HASHING

Locality Sensitive Hashing (LSH) is a popular variant of hashing that tends to hash similar objects
to the same buckets. Let us look at an LSH that maps an input to one (or a few locations) out of them
hash buckets. It is well-known that LSH provably provides sub-linear query time and sub-quadratic
space complexity for approximate nearest neighbor search. More specifically, fix 0 < r1 < r2,
where r1 is the threshold for nearby points, and r2 is the threshold for far-away points, i.e. for
x, y ∈ Rd, we say x and y are nearby if |x − y|2 ≤ r1 and they are far-away if |x − y|2 ≥ r2,
where |x|2 is the 2-norm of the vector x. Let c = r2/r1 > 0 denote the distance gap as a ratio. Let
p1 ≤ Pr(h(x) = h(y) : |x−y|2 ≤ r1) and p2 ≥ Pr(h(x) = h(y) : |x−y|2 ≥ r2) denote lower and
upper bounds on the collision probability of nearby points and far-away points, respectively. Define
ρ = log(1/p1)

log(1/p2)
. Then LSH-based nearest neighbor search has a O(nρ) query time and O(n1+ρ)

space complexity for a c approximate nearest neighbor query (Andoni et al., 2015; 2014; Andoni &
Razenshteyn, 2015).

One example LSH function uses random hyperplane based LSH (Charikar, 2002) to map a vector
into a hash bucket, although other types of hashing such could be used as well – for example min-
hash (Broder, 1997) could be used on a set or a tuple object to map that object to a discrete hash
bucket.

C ARCHITECTURE

C.1 SKETCHES REVIEW

Our architecture relies heavily on the properties of the sketches introduced in Ghazi et al. (2019). In
this section we briefly describe some of the key properties of these sketches; the interested reader is
referred to Ghazi et al. (2019); Panigrahy (2019); Wang et al. (2021) for the full details.

A sketch represents any event, an input or an output at a module. It may represent an “object” that
may recursively contain a (unordered)set or a (ordered)tuple of sketches.

Any input or output of a module can be represented by a sketch. For example an input im-
age has a sketch chat can be thought of as a tuple [IMAGE, 〈bit-map-sketch〉]. An output by
an image recognition module that finds a person in the image can be represented as [PERSON,
[〈person-sketch〉, 〈position-in-image-sketch〉]); here IMAGE, PERSON can be thought of as a “la-
bels”. However the sketch may be more complicated like an object for example the 〈person-sketch
〉could in turn be set of such pairs {[NAME,〈name-sketch 〉], [FACIAL-FEATURES,〈facial-sketch
〉], [POSTURE,〈posture-sketch 〉]}. Thus a sketch could be represented as a tree. Further there may
be compound sketches that consist of a set of sketches. For example an image consisting of multiple
people could be a set {〈person-1-sketch 〉, 〈person-2-sketch 〉,..,〈person-k-sketch 〉}.
Sketches can be used to backtrack the chain of modules that produced it: An output sketch may
also recursively point to the input sketch and the modules it came from, e.g. recursive-sketch(output)
= {[OUTPUT-SKETCH,〈output-sketch 〉], [MODULE-ID,〈module-id 〉], [RECURSIVE-INPUT-
SKETCH, 〈recursive-input-sketch 〉]}. By keeping recursive-input-sketch to some depth, we can
find find the entire tree or DAG of modules that produced this output sketch. A method for repre-
senting such structured sketches as a dense vector using subspace embeddings (each object sketch is
embedded into a random subspace for that type of object) is provided in Ghazi et al. (2019). There
is way to sketch the outputs of a modular network so that similar finding lead to similar sketches;
the main idea is that similar input phenomena will cause almost the same set of modules to fire with
similar output embeddings. See (Ghazi et al., 2019, Theorem2).

Types are encoded in subspaces: An object of a particular “type” is represented by a sketch that
embeds it in a specific random subspace that uniquely determines the type. A set of “type, value”
pairs can be sketched by packing each type in a separate subspace by using random matrices (the
actual distribution is more complicated to prove stronger robustness guarantees see (Ghazi et al.,
2019, Theorem 1)).

12

Under review as a conference paper at ICLR 2022

Dense representations of sketches: As described above, an object containing sub-objects of types
T1, T2, T3 can be represented by the set s = {[T1, s1], [T2, s2], [T3, s3]}where s1, s2, s3 are sketches
of the sub-objects. In Ghazi et al. (2019) a method is given for converting this into a dense repre-
sentation r(s), which we summarize here.

A dense representation r(s) of this can be obtained recursively as r(s) = RT1r(s1) +RT2r(s2) +
RT3r(s3) where the R′s are random matrices that depend on the type Ti with output dimension
large enough to recover the sub-sketches. The R is drawn from a distribution given by (I + R′)/2
where R′ has mean 0 (the exact distribution can be found in Ghazi et al. (2019)). This ensures that
r(s) has some similarity to r(s1), r(s2), r(s3). Thus a compound sketch has some “similarity” to
each of its components. A sketch is recursive in the sense that it is a compound sketch of all its
components/subtrees – lower level subtrees get exponentially decreasing weight (see (Ghazi et al.,
2019, Theorem 1)). Any component sketch with high enough weight can be recovered. Further those
with weights below a threshold may be retrieved from buckets in the hash table (see section C.1.1).
Also, from the compound sketch of a large number of sketches the average value of the component-
sketches can be recovered (see Claim 5 in Ghazi et al. (2019)). A tuple [s1, s2, s3] can simply be
thought of as the set {[1, s1], [2, s2], [3, s3]}.
A set of sketches of the same type can be sketched by using a local LSH table. The set of sketches
landing at each bucket is sketched recursively. This gives an array of sketches. The sketch of this
array is the final sketch.

Note if the if the set very large, we will not be able to recover the sketch of each of its members but
only get a “average” or summary of all the sketches – however if a member has high enough relative
weight (see (Ghazi et al., 2019, Section 3.3)) it can be recovered.

C.1.1 STORING LARGE OBJECTS

Large objects such as long strings can be stored as compound-sketch that is sketched recursively
into smaller and smaller sequence of sketches. Memory of a sequence of events can be stored as
sketches in buckets that link to each other that can be retrieved later when it needs to be replayed. A
string of length n can be sent to a CNN that uses patches of size swith stride of s/2, producing 2n/s
patches and their corresponding sketches. These sketches may be stored in a hash table. These 2n/s
patch sketches could further be sketched in the same way till we get a single compound sketch at the
top. This “tree” of sketches can be implicitly stored in a hash table. The final top sketch serves as a
summary of the entire string – it can be used to find substrings that have very high frequency – for
example if a patch occurs a large fraction of times that can be inferred from the top level sketch even
without looking at the rest of the sketches in the tree. The sketch of a large object can implicitly be
used as a pointer to that object.

Programs can also be viewed as strings of instructions or strings of matrices. By using the above
method large programs can be stored and accessed in the hash memory.

C.2 ARCHITECTURE PRINCIPLES

The following generalizes the architecture principles and algorithm 1 to include knowledge graph
edges that keep track of frequent associations (see Appendix G for applications of such associations
and Appendix F for RL applications)

1. Sketches.

• All phenomena (inputs, outputs, commonly co-occurring events, etc) are represented
as sketches.

• There is a function from sketch to context f : S → C that gives a coarse grained
version of the sketch. This is obtained by looking at the fields in the sketch S that are
high level labels and dropping fine details with high variance such as attribute values;
it essentially extracts the “high-level bits” in the sketch S.

2. Hashtable indexed by context that is robust to noise.

• The hash function h : C → [hash-bucket] is “locality sensitive” in the sense that
similar contexts are hashed to the same bucket with high probability.

13

Under review as a conference paper at ICLR 2022

Algorithm 4 Informal presentation of the main execution loop
Input: input sketch T (this sketch may contain a desired output for training)

23 current-sketches← {T} while current-sketches is not empty:
24 current-programs← ∅ foreach sketch S in current-sketches do
25 extract context C = f(S)
26 update access-frequency-count of bucket h(C)
27 Store S as an outgoing edge of h(C), if there are too many sketches store a compound

sketch. Store pointers to co-referencing/co-occurring sketches buckets.
28 if bucket h(C) has a program P :
29 append (S, P) to current-programs
30 else:
31 if bucket h(C) is frequently accessed:
32 initialize program at h(C) with program from nearest non-empty context bucket and

mark it for training
33 fetch programs from nearby trained buckets (with similar contexts), append those (S, Pi)

to current-programs
34 Routing module chooses some subset of current-programs, runs each program on its as-

sociated sketch, appends outputs to current-sketches
35 Append sketches on outgoing edges of accessed buckets to current-sketches
36 if any of the programs are marked for training:
37 routing module picks one or some of them and trains them, and may choose to stop execution

loop
38 if any of the sketches is of (a special) type OUTPUT or ACTION sketch:
39 routing module picks one such, outputs that sketch or performs that action, and may choose

to stop execution loop
40 if any of the sketches is of type REWARD sketch (say for correct prediction or action):
41 routing module updates the reward for this bucket and propagates those rewards to prior

buckets
42 Routing module uses attention to combine elements of current-sketches into at most k

compound sketches S1, . . . , Sk (may produce 0 sketches)
43 current-sketches← {S1, . . . , Sk}

• Each hash bucket may contain a trainable program P , and summary statistics as de-
scribed in Figure 3. We don’t start to train P until the hash bucket has been visited
a sufficient number of times. (Note: A program may not have to be an explicit in-
terpretable program but could just be an “embedding” that represents (or modifies) a
neural network.)

3. Routing-module (OS).

• Given a set of sketches from the previous iteration, the routing module identifies the
top ones, applies the f function followed by h to route them to their corresponding
buckets. Before applying f it may use attention to combine certain subsets of sketches
into a compound sketch.

4. Knowledge graph of edges.

• Information about frequently co-occurring sketches (e.g. if sketch S1 is frequently
followed by sketch S2) is stored as edges connecting hash table buckets that form a
knowledge graph.

• When the routing module visits a bucket, in addition to the program P , it can also
extract the sketches on the outgoing edges at that hash bucket. One could also view
the program P as the “default edge” at that bucket.

The system works in a continuous loop where sketches are coming in from the environment and also
from previous iterations; the main structure of the loop (recall Figure 1) is:

Phenomena sketch context bucket program Phenomena
input f h

produces

output

14

Under review as a conference paper at ICLR 2022

Our architecture can be viewed as a variant of the Transformer architecture (Radford et al., 2021;
Shazeer et al., 2017), particularly the Switch Transformer (Fedus et al., 2021) in conjunction with the
idea of Neural Memory (Wang et al., 2021). Instead of having a single feedforward layer, the Switch
Transformer has an array of feedforward layers that an input can be routed to at each layer. Neural
Memory on the other hand is a large table of values, and one or a few locations of the memory can be
accessed at each layer of a deep network. In a sense the Switch Transfomer can be viewed as having
a memory of possible feedforward layers (although they use very few) to read from. It is viewing the
memory as holding “parts of a deep network” as opposed to data, although this difference between
program and data is artificial: for example, embedding table entries can be viewed as “data” but are
also used to alter the computation of the rest of the network, and in this sense act as a “program
modifier”.

New modules (or concepts) are formed simply by instantiating a new hash bucket whenever a new
frequently-occurring context arises, i.e. whenever several sketches hash to the same place; the con-
text can be viewed as a function-pointer and the sketch can be viewed as arguments for a call to that
function. Frequent subsets of sketches may be combined based on attention to produce compound
sketches. Finally we include pointers among sketches based on co-occurrence and co-reference in
the sketches themselves. These pointers form a knowledge graph: for example if the inputs are
images of pairs of people where the pairs are drawn from some latent social network, then assum-
ing sufficient sampling of the network, this network will arise as a subgraph of the graph given by
these pointers. The main loop allows these pointers to be dereferenced by passing them through the
memory table, so they indeed serve the intended purpose.

Thus external inputs and internal events arrive as sketches that are converted into a coarser repre-
sentation using the f function that gets mapped to a bucket using hash function h; the program at
that bucket is executed to produce an output-sketch that is fed back into the system and may also
produce external outputs. This basic loop is executed by the routing-module which can be thought
of as the operating-system of the architecture. In each iteration the routing-module gathers the
sketches output from the modules executed in the previous rounds, along with the input sketches
from the environment and retains the top k based on some notion of weight/importance (this could
be a combination of frequency and rewards, which is tracked in the buckets corresponding to the
sketches). It may also use attention to combine certain subsets of these. These are then routed using
the f followed by the h function to their respective modules in the hash buckets. The programs
in these buckets execute the corresponding sketches producing new sketches (these new sketches
may also produce outputs or actions into the environment) that are sent back into the current col-
lection of sketches. Each bucket also tracks other co-occurring/co-referenced sketches which may
also be retrieved when that bucket is visited. In Algorithm 4 we have under-specified and left out
how the routing module makes the discrete choices. We will show a simple method is to implement
it as a decision tree that makes probabilistic choices that eventually converge to an optimal set of
deterministic choices (see DecisionTree Algorithm.2).

Hash function h: The hash function h is an LSH function, so similar contexts are hashed to the
same bucket. When the model encounters a sketch whose context is unfamiliar (i.e. is sufficiently
far away from any existing contexts) a new hash bucket is instantiated for that context. Each bucket
contains (see Figure 3):

1. The program P which is a learned a function, e.g. a trainable neural net, for that bucket.

2. summary statistics, e.g. frequency counter, reward/quality score.

3. summary of sketches that point to this bucket. The summary could be a compound sketch
of things mapping here. Note that the compound sketch contains information about the
average value (see Claim 5 in Ghazi et al. (2019)).

4. local information about the knowledge graph, e.g. outgoing edges from that bucket.

Handling hash bucket collisions from h: To handle collisions, if instead of using one hash function
h if we use r of them (for some integer r ≥ 1) then with high probability for each sketch there will
be at least one distinct bucket (in fact at least a constant fraction will be distinct) as long as its context
is far enough from that of all others. In case many similar contexts hash to the same bucket, the that
bucket will have a high frequency count. In that case when the routing module encounters such a
bucket, it could use additional LSH bits to rehash such sketches to new buckets which is likely to

15

Under review as a conference paper at ICLR 2022

Frequency of access

Average reward (or compound sketch of
rewards) after visiting this bucket

Program-sketch to be executed for this
bucket

List (or compound sketch) of top
co-occurring/co-referencing other buckets

Average/compound-sketch of sketches
mapping to this bucket

Figure 3: Fields in a hash bucket, including the program-sketch (if it exists), pointers to related
buckets, and summary statistics such as frequency of access. The average or compound sketch of all
the sketches mapping to this bucket can be used to identify the different frequent pathways that led
to this bucket. The average or compound sketch of all the rewards-sketches can be used to identify
the different frequent pathways from this bucket that lead to rewards and their reward values.

put them into different buckets – this could be repeated until we get to buckets that have bounded
frequency counts.

Task: A task refers to logically coherent subset of training examples from the external world with
a specific processing to be applied to each of those examples to produce a desired output for each
of them. For example in the simplest case each example may come with a specific task-description
sketch or identifier that specifies the task. However the task description may not be explicit in the
input, but may be identified after routing the input through a sub-dag of modules. Each task maps to
a unique context which is determined by applying the f function on the sketch at some level.

Learning the program in a bucket: Each bucket contains a trainable function from a certain class
(such as neural networks of a fixed small depth). More generally it could represent a vectorized
“embedding” that modifies another global network or produces another network. This function may
depend on the output of other buckets as prerequisite inputs.

Module: A module refers to a program in a bucket. This may either be an atomic Module or a
compound Module that can call other atomic or compound modules (thus it is a sub-dag over other
modules). Thus a compound module in a bucket may recursively “call” functions in other buckets
realized as a frequently seen computation DAG of sketches flowing through modules. For example
the entire architecture can be thought of as one giant compound module defined by the initial module
where all input sketches are sent (think that there is some default “boot” module where all inputs are
sent; this boot module iteratively calls the routing module and modules in the hash buckets where
derived sketches get routed – note that iterative calls can also be implemented as a tail recursion
where the first iteration recursively hands off the processing for the remaining iterations.

As the routing module explores, it records sequences of modules that led to high reward at this bucket
by sketching the path and storing it as an outgoing edge in the knowledge graph. Over time, this
edge “hardens” into the default path for this task: it becomes so high weight compared to the other
edges that f automatically focuses on it and follows it deterministically. We call this the “program”
for this bucket.

Attention: We use “attention” in a very broad sense, meaning not just the mechanism as it appears
in e.g. transformer architectures but more generally as a method of combining sketches based on
pairwise similarity and/or relevance into a weighted tuple/set. We could use attention to extract
components from one sketch based on another sketch and/or edges between their buckets. This
attention can be used for example to connect the spoken name of a person to their image in a group
photo via an edge in the knowledge graph that captures the frequent co-occurrence of the spoken
name with the face. For example, imagine a picture of many people with one of their names being
spoken. First the picture goes to visual module, which identifies that there are faces and sends it
to facial-recognition module; this finds multiple familiar faces, and the bucket of one of these faces
has an existing outgoing edge pairing it with the audio of the name. The similarity between these
sketches is reflected in the weights generated by the attention module and the result is a combined
sketch connecting this face in the picture with the audio input.

Routing module: The routing module applies function f that maps sketches to context followed
by hash function h that maps the context to a bucket. The function f can be viewed as extracting a

16

Under review as a conference paper at ICLR 2022

coarse representation of the sketch by extracting stable fields such as labels and dropping high vari-
ance ones. Since there may be several options in designing f for a certain type of sketch, there may
be some exploration where it makes probabilistic choices and later converges to a specific choice.
For example there may be some probabilistic choices at each step regarding which components of a
sketch to keep before routing the sketch to a hash bucket. For now we assume that routing module
starts with a very simple set of rules and refines its probability distribution for each bucket over time
based on success or failure of its choices (e.g. whether the loss score for that example is below some
threshold).

We start with a very simple definition of the function f in version v0 (section 3) that simply drops
certain fields in the sketch. In section 5.1 we show how this can be formalized in the framework of
our architecture by viewing this operation that picks a subset of the fields in an input sketch as yet
another modular decision tree task by using sub-modules.

Knowledge graph: The knowledge graph is implicitly forms by the pointers from a bucket to other
frequently co-occurring buckets – if there are too many such we may retain only the top few in addi-
tion to storing a compound sketch of the co-occurring sketches. Although in the architecture princi-
ples we said that knowledge graph edges are formed by buckets of frequently co-occurring sketches
S1, S2 pointing to each other, we can also achieve this by simply creating a compound sketch for
the frequently co-occurring pair [S1, S2] and having edges between co-referencing sketches [S1, S2]
and S1, S2 each; thus all edges would be co-referencing edges. [[Rina: make this precise. into a def-
inition]]. Thus by simply creating compound sketches and having pointers between the compound
sketch and the component sketches and vice versa we automatically capture frequent co-occurence
– note that any sketch (including compound sketches) are persisted in hash buckets only when they
occur with a frequency that exceeds a certain threshold (see details in a few paragraphs below)

Mature and immature buckets: For simplicity we may think of some buckets whose quality score
is above a certain (user-defined) threshold as mature bucket that are marked as “well trained”. The
parameters of the bucket’s function may still be updated and further refined as new sketches arrive,
but its main program is frozen and no further exploration is required in terms of solidifying choices
of the routing module (say for the f -function) in handling sketches that map to this bucket. An
immature bucket is one that is not fully trained: the routing module may not have found a good
sequence of modules for this task yet, may not have figured out good choices for routing sketches
and applying the f function for sketches that map to this bucket, and/or the program in the bucket
may not have been fully trained. Other modules cannot call an immature module as part of their
program.

Backpropagation: The parameters of the neural net in a bucket are updated whenever the example
is evaluated in that bucket, that is whenever the routing module decides to stop exploring and train
in that bucket. If the loss in the bucket is below some threshold then the knowledge graph is also
updated, with a copy of the sketch being recorded as a co-occurring sketch for all modules in the
execution pathway.

Distinguished modules: We assume that the architecture is provided with certain basic “hardcoded”
modules where necessary, for example specialized audio and image processing modules with pre-
trained CNNs to extract raw audio-visual data and embed it into a representation space. This is by
analogy to humans, who have to learn to interpret data from their senses but don’t have to evolve
from scratch the concept of eyes. We may also assume the existence of an “input module” that is the
first module where all external inputs such as images, audio, text are first routed to. This module may
separate modalities from the input sketch which may individually get routed to specific modules to
process images, audio, text separately. The modules for processing images, audio may in-turn find
text in the images, sounds and that text may get routed to text module.

Only frequent contexts are persisted: If there are m hash buckets in the LSH table we will only
track contexts that appear at least with frequency O(1/m), while others get “timed out” and eventu-
ally forgotten as they will not appear with sufficient frequency – we assume m is at least the number
of distinct contexts that need to be trained to correctly learn all the tasks. Note that this tracking
of frequency of persistent and ephemeral contexts to ensure we catch anything with frequency at
least O(1/m) can be done in a total of Õ(m) buckets – one way to achieve this is to simply drop
(time-out) from the system any context that does not appear within a time interval of Õ(m); clearly,
this way only Õ(m) contexts are ever in the system at any one time.

17

Under review as a conference paper at ICLR 2022

Algorithm 5 Informal presentation of the recursive view of the main execution loop
Input: input sketch T (this sketch may contain a desired output for training)

44 With some probability set leaf-level-recursion = TRUE
45 if leaf-level-recursion:
46 extract context C = f(T)
47 update access-frequency-count of bucket h(C)
48 if bucket h(C) has a program P :
49 if P is marked for training, train it return P(S)
50 else:
51 if bucket h(C) is frequently accessed:
52 initialize program at h(C) with some random program and mark it for training.
53 with some probability Fetch programs Pi (possibly by some similarity criterion) return

list of Pi(S)
54 else:
55 foreach component sketch Si in T do
56 T = list of Algorithm1(Si)
57 T = pick k combinations of sketches in T, and combine them into compound sketches:
58 return Algorithm(T)

A tail recursive view of the execution loop: We can think of a tail recursive variant of Algorithm
4 where the loop is replaced a recursive call to itself at the end. In this case, the inside of the loop
“foreach sketch S” is replaced by a recursive call to Algorithm with input S . This recursive view is
also useful for analysis in certain cases. In some cases the algorithm may execute only the content
inside the foreach loop involving applying the f and the h functions on the input sketch which could
correspond to executing the leaf level of the recursion. The depth of the recursion (or the number
of iterations) may be capped at some upper limit to prevent infinite loops. (Also see section J for a
recursive view of a compound module)

D ARCHITECTURE V0

Claim D.1. Given an error rate ε > 0 and confidence parameter δ > 0 and n independent tasks,
each of which require at most M = M(ε, δ) examples to learn to accuracy 1 − ε with probability
1− δ, and training data as described in above, with probability 1− (n+ 1)δ, Architecture v0 learns
to perform all n tasks to accuracy at least 1− ε in O(Mn log n

δ) steps.

Proof. This follows from the fact that the problem essentially breaks down into n separate super-
vised learning tasks. In the learning algorithm we simply route each sample using f and h to its
corresponding task according to its task descriptor and use the learning algorithm AM to train the
function m̂t in the corresponding hash bucket. The algorithm for v0 falls into the framework of
Algo.1. However, f and h are restricted and other routing module operations become NO-OP. Be-
cause in v0 the tasks are independent.

Here, we assumed that each task has a fixed, unique task descriptor. Using the locality-sensitive
hash function, it is straightforward to extend v0 slightly to the case where each task is represented
by noisy but well-separated task descriptors.

Noisy contexts: Although we have been thinking of contexts as precise and fixed for a task, We can
also relax the assumption that the context of a task should be identical each time, instead allowing
some noise in the contexts. Our architecture can handle noisy contexts as we use an LSH table; we
can easily replace the LSH-function with an r-LSH that makes r different hash function for some
r. Now each context accesses r buckets, and programs can be encoded in a distributed/replicated
fashion to render the contexts robust to noise. The following two Theorems show how the relevant
information for a context can be stored in a distributed robust manner (like in an error correcting
code) so that even having access to a fraction of the locations where it is encoded is sufficient
to correctly recover the information – this allows us to index the information using a ”corrupted”
version of the context.

18

Under review as a conference paper at ICLR 2022

Assumption: Suppose there is desired sketch v∗ and the noise procedure that produces v such that:

v ∼ N (v; v∗, diag(β)) .

Theorem D.2. If there is a ball of points of radius δ in sketch space so that all those points should
go to the same program then for r ≥ nO(δ) the program will get programmed in any of the several
hash locations the points map to (as long as the points are picked randomly) from the ball.

Proof. Since we are using a locality sensitive hash table if we use r-LSH functions, the context
doesn’t need to point to the same set of buckets – but as long as there is at least one common bucket
it can retrieve the program. LSH guarantees that as long as the contexts C and C ′ are within δ
distance, they will go to the same bucket with probability at least n−O(δ). So if r � nO(δ) with
high probability there will be an intersection. During inference we can look at all the non-empty
buckets and take the average of the programs stored in all those buckets. During training if we add
a regularizer that minimizes the sum of the norms of the program vector representation, then all the
programs in the r-buckets will go to the same value. Thus if a task is trained using large number of
hashed buckets then it is highly resilient to change in context as all that is needed is for a few of the
hash locations to intersect. This proves the Theorem.

Thus even though the different contexts go to different sets of buckets those buckets contain the same
program; this program sketch now becomes an identifier/common-sketch for this unique common
context across these noise contexts.

Distributed storage of programs: In fact, a program need not fit entirely in one bucket but may be
assembled in a robust manner from the r-buckets. Thus a program may be stored across multiple
hash buckets so that any small subset of them could be used to recover the program. Let us say
the program is sp and the amount of program-field in each bucket is sb. We will show how from a
random subset of l out of the r-buckets for this context is sufficient to assemble the program as long
as l > Ω̃(sp/sb). The main idea is to associate each bucket i with a random sparse rotation matrix
Ri. Then if a large set of r locations are trained to store a particular program y, any small subset
{i1, .., il} of those locations may be sufficient to read y. That is, y = (Ri1xi1 + ..+Rilxil)/l where
xi is the value stored at bucket i. This idea may also be used to store a program in a distributed
fashion across entirely different contexts.

Theorem D.3. There is a way to store a program y in a distributed manner across r buckets so that
any random subset of l of these buckets can be used to reconstruct the y, as long as l > Ω̃(sp/sb).

Proof. First look at the case where sp = sb. For simplicity think of each rotation matrix as identity.
Then we will show that at local minima all program-pieces Rixi are identical. This is achieved by
adding a regularizer that minimizes the sum of the norms of the program piecesRixi in the different
buckets. The same argument holds if the matrices are full rank.

If sp > sb first lets look at the limiting case when sb = 1. So we are taking a set l numbers and
using it to get an sp-dimensional vector y. This can be done by using a random sparse sp × 1
matrix Ri for bucket i and then averaging across the l buckets; Ri is a binary vector with exactly
one 1 at a random coordinate, so when Ri is when multiplied by a (scalar) input x it puts it into a
random coordinate of the output and keeps others zero. Now if we take l ≥ Ω̃(sp) such Ri matrices
with high probability, each of the sp coordinates will be 1 in some of the Ris. Thus in terms of
representation, one can store the specific co-ordinate of y in all the xi (scaled by l) where Ri has
a 1 in that coordinate. Now the expected value of the average assembled from l buckets will be y
in expectation – high concentration can be achieved by making l sufficiently large. Thus a specific
co-ordinate of y is stored in 1/sb fraction of the buckets. It can also be ensured that this happens
during training by using regularization; the regularization will force all the values in such buckets
to be equal and identical to the desired value of that coordinate in the program. The exact same
argument extends to the case when sb > 1 except that now Ri is a sp × sb random matrix where
each column has exactly one 1 in a random position.

Programs may modify a global-program: So far we assumed that all the n tasks are independent.
However instead we could have a global-program so that all variants of that global task that is
already available. Note that the main algorithm loop states that a program in a bucket is initialized

19

Under review as a conference paper at ICLR 2022

from a program in the nearest non-empty context bucket. If we assume that the global-program is
in a bucket that is nearest to a new bucket then it will automatically start from there. Further note
that we may not even need to copy the entire program to the new bucket, but simply train the delta
(modification) there; thus in the new bucket we would store a pointer (sketch) to the global program
and the delta represented as a vector. This gives the following claim.

Claim D.4. Claim D.1 holds even if all n tasks are derived from a global task.

E ARCHITECTURE V1

This version will be used to learn a (latent) DAG of tasks where each task corresponds to the subtree
rooted at a node. There is a (learnable) function at each node that recursively takes inputs the outputs
of its child nodes. We show how this DAG (or an equivalent) one gets automatically learned in our
architecture. The main argument is inductive where we show that the function at each node (or its
equivalent) gets programmed at some bucket in our LSH table. The key challenge is in figuring out
exactly which tasks are the child tasks for a new task to learned. In the worst case this can be done
by trying all possible

(
N
d

)
subset of d nodes. In practice there may be hints in the input that can

used to narrow the search space in to a smaller set of candidates. Section 5.1 shows how this can
implemented using a modular decision tree that itself fits well within our architecture.

Lemma E.1. Suppose at each step, a task t is chosen uniformly random from the set of tasks
{t1, . . . , tN} in a DAG of height `, along with one random sample (x, y) where φ̂(t)(x) = y. Then
after `MN ln(1/δ) steps all the tasks will be well-trained (training error rate≤ εL for each module
at level L) w.h.p. We will call SGD O(`MN (1+d) ln(1/δ)) times during the training. Here, M is is
the upper bound of all ML.

Proof. The learning algorithm follows the framework of Alg. 1. Let t′ be the one of the tasks that t
depends. Then we have that

Pr[t does not appear τ steps after t′] = (1− 1/N)τ ≤ e−τ/N . (1)

Therefore, after t′ is well-trained, if we wait for at least τ = N ln(1/δ), with probability 1−δ, t will
appear. Without loss of generality, we can assume that t′ is the the last sub-module task of t that gets
well-trained. Then after τ steps the training for t becomes useful because we can call these well-
trained sub-modules. Note that the probability in Eq. equation 1 applies to any time step, so after the
first t arrives, if we wait for another τ steps, t will appear again. Suppose M is the amount of data
that is needed to train function m ∈ M, then after Mτ = MN ln(1/δ) steps t can be well-trained
w.h.p. Since we know that basic tasks can be trained without calling other sub-modules, by using
standard induction argument we know that all the tasks can be trained within `Mτ = `MN ln(1/δ)
steps. (If M is larger than log(N), then we only need O(MN)) Because each bucket will maintain
at most O(Nd) models at a given time and will run one pass of SGD of each of them upon receiving
a sample, we will call SGD for at most O(`MN (+d) ln(1/δ)) times.

Remark E.2. Note that we don’t need to pass each data to all the O(Nd) buckets at the same time.
We can randomly choose buckets. For example, if d = 10 but the compound module only calls 2
submodules, then with high probability, we only need to run O(N2) steps. Further in practice the
exploring among all N tasks may not be needed as there may be some smaller candidate subset of
only related tasks that need to be considered,

In the proof of Lemma E.1 we implicitly assumed that all the different combinations of child tasks
are tried in a single bucket for the parent task indexed by h(st). However, in fact, there is limited
space per bucket and the different combinations are actually tried in different contexts and hash
buckets. The following claims provide details about exactly which buckets are used in the training
of a new task t.

Claim E.3. Assuming child tasks are learned, the parent task will be learned in some bucket of the
table (not necessarily the bucket corresponding to its original task-description context) in a further
O(nM/p) steps, where p ∈ (0, 1) is the probability of the routing module choosing the correct
subset of children for the task.

20

Under review as a conference paper at ICLR 2022

Proof. Suppose C is the task id context for a task whose child tasks have all been learned. By our
assumptions on task context similarity, the buckets corresponding to the child tasks will be among
those that the routing module finds when it looks for trained buckets near to C. Therefore when the
routing module runs the k nearest buckets, combines their results, and chooses some subset of the
components to keep as the context of the resulting sketch, it keeps exactly the right components in
order to successfully learn the task with some probability p.

The context C ′ of this new sketch references both the original task context C and the combination of
previous modules that contributed to it, so there is a separate hash bucket for each possible combina-
tion that the model tries, which prevents catastrophic forgetting while the routing module searches
for the best combination. After processing at most λ + nM/p examples (where λ represents how
many examples were processed before the prerequisite modules had matured) the function in bucket
h(C ′) will have with high probability learned to perform the parent task.

Claim E.4. Assuming the learning of a task has happened as per Claim E.3, over time the execution
pathway for a node gets programmed into the original bucket h(st) for that task.

This follows from the knowledge graph principle, i.e. that outgoing edges point to commonly
co-occurring sketches. Intuitively, it corresponds to how a human learns to perform a frequently-
performed task so well over time that they don’t have to think about the individual steps, it just
happens “automatically”.

Proof. Let C be the context for a task, and suppose that the model has learned to perform this task
by calling some other modules with contexts C1, ..., Cr and then acting on the compound output of
these in bucket h(C ′).

Every time h(C ′) performs successfully on an example (e.g. low loss, high reward, etc; however
“success” is measured in the model implementation), a copy of the sketch is recorded as a high
reward co-occurring example for all of the modules in the execution pathway. Many such examples
will be “averaged” together over time, smoothing away the details of individual examples and high-
lighting the parts that remain constant, in particular the execution pathway C → {C1, ..., Cr} → C ′

– note that from the compound sketch of a large number of sketches the average value can be re-
covered (see Claim 5 in Ghazi et al. (2019)). This may be one co-occurring example among many
for the intermediate modules C1, ..., Cr, but it will dominate the outgoing edges of the knowledge
graph at the original bucket h(C) and thus become the program for h(C).

F ARCHITECTURE V2

Now in v2, unlike in v1, the precise task identifiers are not given explicitly in the input. consider
for example a dog whose current task is to “Listen to masters command and follow that” – in this
case the precise task will depend on what the masters command is; if it is “fetch ball” then there is
a specific module to do that; there may be several atomic modules possibly one per command that
may be needed to to this entire task.

For example the entire architecture can be thought of as one giant compound module defined by
some “boot” module (think of this as the initial module where all input sketches are sent); this boot
module iteratively calls the routing module and modules in the hash buckets where derived sketches
get routed – note that iterative calls can also be implemented as a tail recursion where the first
iteration recursively hands off the processing for the remaining iterations.

An implicit precise task is a logically coherent subset of training examples from the external world,
but the precise task description may not be explicit in the input, but may be identified after routing
the input through a sub-dag of modules. Each task maps to a unique context which is determined by
applying the f function on the sketch at some level.

Our learning algorithm uses a combination of deep learned individual modules and probabilistic
algorithm to connect up these modules.

Here are the exact formulations of the task sets for the dog command execution and the multi digit
number recognition examples.

Task set example 1:

21

Under review as a conference paper at ICLR 2022

• task1: input: {[TASK,“identify command”], [VIDEO,〈video〉]} output: [OUTPUT,
〈command-word-from-audio-in-video〉]

• task2: input: {[TASK,“identify command point to relevant object”, [VIDEO,〈video 〉]}
output: [OUTPUT, 〈position of object of interest in video based on command〉]

Internal implicit modules: command task i: input: [“execute given command”, i, 〈video〉] output:
[〈position of object of interest in video based on command i〉]

Note here that even though we have some vague task-descriptions, the actual task-id is obtained by
running task1. To solve task2 the architecture needs to first have a trained module for task1, figure
out that task2 depends on task1, and further that its output is meant to be the true context/task-id for
executing task2.

Note about distribution shift: Note that the module 1 here may be trained on some words. Once
trained on a few words, it be automatically become usable for new words even though there is a
distribution shift.

Task set example 2: 5 digit recognition: input 5 digit image, output the value; builds upon two
modules: an image segmentor that produces 5 smaller images, a 1 digit recognizer that takes a
smaller image and outputs one digit.

• task1: input: {[TASK,“1-digit-recognizer”], [IMAGE,〈image-of-1-digit 〉]} output:
[OUTPUT,〈number-0-to-9〉]

• task2: input: {[TASK,“5-digit-recognizer”], [IMAGE,〈image-of-5-digit 〉]} output: [OUT-
PUT,〈number〉]

• task3: input: {[TASK,“5-digit-image-segmentation”], [IMAGE,〈image-of-5-digit 〉]} out-
put: [OUTPUT,list of five [IMAGE,1-digit 〈image 〉]]

The following corollary follows from Claim 5.7 except that at the leaf nodes instead of directly
getting the reward we have an atomic module being trained at each leaf and the rewards propagate
up the tree as the atomic module converges to the right function to receive external rewards for
correct predictions. Since M examples are needed to train each atomic module at the leaf, the
number of steps get multiplied by factor M .
Corollary F.1. In any task if the probability of picking the right sequence of decisions for perform
the task is p and it takesM examples to train the task, then the task can be learned inO(M/p) steps
assuming all previous task it is dependent on are already trained. Any future calls to the decision
tree will now use this recorded best path.
Remark F.2. Note that different subtrees in the decision tree for the function f may be trained over
time for different tasks. The vague task descriptor st is just one of the fields in the sketch (initial
one). For a given task we are only focused on training a specific subtree; however, the entire decision
tree for the entire function f is constantly evolving as more and more tasks get trained.

The following is the main inductive Lemma to prove Theorem 5.6
Lemma F.3 (Inductive lemma). In any new task t with task descriptor st that build upon previously
existing tasks that have already been learned to perform well. By induction the probability of picking
the right sequence of decisions for perform the new task is p = 1/2O(d2+d log(N/d)) (including
which identifying which previous possibly implicit tasks it depends on and wiring them correctly
with the right contexts) and it takes M examples to train the task, then the task can be learned
in O(M2O(d2+d log(N/d))) examples for each of the gi atomic modules assuming we have already
learned to perform all previous task it is dependent on.

Proof. The learning algorithm follows the framework of Alg.1. The circuit routing is also done by
Alg. 2: we feed all the O(

(
N
d

)
3(d

2)) candidate edges of the circuit to Alg. 2, which finds the correct
subset. The inductive guarantee that lower-level tasks are well-trained comes from the bottom-up
online algorithm of v1. Modules are marked as mature based on performance, and new modules
are only built on top of mature previous nodes. The probability of picking the right sequence of
decisions for perform the new task is p = 1/2O(d2+d log(N/d)) (including which identifying which
previous possibly implicit tasks it depends on and wiring them correctly with the right contexts) and

22

Under review as a conference paper at ICLR 2022

it takes M examples to train the task, then the task can be learned in O(M2O(d2+d log(N/d))) steps
per atomic module.

Theorem 5.6 follows by applying the previous lemma inductively. We assume for simplicity that all
example are uniformly distributed across the total of G atomic modules. So only 1/G fraction of
examples will be destined for a given atomic module giving a factor G multiplier; the additional `
multiplier comes from the ` levels of hierarchy the dependency DAG.

We now formally state that the two task examples can be learned.

Corollary F.4. Task set example 1 and Task set example 2 can be learned by our architecture
if training data for different tasks are input in random order. This follows from previous lemmas.
Given training examples for different tasks in random order, including for this combined task our
architecture automatically learns to use the output of one of the tasks as a context and builds a
downstream module for each context value.

Proof. Although this follows from Theorem 5.6, for illustration we show the proof specifically for
these examples to show the exact sequence of events of how this is accomplished. We will argue
for example 1 and the second example is similar: note that there are two external task descriptions.
So the routing module will send these examples to two hash buckets based on the external task IDs.
So two modules atomic modules will get trained for each of these tasks at two different buckets.
However, only the first task will get trained successfully to a good accuracy (if the second task also
gets trained successfully then we are done). Now for the second task there is an option to build a
compound module which will call the first task. Now the routing module will use the decision tree to
explore different ways of building a compound module for the second task. The right combination
involves the following: decide that task2 is not atomic, run task1 on the input, take the output of task1
and only make that as a context, go to hash bucket based on this context and train an atomic module
there. Note that since only these three specific decisions lead to success, the initial probability of
picking this path is c3 for some constant c. Thus after a constant number of possible path ways with
separate atomic modules will need to be trained in parallel before we find a successful pathway. So
O(M/c3) additional training steps should suffice to train task2 after task1 is complete. Once the
right sequence of calls has been established, this could be programmed as a compound module in
the bucket for task2.

Remark F.5. In these examples we simply extract the external task ID which is the first field of
the input and use that as the context for the next iteration. However in general this may be a very
complicated process. This extraction of the task ID (even what we call as the external task id here)
may itself be an evolving compound module consisting of a combination of different atomic modules
and evolving f function decision trees branches over time.

G USING THE KNOWLEDGE GRAPH

In the following we will assume that there is social network of constant degree and we see images
of pairs of people chosen at random from this network.

Knowledge graph Task example 0:

• Task1: [“remember sketch”, [IMAGE,〈image of pair person1 and person2 〉]
“remember event” task is an unsupervised task only meant to record the sketch once the
count of its context has exceeded a certain threshold and is not meant to predict any kind of
output. We will assume there is a person recognition module that takes the image as input
and outputs a compound sketch of two person sketches for the persons in the image (later
we will see how the routing module can automatically learn to route the input to such a
module without assuming it).

The following Theorem is a consequence of the ”Knowledge graph” principle that is implemented
in line 27 in Algorithm4.

Claim G.1. Suppose we have a module that has learned to identify faces from images and return
the identity of those people. Given input data of images of pairs of people, where the pairs are

23

Under review as a conference paper at ICLR 2022

chosen from a uniform distribution given by edges of a graph, the knowledge graph created by our
architecture contains a subgraph homeomorphic to this original graph.

Proof. Given an input sketch [IMAGE, 〈bit-map 〉], by Claim D.1 it gets routed to a person-
recognition module. That returns a compound sketch of the set of all people in the image, so it
will return the set { 〈person-1-sketch 〉, 〈person-2-sketch 〉}. This compound sketch will go to a new
bucket, which will get pointers to the original 〈person-1-sketch 〉and 〈person-2-sketch 〉buckets due
to co-occurrence. See Architecture Principle (4) in section C. If we take the subgraph of the knowl-
edge graph consisting of all pairs of person sketches and pointers to individual person sketches, this
will be homeomorphic to the original graph.

Knowledge graph Task set example 1:

• Task1: [“remember sketch”, [〈person1 〉, 〈person2 〉]]
“remember event” task is an unsupervised task only meant to record the sketch once the
count of its context has exceeded a certain threshold and is not meant to predict any kind
of output.
We assume that the sketch of a person is stable or resistant across different instances of a
person sketch.

• task2: [“Find common friends”, [〈person1 〉, 〈person2 〉]], Output: [〈list of common friends
〉]

Knowledge graph Task set example 2:

• Task1: [“remember sketch”, [IMAGE,〈image of pair person1 and person2 〉]
• Task2: [“remember sketch”, { [IMAGE,〈image of person 〉], [NAME, 〈name of person] }
• Task3: [“Extract list of persons (as features) from image”, [IMAGE, 〈image containing

multiple people 〉], Output: [〈list of person features from image 〉]
We assume task 3 can be solved in a way where it extracts stable person-features from
images that result in same “fingerprint” for the same person possibly appearing across
images.

• Task4: [“Find common friend names”, [[NAME, 〈name of person1 〉, [NAME, 〈name of
person2 〉]], Output: [〈list names of common friends 〉]

To demonstrate that knowledge graph is a useful extension, we first note that, example 1 cannot be
learned with simple modules without knowledge graph.
Claim G.2. Without using knowledge graph memory, training a neural network submodule for task2
in Example 2 can only achive accuracy at most O(

√
n/N), where n is the total number of bits used

to storee all the weight of the neural network and N is the number of people in the data.

Proof. This follows from a similar argument based on mutual information as in Wang et al. (2021).
W.L.O.G. we can assume that the number of common friends is 1 for the sake of the lower bound
proof.

Claim G.3. All tasks in Example 1 can be solved jointly from training data in polynomial time. This
can be solved using the knowledge graph edges.

Proof. Task1 does not involve any prediction. For the second task the architecture will first try
to train an atomic module but will fail. overtime because of task1, a knowledge graph of friend
connections will you get created between the sketches 〈person1 〉, 〈person2 〉and the compound
sketch [〈person1 〉, 〈person2 〉] (based on architecture principle 4, line 7 in the pseudo code). After
this in the first iteration of the architecture the knowledge graph edges would be an extracted (line 15
in the pseudo code) for the input sketches 〈person1 〉, 〈person2 〉. these edges will point to the list of
all friends for 〈person1 〉and 〈person2 〉respectively. In the second iteration of the architecture with
some probability it will make the set of these two list as a compound sketch for the next round and
[“find common friends”, 〈extract first part-edges 〉, 〈extract second part-edges 〉, 〈take-combination
〉] as the new context, and we’ll start training an atomic module at this round. Since finding the

24

Under review as a conference paper at ICLR 2022

intersection of two lists is a simple task this training will succeed to make the correct prediction.
Overtime this pathway (routing module decision tree choices) of extracting neighbors of 〈person1
〉and 〈person2 〉, making a set out of the two lists, and giving it to that new atomic model will
get strengthened, and eventually hard-coded in the original bucket for the “Find common friends”
task.

Note: We remember sketches that occur more than a certain fraction of time. If there are m buckets
we track events that occur more than 1/m fraction of the time – this ensures that there is space for
all frequently occurring contexts.

Claim G.4. All tasks Example 2 can be solved jointly from training data, given inputs from Example
2, we can learn all tasks in polynomial time (this can be solved using the knowledge graph edges).

Proof. This is merely a generalization of the earlier proofs but goes through higher number of iter-
ations of algorithm 1 along the lines of the proof of Theorem F.4. Task 3 is a leaf level task that is
used by Tasks 1 and 2. Task 2 needs to route the image part of the input sketch to Task 3 getting
〈person-features〉for the person in the image; then f function needs to create the compound sketch
[〈person-features 〉, 〈name of person 〉] as the context. Then this context is remembered in the hash
buckets including its component sketches that point to the compound sketch and vice versa. Since
this involves making a constant number of correct routing decisions, this will happen with constant
probability. Also, Task 1 needs to route the image in its sketch to Task 3 to get the person-features
for the two people in the image and then the pair of person features needs to be remembered in their
bucket with appropriate bi-directional pointers to the individual person-features. We now have all
the edges between pairs of friends and between a person and their name. with these established,
Task 4 needs to use the names of the two people to lookup the edges to find their person-features
and then just like in example 1, use friend edges to find two lists of friends for each of the persons,
and then convert these two lists to two lists of names and then train a final atomic module to find the
intersection of these lists of names. Assuming a constant degree friendship graph, all these choices
will line up with at least constant probability. To see why all this is a constant number of proba-
bilistic choices, think of the recursive view of Algorithm 4 mentioned in the end of section C.2. All
that is needed is that in a certain context (that depends on the content of the recursive call stack)
the routing module when given a person-sketch as input can be probabilistically trained to return a
name for that person sketch, and then in some other context also return a list of names for a list of
person-sketches, and then again in some context to convert two lists of person sketches to two lists
of name sketches; these are all a sequence of decision choices in a combined view of a decision
tree for the routing module; over time the correct probabilistic choices get strengthened based on
external rewards to arrive at the right decision tree and atomic module for Task 4.

H ARCHITECTURE V3: Q-LEARNING AND OTHER REINFORCEMENT
LEARNING TASKS

In this section we will show how Reinforcement Learning (RL) tasks may be solved by our archi-
tecture by executing algorithms such as Q-learning. The main results of this section are that an
extension of our architecture, Architecture v3, can perform tabular Q-learning so that it can learn to
solve multiple RL problems at once without confusion (Claim H.3), and that it can work out how to
use other modules (e.g. image classification) to improve its policy-learning, thus producing a form
of “modular RL” (Theorem H.9).

H.1 LIFELONG REINFORCEMENT LEARNING

Several different formal RL tasks are studied in the literature. Here, we focus on episodic RL
problems:

Definition H.1. Episodic RL problems are defined as follows: We fix a set of states S and actions
A. An environment is given by a Markov Decision Process P , that for a given pair (s, a) ∈ S × A,
specifies a distribution over new states s′ ∈ S; there is also a distribution ρ over starting states, and a
reward distributionR that for each pair (s, a) ∈ S×A gives a distribution over real-valued rewards.
There are T episodes of length H each. In an episode, a starting state is drawn from ρ and revealed

25

Under review as a conference paper at ICLR 2022

to the agent. Then, for H steps, the agent is allowed to choose an action a ∈ A, the environment
transitions to a new state according to P and gives the agent a reward according to R.

For simplicity, we will first consider a lifelong learning setting in which the episodes for different,
independent environments are interleaved, similarly to the setting of Section 3.

Definition H.2. We define the lifelong RL problem with independent environments as follows:
suppose we haveN environments with their own corresponding MDPs and rewards. The interaction
still consists of episodes of length H . At the beginning of an episode, one of the N environments
Ei is chosen by i ∈ Uniform([N]), and a starting state is generated s ∼ ρi. i and s are revealed to
us, and we interact with Ei for H steps. In the next episode, a new environment is again chosen by
independently sampling i ∈ Uniform([N]) and a starting state is independently sampled s ∼ ρi,
and we interact with the new environment for H steps. We keep doing this for T episodes.

We will assume, moreover, that the interaction with the environments during an episode of the
lifelong RL problem has a specific form, as follows. We introduce new, specific types of input and
output sketches: one to input a state from the environment, another to output an action, and a third to
possibly receive a reward for that action. The input data for RL problems arrives as sketches of state
input from the environment and a possible set of actions in the form Sin = [RL-CONTEXT,[〈rl-
state〉, 〈possible-actions〉]]. An action is taken by outputting an [ACTION, 〈action-choice〉, 〈rl-
state〉] sketch for choosing a specific action in the state rl-state. Rewards for an action are provided
as the compound tuple sketch [[REWARD, 〈r〉], [ACTION, 〈taken-action〉, 〈rl-state〉]]. (Note that
our convention is that the all-caps fields here represent some constant label/enum type and lower
case fields may be variable “arguments”). [[Nte that multiple RL problem instances can be fed into
our system as the state could correspond to the state from any of the problems. Later in subsection
.. we will see how the state may not be given explicitly but may need to be inferred using other
modules just as task and context is inferred in v2]]

Architecture v3 details: To handle such RL specific sketch inputs and outputs, architecture v3
extends Architecture v2 by introducing PROGRAM-type sketches and EXECUTE-type sketches,
allowing it to pass programs to other buckets and execute these programs in the new buckets. The
former has the format [PROGRAM, 〈program-sketch〉], where 〈program-sketch〉can be interpreted
as a program that can be executed on some input. When the routing module comes across a sketch s =
[[EXECUTE, [PROGRAM, 〈program-sketch〉]], 〈input-sketch〉], it executes the program 〈program-
sketch〉on input 〈input-sketch〉after going bucket corresponding to f(s) – no separate program needs
to be created at h(f(s)).

H.2 TABULAR Q-LEARNING

First note that the decision tree learning algorithm in section 5.1 can be viewed as a special case
where the state action graph is a tree and all rewards are at the leaves. We extend that idea to Q-
learning with general state graphs. Now consider a general state-action graph, not just a decision
tree. We give here a high-level overview of how an RL algorithm can be implemented in Architecture
v3, with a view to showing that it can implement a tabular Q-learning algorithm (Claim H.3)

We define a special module called the RL-module, that gets executed on sketches with the context
RL-CONTEXT. This module outputs a sketch SRL=[PROGRAM, 〈rl-state-sketch 〉] – note that it
doesn’t execute the RL algorithm but simply outputs it as a program. We assume that this program
sketch is hard-coded into the architecture, since the goal here is to show that our architecture can
learn using a specified RL algorithm, not that it is capable of developing its own algorithm from
scratch.

When Sin = [RL-CONTEXT,[〈rl-state〉, 〈possible-actions〉]] is input, the RL-CONTEXT context
is looked up to get SRL, and then Sin and SRL are combined using attention to produce the com-
pound state sketch S = [[EXECUTE, SRL], Sin]. This then goes to the bucket h(f(S)) where
〈rl-state-sketch 〉is executed on input [rl-state, possible-actions] to output a specific taken-action
sketch Saction. The Saction is a recursive sketch [ACTION, 〈taken-action〉, 〈rl-state〉] that leads to
(or is followed by) the reward input sketch Sreward = [[REWARD, 〈r〉], [ACTION, 〈taken-action
〉, 〈rl-state 〉]] for that taken-action edge and a next S′in sketch that inputs the next state from the
environment. Since this will get propagated back along the knowledge graph, the reward will get
accounted at the bucket for [ACTION, 〈taken-action〉, 〈rl-state〉] (or equivalently, the outgoing edge

26

Under review as a conference paper at ICLR 2022

of rl-state corresponding to taken-action). The rl-state-sketch encodes the specific details of the RL
algorithm, e.g. hyperparameters and exploration method, tracking rewards on each action, tracking
temperature, and converging on the best action for a state.

Note also that the rl-state and action may be discrete states/actions or sketches of more com-
plex/continuous states and action possibilities – in the latter case we are taking advantage of the
“discretizing” property of the h(f()) function that maps sketches to hash buckets-ids to simplify our
state/action space.

H.2.1 ONE LOOP OF THE Q-LEARNING ALGORITHM

1. Input arrives as a sketch Sin = [RL-CONTEXT,[〈rl-state〉, 〈possible-actions〉]] containing
the state S = 〈rl-state〉, a list of 〈possible-actions〉= [Ai], and the hint RL-CONTEXT that
this a Q-learning problem.

2. Because of the RL-CONTEXT context, this gets sent to the Q-learning bucket.
3. The Q-learning bucket outputs (P, S), where P is a program. get SRL, and then Sin and
SRL are combined using attention to produce the compound state sketch S = [[EXECUTE,
SRL], Sin].

4. In the bucket h(f(P, S)), we run P on S. P looks at the list of actions / outgoing edges
and samples an action A.

5. The output of the bucket h(f(P, S)) is a command to take action A in the environment.
This generates a new state S′ and reward R(S′, A, S). Sketch these into a new sketch S′
and Q-learning hint.

6. As above, f sends S′ to the Q-learning bucket to pick up the program P and outputs (P, S′).
7. In the bucket h(f(P, S′)), the program P looks at the outgoing edges to get the Q-values
Q(S′, A′) and computes the new Q-value for (S,A).

8. Backprop: update the outgoing edges and Q-values.

Note: if the number of actions for each state becomes large, then an alternative version where we
visit the state-action buckets may work better.
Claim H.3. Architecture v3 can do tabular Q-learning. Its implementation is compatible with the
UCB-Hoeffding algorithm given in Jin et al. (2018), ensuring it can learn an ε-optimal policy in
O(1/ε2) episodes. Further, Architecture v3 can solve multiple RL problems at once, without conflict
between the different sets of Q-values and without needing to know in advance how many separate
problems there are or allocate resources in advance.

Proof. We assume that the input data is formatted as described above, and that the RL-module
with hardcoded Q-learning program-sketch is provided. The Q-learning algorithm needs to do two
things: at state s it needs to choose an action a according to some exploration method (random,
greedy, ε-greedy, etc), and at the subsequent state s′ it needs to identify the maximum Q-value for
s′ and perform the tabular Bellman update

Q(s, a)← (1− α)Q(s, a) + α
(
R(s′, a, s) + γmax

a′
Q(s′, a′)

)
for s; we can assume that hyperparameters such as the learning rate α and the discount factor γ are
both encoded in the RL-module. We use the recursive nature of sketches to combine these two steps:
essentially we describe the process at state s′ and note that the “update previous state” step is empty
if the rl-state sketch S′ does not point to a previous state.

So let S′ be the current rl-state-sketch, which (if it occurred as a result of taking some action a =
〈previous-taken-action 〉at rl-state s) includes a recursive copy of the sketch [〈previous-taken-action
〉, S] and also the value of the reward R(s′, a, s) obtained from this action.

At the bucket h(f(S′)) the Q-learning program-sketch looks up the maximum Q-value of the
available actions at S′ (these may be stored e.g. as a table in the bucket h(f(S′)) or as weights
on the outgoing edges) and uses this to both choose its next action and to compute the reward
R := R(s′, a, s) + γmaxa′ Q(s′, a′) to be accounted to the previous state-action pair (if any). It
returns this information as the compound tuple sketch [[ACTION, 〈taken-action 〉], [REWARD,

27

Under review as a conference paper at ICLR 2022

R]]; recall that 〈taken-action 〉is a recursive sketch that includes the previous state-action pair (if it
exists). Now this action is executed in the environment (which may provide another state S′′ for
the next round), while the knowledge-graph-updating process passes this sketch back to the bucket
h(f(S)) of the previous state-sketch. Its similarity to the edge with matching 〈previous-taken-action
〉component ensures that the reward is accounted to the correct state-action pair, and since the sketch
compounding process essentially produces a weighted average of similar components (with weights
that can be specified by the user/RL-module), this completes the Bellman update.

To see that this is compatible with Jin et al. (2018), observe that we need only change details that
are hardcoded in the RL-module: replace α with αt := (H + 1)/(H + t) where H is the episode
horizon and t is the frequency count for this state-action pair, and add a bias term bt := c

√
H3ι/t

to the reward (c and ι are constants given in (Jin et al., 2018, Theorem 1)). Based on online-to-batch
conversions, the regret can be arbitrarily small when the number of episodes is large enough; thus
we can achieve ε error rate if we have O(SA/ε2) episode samples.

Claim H.4. The above implementation can be extended to include deep Q-learning, where each
state bucket learns and stores a parametrized Q-function for that state.

Claim H.5. Architecture v3 can solve multiple independent RL problems at once, without conflict
between the different sets of Q-values and without needing to know in advance how many separate
problems there are or allocate resources in advance.

Proof. New hash buckets are created by the architecture as new contexts (i.e. rl-states) arise, allow-
ing it to expand dynamically as needed. The Q-values for each state are stored locally within the
corresponding rl-state bucket.

Advantages of using Architecture v3 for Q-learning: Implementing Q-learning in our architecture
comes with several key benefits, including:

• Graceful generalization to continuous state spaces: since f drops the extraneous environ-
mental details from a sketch, the model automatically groups together similar states.

• Learning an environment model: By passing sketches of executed actions back along the
knowledge graph, the outgoing edges of the bucket corresponding to a state s can store not
only the Q-values of state-action pairs (s, a) but also frequency counts of tuples (s′, a, s):
that is, we learn a model of the transition function as a free side-effect.

Remark H.6. While we have focused on tabular Q-learning here for simplicity, we note that many
different RL algorithms could be “dropped in” simply by changing the program-sketch provided to
the RL-module. We have also restricted our attention here to what happens one step back along the
knowledge graph, but by backtracking the sketches further it becomes possible for earlier states to
use this data in future to “look ahead” several steps. Finally, we note that this modular architecture
should also lend itself well to deep Q-learning approaches, where each state bucket learns and stores
a parametrized Q-function for that state; however, the implementation of this is beyond the scope of
this paper.

H.3 MODULAR Q-LEARNING

The real power in our architecture comes from its ability to seamlessly combine RL decision making
with other types of task, e.g. classification. As a simple example, consider a situation where we need
to choose one of a limited number of actions in response to an image of a person displaying one of
several gestures. A single large RL model probably could learn an effective policy for this task,
but since it can’t identify the indirect association image→ gesture→ response to gesture it could
just have easily have learned to react to some spurious patterns in the training dataset. Meanwhile,
our architecture would simultaneously try this approach (i.e. try to learn a policy directly from the
images) and also explore the possibility of using related modules as part of its decision. Assuming
it had already developed a gesture-classification module, pathways that make use of this module
would be consistently high reward and therefore preferred over the direct approach. Indeed, as we
show below, we need not even assume the prior existence of the gesture-classification module: our
architecture can learn to solve both problems simultaneously (assuming it is provided with training
data for both problems).

28

Under review as a conference paper at ICLR 2022

Definition H.7. We define the modular RL problems as follows: suppose we have N environments
with their own corresponding MDPs and rewards, and N ′ classification problems where one identi-
fies the states of the RL. At each time step, uniform randomly, we are either given a labeled sample
of one of N ′ classification tasks, or put into one of the N environment and interact with it for H
steps as in Definition H.2. We assume that the data distribution of state identification task is P .
Definition H.8. A distribution P m-dominates distribution Q if for all x in the sample space, we
have Q(x) ≤ mP (x).

If the data distribution P of state identification during training m-dominates state classification
distributionQi conditioned on state si ∀i = 1, . . . , S, then if classification module can achieve error
rate of ε/m on P , it can also achieve error rate of ε on each Qi. Indeed, let E be the event that we
make an error in classification, then since P (E) =

∑
x∈E P (x) we have that for all i:

Qi(E) =
∑
x∈E

Qi(x) ≤
∑
x∈E

mP (x) = mP (E) ≤ ε.

However, to guarantee P can m-dominate every Qi, then we need m ≥ S. Indeed, consider that the
supports of all Qi are disjoint: Di ∪Dj = ∅ ∀i 6= j where Di = {x : Qi(x) 6= 0}. Then we have

m = m
∑
∀x

P (x) ≥ m
S∑
i=1

∑
x∈Di

P (x) ≥
S∑
i=1

∑
x∈Di

Qi(x) = S.

Intuitively, we are assuming that there is some data-generating distribution P that can cover every x
in the support of each Qi with some properly lower bounded probability mass. An example of such
a P would be the uniform mixture of Q1, . . . , QS . That is P (x) = (1/S)

∑S
j=1Qj(x) ∀x. In this

case, it’s immediate that P can S−dominates each Qi since SP (x) =
∑S
j=1Qi(x) ≥ Qi(x) ∀i.

From another perspective, if P allows us to visit each state si at least µ fraction of the time, then P
can (1/µ)-dominate each Qi.
Theorem H.9. Given a modular RL problem, Architecture v3 figures this connection out automati-
cally and uses the classification module as part of its RL solution.

Proof. This follows by combining modules along the same lines as the proof of Theorem F.4

This demonstrates one of the key points of our architecture: it is capable of handling multiple types
of problem in a uniform way, and hence is able to combine them and exploit the relationships that
arise organically in the knowledge graph. Combined with the fact that it can expand and create
new modules as it discovers new concepts, the result is an extremely flexible architecture capable of
solving complex multi-layered problems.

I CASE STUDY: CARD GAME

Consider a card game where one has to pick a card from the cards in hand that has the same number
as on the top card on the deck on table, the desired module is to “identify card from hand that has
same number as that of top card” and output sketch is “put that card on the table”. This module gets
executed when one hears “make your next move”.

The main sketches in consideration are [AUDIO, “make your next move”], [CARD-ON-TABLE,
〈top-card-sketch 〉], [CARDS-IN-HAND, 〈card-in-hand-sketch 〉], From the on-going game there is
also a sketch [CARD-GAME, [NAME, “sequence”].

Let us assume that the system has already learned about cards and there is a module to recognize
the type of a card that takes as input a card-image [CARD-IMAGE, 〈image-sketch 〉] and produces
a sketch [CARD, 〈card-sketch 〉] that contains the number and type of the card. So 〈card-sketch 〉=
[CARD-DESCRIPTION, {[CARD-NUMBER, 〈number-sketch 〉], [CARD-COLOR, 〈color-sketch
〉], [CARD-SYMBOL, 〈card-symbol-sketch 〉]}]
We will also assume based on knowledge of previous card games that the sketches [CARD-ON-
TABLE, 〈top-card-sketch 〉], [CARDS-IN-HAND, 〈card-in-hand-sketch 〉] are produced from the

29

Under review as a conference paper at ICLR 2022

<card-game-type
-sketch>

<card-1
-sketch> <card-2

-sketch>
GAME-NAME

CARD-DESCRIPTION

<card-number
-sketch>

<card-color-
sketch>

<card-symbol
-sketch>

<card-k
-sketch>

<card-game-situation
-sketch>

<cards-in-hand
-sketch>

<card-on-table
-sketch>

CARD-ON-TABLE

<other-players
-sketch>

CARD-GAME

<card-game-name
-sketch>

<name-sketch>

CARDS-IN-HAND

<card
-sketch>

CARD-DESCRIPTION

<card-number
-sketch>

<card-color-
sketch>

<card-symbol
-sketch>

Figure 4: Relevant sketches in a card game where one has to pick a card from the cards in hand that
has the same number as on the top card on the deck on table. The desired module is to “identify
card from hand that has same number as that of top card” and output sketch is “put that card on the
table”. The main sketches in consideration are [CARD-ON-TABLE, 〈top-card-sketch 〉], [CARDS-
IN-HAND, 〈card-in-hand-sketch 〉] that get triggered on the input [AUDIO, “make your next move”]

visual input [IMAGE, 〈input-image-of-scene] – based on the sketch [CARD-GAME, [NAME, “se-
quence”]] and the sketches that the visual analysis module outputs attention is paid on sketches
related to cards.

The compound sketch ([AUDIO, “make your next move”], [CARD-ON-TABLE, 〈top-card-sketch
〉], [CARDS-IN-HAND, 〈card-in-hand-sketch 〉], [CARD-GAME, [NAME, “sequence”]]) hits a
new hash bucket that needs to learn the specific new module. Since this bucket is empty it may
be initialized from other buckets for similar buckets; if there is a program for another similar card
game it will have the same structure but with a different card-game name. A new program will
get trained for this new game starting from that program. That program will call one program to
“identify the best card in hand” and then another one to “put that card on the table”. Only the former
needs to be modified. The version is simple and can be trained from a few examples: from the
card sketches on hand and the card sketch on top of the table it needs to output the one in hand that
matches the number of the one on table.

J MISC

J.1 CORRESPONDENCE BETWEEN PROGRAMS, MODULES, NETWORKS, EMBEDDINGS

Each embedding in an embedding table in any deep network can be viewed as a “module” that
modifies the “program” defined by the upper layers. Similarly each embedding in a hash table can be
viewed as a “program” embedding. Program embeddings can be interpreted more generally where
they go through some main/global network that generates an encoding of another deep network.

We could also construct new programs by finding a cluster of related programs and doing a low
rank decomposition of their vector representations. The low rank approximation can be viewed as
“subroutines” and the programs can be viewed as combinations of these subroutines.

J.2 CNNS AS SIMPLE RECURSIVE FUNCTIONS

A compound module can “call” other modules. With this ability, there is a simple modular recursive
view of a CNN instead of the normal bottom up view where we start with small patches and keep
combining them to form bigger and bigger patch representations as one goes up the network.

30

Under review as a conference paper at ICLR 2022

In the recursive view, the image goes to a module that handles patches at the higher level that
recursively calls the module for the lower level patches. Given an input image form a set of patches
(of the largest size with the appropriate stride); “call” the module for each of these patches to get
a sketch for each patch; combine all these sketches for these patches to get a single sketch for the
full image. (Note that this is a top down view where the module for the patch of the certain size
recursively calls the module for the patches of the next largest size.)

J.3 TASK ID’S MAY NOT BE PRESENT

Although we have assumed even in v2 that there are some external Task descriptions (that may
not be entirely explicit), in real life we do not get such a separate field but receive only an endless
sequence of sights and sounds. The external task description may in fact also be “inferred” from the
video input – for example the task “PLAY CARD GAME” may be inferred from the context around
the current images or from the the previously seen/heard inputs.

One limitation is that we haven’t gotten into how logic, reasoning, and language could be handled
uniformly. While we believe there could be modules that evolve for these, the conceptual details as
to how they would work in this architecture have not been investigated.

J.4 EXPERIMENT DETAILS

J.4.1 FIVE DIGIT RECOGNITION

For the modular approach, the sub-modules are as follows.

1. For the image segmentation task, the sub-module is a convolutional neural network with
the following layers: a convolutional layer with 32 output channels and 3 × 3 kernel; a
flatten layer; a fully-connected layer with 128 output units; a fully-connected layer with
64 output units, and a fully-connected layer with 5 output units (output layer, with output
being the horizontal segmentation coordinates).

2. For the single digit recongition task, the submodule is a convolutional neural network with
the following layers: a convolutional layer with 32 output channels and 3 × 3 kernel; a
flatten layer; a fully-connected layer with 128 output units; a fully-connected layer with
64 output units, and a fully-connected layer with 10 output units (output layer, with output
being logits of the 10 output classes).

For the end-to-end approach, the model is a convolutional neural network with the following layers:
a convolutional layer with 32 output channels and 3 × 3 kernel; a flatten layer; a fully-connected
layer with 128 output units; a fully-connected layer with 64 output units, a fully-connected layer
with 256 output units, and a fully-connected layer with 10000 output units (output layer, with output
being the horizontal segmentation coordinates).

J.4.2 INTERSECTION OF HALSPACES

For the modular approaches, all the modules are 3-layer fully-connected network. Number of hidden
units for each layer is 10, 50 and 2 (output layer). For the end-to-end approach, the model is a 3-layer
fully-connected network with 100, 500 and 2 units.

For the K = 10 case, we noticed that the final solution doesn’t require all the 10 sub-modules to be
trained first. We repeat the experiment for 30 times and for most times, it trains 7 sub-modules and
the final model uses the output of these 7 modules and the raw input xi to successfully predict the
intersection of 10 halfspaces.

31

	Appendix
	Locality Senstive Hashing
	Architecture
	Sketches Review
	Storing large objects

	Architecture Principles

	Architecture v0
	Architecture v1
	Architecture v2
	Using the Knowledge graph
	Architecture v3: Q-learning and other Reinforcement Learning tasks
	Lifelong reinforcement learning
	 Tabular Q-learning
	One loop of the Q-learning algorithm

	Modular Q-learning

	Case Study: Card Game
	Misc
	Correspondence between programs, modules, networks, embeddings
	CNNs as simple recursive functions
	Task id's may not be present
	Experiment details
	Five digit recognition
	Intersection of halspaces

