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This supplementary document is organized as follows:
Section [0.1] provides the quantitative results for pan-sharpening.
Section [0.2] provides the qualitative experimental results.

Section [0.3] provides more provides more quantitative experimental results over ablation studies.

0.1 Guided Image super-resolution.

The quantitative results for pan-sharpening are summarized in Tables|1| where the best results are
highlighted in bold. From the results, by integrating with our proposed random weights network by
alternative mathematical manifolds, all the reported baselines have achieved consistent performance
gains across all the datasets in terms of all metrics, suggesting the effectiveness of our belief.

0.2 YVisual comparison.

Due to the page limits, the main manuscript has not presented the sufficient visual results of the
reported tasks over the reported baselines. In this section, we provide the representative samples to
validate the effectiveness of our belief over image de-noising task of Figure[I] Figure 2] low-light
image enhancement of Figure[3] As can be seen, integrating with our belief is capable of improving
the visual quality.

0.3 Implementation details of ablation studies.

Initialization strategy. In our work, the default initialization strategy is Kaiming initialization.
To explore the impact of initial mode, we replace the default Kaiming initialization by Xavier
initialization, reported in Table [9]and Table [§]show that replacing the default almost has little impact
on performance, thus verifying the robustness of our belief.

In our experiment, we select two representative random weights network manifolds by Central Differ-
ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.
In detail, we employ the Xavier initialization to weight the convolution kernels within the above
manifolds.

Model architecture. All of the loss networks are implemented by convolution network as default.
To explore the architecture impact, we replace the default CNN by Transformer. The results in Table
and Table 2] demonstrate that replacing it rarely affects the performance.

In our experiment, we select the following random weights network manifolds by Taylor’s Unfolding
Manifold and Invertible Neural Network Manifold for performance verification. In detail, we replace
the convolution part of main body part within Taylor’s Unfolding Manifold by the transformer and
the translation functions F' and G within Invertible Neural Network Manifold by transformer.
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Table 1: Quantitative comparisons of guided image super-resolution.

. WorldView-1I GaoFen2
Model Configurations
PSNRT SSIMtT SAM| ERGAS| PSNRT SSIMtT SAM| EGAS]
Original 41.6903 0.9704 0.0227 09514  47.3528 0.9893 0.0102 0.5479
+Taylor 41.8168 09716 0.0224  0.9276  47.4058 0.9901 0.0101 0.5356
INNformer +CDC 41.8072 09715 0.0224 09276 474121 09902 0.0100 0.5354
+INN 41.8229 09717 0.0223  0.9276  47.4233 09904 0.0100 0.5353
+Reverse 41.7293 09711 0.0226 09276  47.4010 0.9901 0.0101 0.5354
Original 41.7244 09725 0.0220 09506  47.4712 0.9901 0.0102 0.5462
+Taylor 419314 09723 0.0219 09278  47.6132 09911 0.0101 0.5277
SFINet +CDC 41.8943 09719 0.0220  0.9283  47.5990 0.9910 0.0101 0.5281
+INN 419521 09727 0.0217 09278  47.6316 09916 0.0101 0.5275
+Reverse 419217 09722 0.0218 0.9281  47.6227 0.9914 0.0101 0.5275

The reason is that 1) Reverse Filtering Network Manifolds have to stand on the low-pass filters for
convergence maintaining where Multi-scale Gaussian Convolution Module is devised in our paper.
Therefore, the architecture cannot change; 2) Central Difference Convolution Manifold is inborn with
convolution architectures and thus cannot change. To this end, we select the above two samples.

Model depth. For model depth, we change the model depth of loss network by adding the layers.
To ensure a fair comparison, the other factor keeps the same. The results in Table [5 and Table [4]
demonstrate the stable performance.

In our experiment, we select two representative random weights network manifolds by Central Differ-
ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.
In detail, we change the default three-layer Central Difference Convolution and Invertible Neural
Network by seven layers.

Model numbers. In our experiment, we use the single loss network as default. As shown in Table
and Table[6] we employ multiple parallel loss networks to verify the impact of model numbers. The
results indicates that increasing the number of models will improve the performance. It attributes to
the advantages of model ensemble.

In our experiment, we select two representative random weights network manifolds by Central Differ-
ence Convolution Manifold and Invertible Neural Network Manifold for performance verification.
In detail, we change the default single loss network with three ones by 3-3-3 variants and 3-5-7
variants.

Table 2: Ablation studies of model architecture for image enhancement.

Model  Configurations LoL
PSNR  SSIM  NIQE
Original 20.2461 0.7920 4.1586
+Taylor+epochR 20.6018 0.7975 3.8079
SID +Taylor+epochR+Transformer | 20.5864 0.7971 3.8348
+INN+epochR 20.3958 0.7924 3.9210
+INN+epochR+Transformer 203178 0.7944  3.8889
Original 19.8509 0.7769 4.7738
+Taylor+epochR 20.2405 0.7791 4.6721
DRBN  +Taylor+epochR+Transformer | 20.1826 0.7784 4.6968
+INN+epochR 20.1913  0.7769 4.8067
+INN+epochR+Transformer 20.1196 0.7772 4.7163




Table 3: Ablation studies of model architecture for image de-noising.

. SIDD
Model Configurations PSNRT  SSIMf
Original 37.1992  0.8954
+Taylor+epochR 37.3719 0.8954
DnCNN  +Taylor+epochR+Transformer | 37.3560  0.8958
+INN+epochR 37.3318 0.8964
+INN+epochR+Transformer 37.3297 0.8961
Original 39.2372  0.9159
+Taylor+epochR 39.3283 0.9161
MPRnet  +Taylor+epochR+Transformer | 39.2783  0.9160
+INN+epochR 39.3317 0.9162
+INN+epochR+Transformer 39.2756  0.9159

Table 4: Ablation studies of model depth for image enhancement.

Model  Configurations LoL
PSNR  SSIM  NIQE
Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636

SID +CDC(3)+epochR+Depth | 20.3464 0.7915 3.8620
+CDC(7)+epochR+Depth | 20.4258 0.7857 4.4067
+INN+epochR 20.3858 0.7924 3.9210
+INN(3)+epochR+Depth | 20.4946 0.7862 4.1512
+INN(7)+epochR+Depth | 20.2816 0.7959 3.7419
Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756  0.7837 4.7850

DRBN  +CDC(3)+epochR+Depth | 19.9188 0.7808 4.7074
+CDC(7)+epochR+Depth | 19.9769 0.7795 4.8156
+INN+epochR 20.1913  0.7769 4.8067
+INN(3)+epochR+Depth | 20.0330 0.7758 4.5883
+INN(7)+epochR+Depth | 20.1153  0.7787  4.7089




Table 5: Ablation studies of model depth for image de-noising.

Model Configurations SIDD
PSNRt  SSIMt
Original 37.1992  0.8954
+CDC+epochR 37.2784  0.8955
DnCNN  +CDC(3)+epochR+Depth | 37.2218 0.8921
+CDC(7)+epochR+Depth | 37.2923 0.8930
+INN+epochR 37.3218 0.8964
+INN(3)+epochR+Depth | 37.3213  0.8967
+INN(7)+epochR+Depth | 37.3142 0.8967
Original 39.2372  0.9159
+CDC+epochR 39.2821 0.9161
MPRnet  +CDC(3)+epochR+Depth | 39.2814 0.9160
+CDC(7)+epochR+Depth | 39.2740 0.9161
+INN+epochR 39.2729 09162
+INN(3)+epochR+Depth | 39.2758 0.9160
+INN(7)+epochR+Depth | 39.2737 0.9160

Table 6: Ablation studies of model numbers for image enhancement.

Model Configurations LoL
PSNR SSIM  NIQE
Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636
SID +CDC+epochR+Number(357) | 20.4879 0.7991 3.6793
+CDC+epochR+Number(555) | 20.5424 0.7889 3.7738
+INN+epochR 20.3858 0.7924 3.9210
+INN+epochR+Number(357) | 20.3516 0.7843  4.2365
+INN+epochR+Number(555) | 20.3316 0.7911 4.1289
Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756 0.7837 4.7850
DRBN  +CDC+epochR+Number(357) | 20.0200 0.7789  4.6900
+CDC+epochR+Number(555) | 20.0403 0.7750 4.7060
+INN+epochR 20.1913 0.7769 4.8067
+INN+epochR+Number(357) | 20.0510 0.7779 4.6957
+INN+epochR+Number(555) | 20.2572 0.7767 4.6169




Table 7: Ablation studies of model numbers for image de-noising.

Model Configurations SIDD
PSNRt  SSIMt
Original 37.1992  0.8954
+CDC+epochR 37.2784  0.8925

DnCNN  +CDC+epochR+Number(357) | 37.4377  0.8969
+CDC+epochR+Number(555) | 37.3208 0.8948
+INN+epochR 37.3218 0.8964
+INN+epochR+Number(357) | 37.3374 0.8937
+INN+epochR+Number(555) | 37.3581 0.8944
Original 39.2372  0.9159
+CDC+epochR 39.2821 0.9162

MPRnet  +CDC+epochR+Number(357) | 39.2704 0.9161
+CDC+epochR+Number(555) | 39.2764 0.9160
+INN+epochR 39.2729 09162
+INN+epochR+Number(357) | 39.2767 0.9160
+INN+epochR+Number(555) | 39.2818 0.9160

Table 8: Ablation studies of initialization strategy for image enhancement.

. LoL
Model Configurations PSNR SSIM  NIQE
Original 20.2461 0.7920 4.1586
+CDC+epochR 20.4750 0.7999 3.6636
SID +CDC+epochR+xavier | 20.3271 0.7847 4.1454
+INN+epochR 20.3858 0.7924 3.9210
+INN+epochR+xavier | 20.3257 0.7927 4.1187
Original 19.8509 0.7769 4.7738
+CDC+epochR 20.0756 0.7837 4.7850
DRBN  +CDC+epochR+xavier | 20.0136  0.7760 4.7566
+INN+epochR 20.1913  0.7769 4.8067
+INN+epochR+xavier | 20.0948 0.7773 4.6879

Table 9: Ablation studies of initialization strategy for image de-noising.

Model Configurations SIDD
PSNRt  SSIMt
Original 37.1992 0.8954
+CDC+epochR 37.2784  0.8925
DnCNN  +CDC+epochR+xavier | 37.2567  0.8963
+INN-+epochR 37.3218 0.8964
+INN+epochR+xavier | 37.2890 0.8957
Original 39.2372  0.9159
+CDC+epochR 39.2821 0.9161
MPRnet +CDC+epochR+xavier | 39.2768 0.9160
+INN+epochR 39.2729 0.9162
+INN+epochR+xavier | 39.2779  0.9160




DNCNN DNCNN + CDC DNCNN +INN  DNCNN + Taylor DNCNN + ZeroFilter
40.1182/0.9704 40.4719/0.9711 40.4717/0.9713 40.5274/0.9721 40.4463/0.9728

DNCNN DNCNN + CDC DNCNN +INN  DNCNN + Taylor DNCNN + ZeroFilter
40.2250/0.9734 40.5405/0.9743 40.5250/0.9745 40.6596/0.9751 40.5344/0.9759

DNCNN DNCNN + CDC DNCNN +INN  DNCNN + Taylor DNCNN + ZeroFilter
39.0268/0.9420 39.2316/0.9427 39.3163/0.9427 39.4151/0.9441 39.4198/0.9450

DNCNN DNCNN + CDC DNCNN +INN  DNCNN + Taylor DNCNN + ZeroFilter
38.7169/0.9574 39.0844/0.9638 38.8208/0.9652 39.0851/0.9607 39.0718/0.9619

Figure 1: The visual comparison for the image de-noising. We also list the PSNR/SSIM scores under
each case.



MPRNet MPRNet + CDC MPRNet +INN  MPRNet + Taylor MPRNet + ZeroFilter
37.1165/0.9117 37.1444/0.9124 37.2015/0.9126 37.2406/0.9124 37.2445/0.9129

MPRNet MPRNet + CDC MPRNet + INN ~ MPRNet + Taylor MPRNet + ZeroFilter
39.1097/0.9551 39.1373/0.9553 39.1358/0.9552 39.1639/0.9551 39.1567/0.9554

MPRNet MPRNet + CDC MPRNet + INN  MPRNet + Taylor MPRNet + ZeroFilter
38.5677/0.9545 38.6272/0.9548 38.6620/0.9549 38.6597/0.9549 38.6596/0.9550

Figure 2: The visual comparison for the image de-noising. We also list the PSNR/SSIM scores under

each case.

DRBN DRBN + CDC DRBN + INN DRBN + Taylor DRBN + ZeroFilter
18.8312/0.6893 20.1310/0.6912 20.7917/0.6942 20.2745/0.6906 19.4573/0.6912
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DRBN DRBN + CDC DRBN + INN DRBN + Taylor DRBN + ZeroFilter
16.7861/0.8027 18.7092/0.8182 18.6364/0.8123 18.2617/0.8114 18.5937/0.8125

s ik

M,

sSD SID + CDC SID + INN SID + Taylor SID + ZeroFilter
21.7364/0.8388 22.0240/0.8559 22.1109/0.8479 21.9001/0.8444 22.4110/0.8463

Figure 3: The visual comparison for the image enhancement. We also list the PSNR/SSIM scores
under each case.
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