
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TeRF: Text-driven and Region-aware Flexible Visible and
Infrared Image Fusion

Anonymous Author(s)
Submission Id: 2025

ABSTRACT
The fusion of visible and infrared images aims to produce high-
quality fusion images with rich textures and salient target infor-
mation. Existing methods lack interactivity and flexibility in the
execution of fusion. It is unfeasible to express the requirements to
modify the fusion effect, and the different regions in the source
images are treated equally across the identical fusion model, which
causes the fusion homogenization and low distinction. Besides, their
pre-defined fusion strategies invariably lead to monotonous effects,
which are insufficiently comprehensive. They fail to adequately
consider data credibility, scene illumination, and noise degradation
inherent in the source information. To address these issues, we
propose the Text-driven and Region-aware Flexible visible and in-
frared image fusion, termed as TeRF. On the one hand, we propose
a flexible image fusion framework with multiple large language and
vision models, which facilitates the visual-text interaction. On the
other hand, we aggregate comprehensive fine-tuning paradigms
for the different fusion requirements to build a unified fine-tuning
pipeline. It allows the linguistic selection of the regions and effects,
yielding visually appealing fusion outcomes. Extensive experiments
demonstrate the competitiveness of our method both qualitatively
and quantitatively compared to existing state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Image fusion, text-driven, large models, fine-tuning

1 INTRODUCTION
Existing imaging technologies rely on specialized optical systems to
capture and convert radiation information, which generates optical
images with distinct characteristics. However, these images often
provide a limited and partial modality of the diverse information
presenting within the identical scene, thereby failing to adequately
describe the entire scene. In this context, the image fusion tech-
nique has come into being with the objective of extracting pertinent
and complementary information from diverse source images and
amalgamating it into fused images. In this field, visible and infrared
images fusion (VIF) stands out as one of the most widely adopted
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Figure 1: Visual comparisons of VIF between TeRF and four
state-of-the-art methods on the LLVIP dataset.

techniques [33, 35]. Visible images typically capture intricate spa-
tial details and plentiful color in the scene, but are susceptible
to environmental lighting conditions. Infrared images record the
thermal radiation information to reflect the salient characteristics
of targets, but barely carry scene textures and colors. Hence, VIF
aims to generate high-quality images with pronounced saliency
and intricate texture details, as depicted in Figure 1. Harnessing
these advantages, VIF technology holds promise for various appli-
cations, including target detection [18], military surveillance [3],
autonomous driving [22], and others [16].

To date, the process of visible and infrared image fusion can be
delineated into three key stages: feature extraction, feature fusion,
and image reconstruction. Initially, it is imperative to extract rep-
resentative features from the source images by employing specific
transformations or projections. Subsequently, the complementary
features are seamlessly integrated by adopting appropriate fusion
strategies. Finally, corresponding reverse projections are employed
to transform the fused feature back to the common image domain,
thereby facilitating the process of image reconstruction. Generally,
traditional VIF methods rely onmanually designed fusion strategies,
which can be further divided into multi-scale transformation-based
methods, sparse representation-based methods, subspace-based
methods, saliency-based methods, and others, according to the ap-
plied transformation [32, 34]. However, these methods often fall
short in addressing diverse working conditions, as their fusion
performance is constrained by limited linear fitting capabilities.

Over the past few years, deep learning has facilitated leaps and
bounds in the visible and infrared fusion task owing to its powerful
non-linear fitting ability. According to the structures of deepmodels,
deep-learning-based methods can be categorized into convolution
neural network (CNN)-based methods, auto-encoder (AE)-based
methods, generative adversarial network (GAN)-based methods,
transformer-basedmethods, and others. CNN-basedmethods [9, 14]
leverage the remarkable local connectivity characteristics to explore
the hierarchical patterns and features, which promotes the integra-
tion of complementary information to synthesize high-quality fused
images. AE-based methods [36, 40] typically contain a two-terminal

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Overview of our proposed TeRF.

structure, where the front encoder seeks the efficient representation
of the source images and the end decoder restores them with mini-
mal loss. After that, the encoded representations of different source
images are combined under the predefined fusion strategy before
generating fused images through the decoder. GAN-based meth-
ods [15, 19, 23] utilize multiple generators and discriminators to ex-
plore the feature distributions of paired source images and perform
appropriate constraints to manipulate the style and the content of
the fused images. Transformer-based methods [17, 24, 27, 37] incor-
porate a novel attention mechanism that captures the long-range
dependencies to focus on relevant parts of the source information
while downplaying the irrelevant information. This effectively im-
proves network efficiency and enhances convergence performance.

Despite the effectiveness of deep-learning-based methods in inte-
grating complementary information from heterogeneousmodalities
of visible and infrared images [11, 28, 43], there still exist several
limitations. On the one hand, interactivity and flexibility are ab-
sent in the execution of fusion. It is unavailable to express the
requirements to modify the corresponding fusion effects since the
models lack a command interface. Besides, existing methods uni-
formly process various regions of the source images, which leads
to fusion homogenization and low distinction across the identi-
cal model. Essentially, it retains the generality but sacrifices the
diversity of fusion results. On the other hand, the predefined fu-
sion strategies are insufficiently comprehensive in the credibility
of source information, refinement of lighting conditions, and noise
removal. Specifically, current models struggle to effectively allocate
the varying degrees of fusion tendency for different source images,
presenting a singularity that cannot be applied to all scenarios. In
addition, they lack adaptability in handling inappropriate light con-
ditions, where texture and color fidelity deteriorate within the scene.
Moreover, noise is inadequately taken into account as it inevitably
exists and reduces the image quality. These issues lead to poor
information reliability, weak information discovery ability, and low
information fidelity, which seriously limits the scope of application
and performance of existing fusion methods [7, 14, 18, 41].

To address these challenges, we integrate the advantages of pre-
trained large vision models, large language models, and multiple
fine-tuning paradigms to achieve Text-driven and Region-aware
Flexible visible and infrared image fusion, termed TeRF, as shown
in Figure 2. For interactivity and flexibility, we introduce the lan-
guage model LLaMa [25] as a text analyzer, which leverages the
in-context learning to accurately recognize the relevant prompts
for segmentation targets and fine-tuning tasks. After that, we com-
bine the vision models to achieve region-aware effects, where the
GroundingDINO [13] and SAM [5] models cooperate for the fine-
grained semantic segmentation in a successive manner. Benefiting

from the priors of the large models, text-driven interaction and
region-aware flexibility can be effectively achieved. For the incom-
pleteness of fusion strategies, a high-performance fusion backbone
and a unified fine-tuning pipeline are devised. The former pro-
vides high-quality fusion results, serving as precursors with en-
hanced visual effects and improved detection performance. The
latter leverages comprehensive fine-tuning paradigms to fully fa-
cilitate multi-task feasibility, which comprises the modification of
fusion tendency, the adjustment of illumination, and the removal
of noise. This effectively improves the completeness of the fusion
strategies and the practicality in various scenarios. As illustrated
in Figure 1, our basic performance outperforms the representative
methods, and we can linguistically modify the fusion effects on
specified regions in a continuous manner(I-III). Our contributions
are summarized below:

• We propose a text-driven and region-aware framework for
VIF with high interactivity and flexibility. It ensembles the
large language and visionmodels for linguisticallymodifying
the fusion effects of different regions.

• A high-performance fusion backbone is devised to attain su-
perior fusion precursors. Furthermore, a unified fine-tuning
pipeline is constructed for the flexible fusion modification,
which fully concerns the comprehensive fusion strategies.

• Extensive experiments are conducted to demonstrate the
superiority of our method in terms of interactivity, flexibility,
and completeness both qualitatively and quantitatively.

2 METHODOLOGY
For convenience and generality, the used notations are summarized
here. Two heterologous source images including infrared image
and visible image are denoted as 𝐼𝑖𝑟 and 𝐼𝑣𝑖 , respectively. The fused
image generated by the pretrained fusion network F (·) is denoted
as 𝐼𝑓 , while the image acquired by fine-tuning pipeline T (·) is
defined as 𝐼𝑆 . The employed LLaMa for text parser is determined as
𝛹 (·). The applied visionmodel for text-assisted region segmentation
is defined as R(·), which consists of GroundingDINO and SAM.

2.1 Overview of The Framework
The realization of interactivity and flexibility within TeRF is illus-
trated in Figure 3. To start with, we define the instruction prompts
with a few examples and demonstrations, thereby fine-tuning the
LLaMa to accommodate entity recognition and text classification.
After that, the predefined instruction prompts as well as input text
commands 𝝋 are combined together to form the contextual informa-
tion, which enables the large language model to generate the output
in the specific format from the provided demonstration in the in-
context learning manner. Subsequently, the segmentation prompts
𝝋𝑠𝑒𝑔 and fine-tuning prompts 𝝋𝑡𝑎𝑠𝑘 are split and simplified, which
can be formulated as:

⟨𝝋𝑠𝑒𝑔, 𝝋𝑡𝑎𝑠𝑘 ⟩ =𝛹 (𝝋) . (1)

Meanwhile, the fusion of visible and infrared images is also being
implemented. The pre-trained fusion model is devoted to synthesiz-
ing the fused result 𝐼𝑓 by integrating salient target information and
rich texture information from the source images. In this way, the
fused image potentially yields enhanced visual effects and improved
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Figure 3: The detailed framework of TeRF.

detection performance. This process can be defined as:

𝐼𝑓 = F (𝐼𝑖𝑟 , 𝐼𝑣𝑖 ;𝜃F), (2)

where 𝜃F is the pretrained parameters of fusion network. Then
the simplified prompts as well as fused images are served for both
large vision models and fine-tuning pipeline. 𝝋𝑠𝑒𝑔 is embedding
into token by predefined bert-based encoder [2] at first. Subse-
quently, it assists the pre-trained vision models in locating the
target and segmenting the pertinent regions, ultimately generating
a set of text-related segmentation masks. Notably, this process is
in a successive manner. At first, GroundingDINO simultaneously
receives textual and visual signals, leveraging them to generate
bounding boxes as visual cues. These cues provide a coarse localiza-
tion of the target, facilitating subsequent fine-grained segmentation
by the SAM model. Given that SAM lacks an interface for direct
text-to-semantic segmentation, such a cascaded approach becomes
necessary. The entire process can be denoted as:

𝑀𝑆 = R(𝐼𝑓 , 𝝋𝑠𝑒𝑔), (3)

where 𝑀𝑆 stands for the collected semantic masks. At the same
time, 𝝋𝑡𝑎𝑠𝑘 triggers the switch of the fine-tuning pipeline, where the
task-related fine-tuning paradigm is activated for the modification
of the fusion effect. It can be described as:

𝐼 𝑖𝑆 = T (𝐼𝑖𝑟 , 𝐼𝑣𝑖 , 𝐼𝑓 , 𝝋𝑡𝑎𝑠𝑘 ;𝜃𝑖𝑆 ), (4)

where 𝐼 𝑖
𝑆
represents the 𝑖𝑡ℎ fine-tuning image and 𝜃𝑖

𝑆
are the learn-

able parameters for the specific tasks. At last, a set of fine-tuning
images 𝐼𝑆 along with the set of corresponding masks are aligned to
merge the final outputs, as formulated below:

𝐼𝑆 =

𝑁∑
𝑖=1

𝑀𝑖
𝑆 ⊙ 𝐼 𝑖𝑆 + (1 −𝑀𝑖

𝑆 ) ⊙ 𝐼𝑓 , (5)

where𝑀𝑖
𝑆
denotes the 𝑖𝑡ℎ masks, 𝑁 represents the total number of

masks, and the symbol ⊙ stands for the element-wise addition.

2.2 Structure Designs
As aforementioned, two major parts of designed networks are the
predefined fusion network and fine-tuning pipeline.

The former network designs are illustrated in Figure 4. The in-
frared image 𝐼𝑖𝑟 and visible image 𝐼𝑣𝑖 are concatenated together and
sent to the feature extraction module at first. It contains a convolu-
tional layer with PReLU(·) as activation in the front and a two-layer
convolutional layer with PReLU(·) in the end. Subsequently, three
residual dense blocks are employed to perform hierarchical feature
exploration. These features are then sent to the feature refinement
module, which comprises three consecutive convolutional layers
and a ReLU(·) activation function at the end. After that, the pre-
ceding features are expended in the channel dimension, which are
packed into transformer-based attention blocks to enhance the rele-
vant features and weaken the others. At last, features flow into the
feature integration module, which contains a front convolutional
layer, a pixel shuffle layer [10], and an end convolutional layer.

The latter network designs are represented in Figure 5. The basic
element of the fine-tuning pipeline is the lightweight fine-tuning
unit, which is constituted by three repeated convolutional layers
with a ReLU(·) activation at the head and a final convolutional layer
at the tail. Depending on different fine-tuning tasks, a variable num-
ber of units are employed. In cases of a tendency bias towards the
fusion effect, it suffices to unlock the predefined fusion network
and perform minor optimization. In cases of illumination adjust-
ment, three fine-tuning units are employed to improve the quality
of exposure. As for denoising tasks, a single fine-tuning unit is
introduced for noise estimation and removal.

2.3 Loss Functions
The purpose of VIF is to retain the ample spatial information and
the salient information of the source images. Hence, we strip away
the spatial and color attributes from RGB space to YCrCb space.
Accordingly, we preserve the maximum intensity and gradient of
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the source images on the 𝑌 channel in order to fulfill the purpose,
which can be expressed as below:

L𝑌 = ∥𝑌𝑓 −max(𝑌𝑖𝑟 ,𝑌𝑣𝑖 )∥1+∥∇𝑌𝑓 −max(∇𝑌𝑖𝑟 ,∇𝑌𝑣𝑖 )∥1, (6)

where 𝑌( ·) is the Y-channel of each image, ∇ stands for the Sobel
operation, and ∥ · ∥1 represents 𝑙1-norm. To ensure minimal chro-
matic aberration in the fused images, we constrain them to align
closely with visible images in the other two channels. It can be
formulated as:

Lcolor = ∥𝐶𝑟 𝑓 −𝐶𝑟𝑣𝑖 ∥1 + ∥𝐶𝑏 𝑓 −𝐶𝑏𝑣𝑖 ∥1, (7)

where 𝐶𝑟 ( ·) and 𝐶𝑏 ( ·) are the Cr-channel and Cb-channel of the
corresponding source image, respectively. Besides, we devise a
structural consistency loss to constrain the structures of fused
images and source images to be similar, which can be defined as:

Lssim =
(
1 − SSIM(𝐼𝑓 , 𝐼𝑣𝑖 )

)
+
(
1 − SSIM(𝑌𝑓 , 𝑌𝑖𝑟 )

)
, (8)

where SSIM(·) computes the structural similarity of the image pair.
Concerning the above three points, the overall loss functions can
be formulated as below:

Lfuse = 𝛼L𝑌 + 𝛽Lcolor + 𝜂Lssim, (9)

where 𝛼 , 𝛽 and 𝜂 are the trade-off hyper-parameters.

2.4 Multi-task Accessibility
2.4.1 Visible or Infrared Attribute Inclination. VIF can be viewed
as a generative task without departing from the source informa-
tion. Hence, the variety of the fusion effect is inseparable from
the constraints of the source information. The fused and source
images are packed into the updated fusion models to execute the
fusion tendency by reformulating the loss function. To preserve
the spatial details, gradient-related losses remain unchanged, while
modulation is performed through intensity and structure-related
terms. For the inclination of visible attribute, L𝑌 and Lssim are
redefined as L𝑣𝑖∗

𝑌
and L𝑣𝑖∗

ssim:

L𝑣𝑖∗
𝑌 == ∥𝑌𝑓 −𝑌𝑣𝑖 ∥1+∥∇𝑌𝑓 −max(∇𝑌𝑖𝑟 ,∇𝑌𝑣𝑖 )∥1, (10)

L𝑣𝑖∗
ssim =

(
1 − SSIM(𝐼𝑓 , 𝐼𝑣𝑖 )

)
. (11)

Correspondingly, for the inclination of the infrared attribute, they
are redefined as L𝑖𝑟∗

𝑌
and L𝑖𝑟∗

ssim:

L𝑖𝑟∗
𝑌 == ∥𝑌𝑓 −𝑌𝑖𝑟 ∥1+∥∇𝑌𝑓 −max(∇𝑌𝑖𝑟 ,∇𝑌𝑣𝑖 )∥1, (12)

L𝑖𝑟∗
ssim =

(
1 − SSIM(𝑌𝑓 , 𝑌𝑖𝑟 )

)
. (13)

2.4.2 Enhance or Weaken The Illumination. Following the classical
Retinex theory [6], an image can be decomposed into the product
of a reflectance map 𝑅 and an illuminance map 𝐿, with the addition
of noise 𝑁 . Among them, 𝑅 describes the intrinsic property of
the captured scene, and 𝐿 represents the illumination intensity
emitted by the light source. Consequently, within the framework
of RRDNet [42], we employ three independent fine-tuning units to
extract these components and appropriately adjust the illuminance
map. The devised loss can be formulated as below:

L𝑟 = ∥𝐼𝑓 − (𝑅 ⊙ 𝑆 + 𝑁 )∥1 + ∥𝑆 − 𝑆0∥1 + ∥𝑅 − 𝐼

𝑆
∥1, (14)

L𝑡 = ∥ (∇𝑥𝑆)2
𝐺 ◦ ((∇𝑥𝑌𝑓 )2)

∥1 + ∥
(∇𝑦𝑆)2

𝐺 ◦ ((∇𝑦𝑌𝑓 )2)
∥1, (15)

L𝑛 = ∥𝐼𝑓 ⊙𝑁 ∥𝐹 +
1
𝜆𝑛

[
∥𝑤𝑛 (∇𝑥𝑅)2∥1+∥𝑤𝑛 (∇𝑦𝑅)2∥1

]
, (16)

where 𝑆0 is the maximum value of the RGB channel, 𝐺 ◦ (·) is the
gaussian filter. ∇𝑥 and ∇𝑦 are the Sobel operators in the horizon
and vertical directions, respectively. 𝑤𝑛 equals normalization of
1/

(
𝐼𝑓 ⊙ (∇𝑥𝑅)2 ⊙ (∇𝑦𝑅)2

)
. The total loss is denoted as:

Llumin = L𝑟 + 𝜆𝑡Lt + 𝜆𝑛Ln, (17)
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where 𝜆𝑡 , 𝜆𝑟 and 𝜆𝑛 are the trade-off parameters. After the extrac-
tion of the key components, we perform gamma correction on the
illumination map for the reconstruction of the enhanced image.

2.4.3 Noise Removal. As the pretrained fusion model cannot pro-
vide denoising priors, a fine-tuning unit is introduced additionally.
Following the framework of ZSN2N [21], the unit is optimized using
the following loss functions to achieve noise removal:

Lres = ∥𝐷1 (𝑥) − 𝑓 𝜃 (𝐷1 (𝑥)) − 𝐷2 (𝑥)∥22+
∥𝐷2 (𝑥) − 𝑓𝜃 (𝐷2 (𝑥)) − 𝐷1 (𝑥)∥22,

(18)

Lcons =∥𝐷1 (𝑥) − 𝑓𝜃 (𝐷1 (𝑥)) − 𝐷1 (𝑥 − 𝑓𝜃 (𝑥))∥22
+ ∥𝐷2 (𝑥) − 𝑓𝜃 (𝐷2 (𝑥)) − 𝐷2 (𝑥 − 𝑓𝜃 (𝑥))∥22,

(19)

where 𝑥 is a noise image, 𝐷1 and 𝐷2 are the manually designed
kernels for down-sample operation to derive the paired noise image,
𝜃 is the parameters of the fine-tuning unit 𝑓 . The total loss functions
L𝑁 2𝑁 can be expressed as:

L𝑁 2𝑁 = Lres + Lcons, (20)

where Lres yields the residual information constraints and Lcons
provides the consistency constraints for better performance as well
as avoiding the over-fitting.

2.4.4 Repeatability and Continuity for Fine-tuning. When the text
instructions involve different requirements for effects or regions,
the fine-tuning units are reinitialized and optimized accordingly.
However, when it is required to conduct identical fine-tuning tasks
for the same region consecutively, it is imperative to guarantee
that the effects get better as the increase of fine-tuning iterations.
Regarding the inclination of the source attribute, the fusion net-
work reloads the previous model updated in the last fine-tuning
iteration and continues optimization for the fixed epochs. For illu-
mination adjustment, as the reflectance map of the image is inde-
pendent and stays unchanged, It simply necessitates performing
corresponding transformations on the illumination map multiple
times. Concerning the noise removal, the original noise prior re-
mains unchanged, but more optimization epochs are performed to
continuously improve the performance of the reloaded model. In
summary, comprehensive fusion strategies are fully developed.

3 EXPERIMENTAL RESULTS AND ANALYSIS
3.1 Experiment Settings
3.1.1 Datasets and Benchmark. We conduct fusion performance
validation on three different datasets, namely RoadScene, MSRS,
and LLVIP. RoadScene datasets contain a total of 221 visible and
infrared image pairs. We randomly allocate 167 pairs for training
and validation and 54 pairs for testing. MSRS datasets are officially
divided into 1803 image pairs for training and 361 image pairs for
testing with day-time and night-time labels. LLVIP datasets include
a large number of source image pairs, most of which are captured at
different time with fixed camera angles. We keep the default 12025
pairs of source images as the training set and select 136 image pairs
with significant content differences from the given 3463 pairs of
test images as the test set. Our method is compared with eight deep-
learning-based state-of-the-art fusion algorithms, i.e, DDFM [38],

FusionGAN [20], DIDFuse [39], Res2Fusion [29], RFNNest [8], SD-
Net [31], LRRNet [9], TarDAL [12]. For quantitative assessment,
five metrics are selected to objectively evaluate the fusion perfor-
mance, including average gradient (AG) [1], structural similarity
index (SSIM) [26], visual information fidelity (VIF) [4], mutual in-
formation (MI), and gradient-based quality index 𝑄𝐴𝐵/𝐹 [30].

3.1.2 Training Configuration. TeRF comprises two trainable parts,
including a fusion network and a fine-tuning pipeline. During the
training process of the fusion network, the total training epoch is set
as 100 and the batch size is set as𝑏 = 32. The learning rate is 3×10−4
with the default Adam optimizer. The hyper-parameters are fixed
as follows: 𝛼 = 1, 𝛽 = 1, 𝜂 = 0.1. Regarding the fine-tuning pipeline,
the inclination of the visible or infrared attributes is conducted by
the meticulously regulating fusion network. The learning rate is
reduced to 8 × 10−5 to optimize for 50 epochs per time. As for the
illumination adjustment, trade-off parameters of the loss functions
are defined: 𝜆𝑡 = 1, 𝜆𝑛 = 5000. The learning rate is set as 5 × 10−4
and the fine-tuning epochs are set to 500. Besides, the learning
rate for noise removal is 1 × 10−3 with optimization for 100 epochs
per time. All the parameters of the fine-tuning units are initialized
by Xavier initialization and are equipped with the default Adam
optimizer for optimization. All the experiments are conducted on a
desktop with a 2.6GHz AMD EPYC 7H12 CPU, NVIDIA GeForce
RTX 3090, and 128 GB RAM memory.

3.2 Comparative Experiment
3.2.1 Qualitative Comparisons. The visual comparisons over three
datasets are depicted in Figure 6. Evidently, FusionGAN emphasizes
brightness overly at the expense of fine details. RFNNest fails to
preserve sufficient spatial information and yields ambiguous effects.
LRRNet and SDNet effectively retain the texture details albeit at
the expense of color fidelity, which leads to diminished luminance.
TarDAL and DDFM maintain the balance of color information and
salient information better, but the contrast of the fusion result is
not high enough. In particular, when visible information and in-
frared information are completely opposite, the fusion strategy
adopted by DIDFuse leads to information cancellation and distor-
tion. Res2Fusion insufficiently integrates the infrared information,
which reduces the saliency of targets. In contrast, our method effec-
tively retains the ample textures within the scenes while rationally
integrating salient information from the source images. Moreover,
the applied fine-tuning paradigms further enhance the visual effect
of the fusion results with the assistance of texts, which showcases
flexibility and interactivity. Consequently, our method achieves
favorable results and outperforms others.

3.2.2 Quantitative Assessment. To further validate the competitive-
ness of our approach, we conduct the quantitative evaluation of
five metrics. For fairness, we exclusively compare the performance
of our baseline with other methods, and the impacts of fine-tuning
tasks are individually discussed in the next section. The quantitative
results are reported over three datasets in Table 1. Upon analysis
of the results, our basic fusion model achieves the top scores of all
five metrics on both MSRS and LLVIP datasets. It indicates that our
method retains rich gradient information and maintains the highest
fidelity of source information. However, our baseline attains the



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 2025

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

DDFM DIDFuse FusionGAN LRRNet

Res2Fusion SDNet

Visible

Infrared Our baseline

TarDALRFNNest

“Reduce the illumination of 
the trees and buildings”

“Bias the fusion effect of the 
road towards infrared image”

“Make the letters more 
detailed”

DDFM DIDFuse FusionGAN LRRNet

Res2Fusion SDNet

Visible

Infrared Our baseline

TarDALRFNNest

“Enhance the illumination of 
the trees”

“Boost the brightness
of the bush”

“Elevate the luminance 
of the cone mark”

DDFM DIDFuse FusionGAN LRRNet

Res2Fusion SDNet

TarDALVisible

Infrared Ours baseline

RFNNest

“Improve the visiblity
of the cars”

“Enhance the illumination 
of the trees”

“Amplify the illumination
of the road”

Figure 6: Qualitative comparison of RoadScene, MSRS, and LLVIP datasets from top to bottom, respectively.

Table 1: The quantitative results over three datasets. The best and the second best values are highlighted by bold and underline,
respectively. The up arrows indicate higher values correspond to better results.

Method RoadScene MSRS LLVIP
AG↑ SSIM ↑ VIF↑ MI ↑ 𝑄𝐴𝐵/𝐹↑ AG↑ SSIM ↑ VIF↑ MI ↑ 𝑄𝐴𝐵/𝐹↑ AG↑ SSIM ↑ VIF↑ MI ↑ 𝑄𝐴𝐵/𝐹↑

DDFM 4.3445 0.6905 0.6349 2.1311 0.5003 2.7070 0.7088 0.7420 1.8423 0.4729 2.3232 0.6475 0.5489 1.7080 0.2196
FusionGAN 3.4935 0.6173 0.2809 1.9817 0.2570 2.4327 0.5575 0.3335 1.2951 0.1822 4.3900 0.5276 0.5141 1.9021 0.3790
DIDFuse 3.7352 0.7262 0.5992 2.1793 0.4389 2.7800 0.6179 0.4197 1.5337 0.2360 2.6855 0.4472 0.4428 1.6878 0.3038

Res2Fusion 4.0473 0.6410 0.5800 2.0653 0.4283 2.3889 0.3622 0.3941 1.5902 0.3477 2.8024 0.3545 0.3322 0.9078 0.2381
SDNet 3.8387 0.6822 0.4474 2.2649 0.3774 2.2093 0.6530 0.4318 1.9996 0.2338 2.8215 0.6517 0.5750 2.2802 0.3400
RFNNest 3.2002 0.6466 0.5421 2.0148 0.3159 2.3240 0.6885 0.6547 1.6982 0.3899 2.3802 0.6667 0.6166 1.7312 0.2791
TarDAL 3.9925 0.6868 0.5597 2.3469 0.3993 3.2730 0.5093 0.6728 1.8340 0.4255 2.0986 0.5911 0.5422 1.6904 0.2155
LRRNet 4.0987 0.5675 0.3203 1.9262 0.2625 2.8547 0.5954 0.5413 2.0256 0.4545 2.8259 0.6278 0.5319 1.5831 0.4091
Ours 5.1801 0.7041 0.6678 2.5579 0.5912 3.4806 0.7114 0.9472 2.9170 0.6665 4.3990 0.6775 0.9429 3.0141 0.7006

best performance across AF, VIF, MI, and 𝑄𝐴𝐵/𝐹 but ranks second
in SSIM on RoadScene datasets. This may be attributed to the sig-
nificant disparity between visible and infrared image information,
making it difficult for the fused image to simultaneously accom-
modate the structural similarities of both. In general, our method
surpasses others and is the most competitive.

3.3 Impact of Fine-tuning Tasks
We conducted a series of experiments to assess the impacts of fine-
tuning tasks on the RoadScene datasets. The visual comparisons
are illustrated in Figure 7, while the metrics evaluation is presented
in Table 2. Each task is performed once across the entire region
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Table 2: Quantitative results of the different fine-tuning
tasks on the RoadScene dataset.

Category AG↑ SSIM ↑ SF ↑ 𝑄𝐴𝐵/𝐹↑ EN ↑ SD ↑
Baseline 5.1801 0.7041 7.5797 0.5912 7.1221 14.5694

(I) 5.2003 0.6739 7.5821 0.6191 7.5234 18.2078
(II) 3.1420 0.6743 5.6145 0.4150 6.7444 12.5711
(III) 5.0511 0.6515 7.5760 0.5051 6.7977 12.3864
(IV) 5.2512 0.7009 7.6138 0.6245 7.3150 16.6660
(V) 8.5599 0.4670 12.1157 0.4023 7.2400 14.5627
(VI) 6.6462 0.5741 10.1196 0.4235 7.2187 14.3155
(VII) 5.5428 0.6596 8.3990 0.5106 7.1489 14.3491

Visible image Infrared image

Fusing with clean visible image (V) Fusing with noisy visible image (VI) Denoising noisy fused image

(I) Infrared inclination

Noisy visible image

(II) Visible inclination (III) Enhance illumination (IV) Reduce illumination

Denoised visible image (VII) Fusing with denoised visible image

Figure 7: Fine-tuning example on the whole fusion image.

of the source images. (I) and (II) are the inclination of infrared
and visible attributes, respectively. (III) and (IV) are on behalf of
illumination enhancement and reduction, respectively. Concerning
the facts that the fused image lacks the ground-truth as a reference
and noise degradation is always imposed on the visible images, we
simulated the (V) by fusing with Gaussian noisy visible images. The
assessments are performed between them and noise-free source
images. (VI) conducts noise removal for the fused images of (V)
directly, while (VII) denoises the noisy visible image first and then
performs fusion to generate the fused images. Furthermore, we
evaluate results on two reference metrics SSIM and 𝑄𝐴𝐵/𝐹 , and
four source-free metrics AG, spatial frequency (SF), entropy (EN),
and standard deviation (SD).

As for the inclination of source attributes, the gradient-related
indicators (e.g. AG, SF, 𝑄𝐴𝐵/𝐹 ) of (I) increase, while these of (II)
decrease. It indicates that the brightness changes of infrared im-
ages are drastic on this dataset. In addition, EN and SD also keep
the same change in (I) and (II). Since fine-tuning approaches are
not for neutral fusion effects, the value of SSIM inevitably reduces.
For the illumination adjustment, the two fine-tuning methods are
completely opposites. All the metrics expect for SSIM, get lower in
(III) while higher in (IV). Compared to the baseline, enhancing illu-
mination leads to a decrease in these metrics as most scenes in the
datasets may be overexposed. Conversely, reducing illumination
leads to a more balanced distribution of information. Similarly, both
approaches make the fused information deviate from the source
information, inevitably leading to a decrease in SSIM. Regarding
noise removal, it is observed that the introduction of noise signifi-
cantly deteriorates the image quality as the value of most metrics
gets worse. However, the increase in AG and SF can be attributed to
the alteration of intensity coherence caused by noise. As fusion can

Visible Infrared Baseline 1 2 3

Increase the brightness of the 
trees, raise the luminance of 
the trees, boost the brightness 

level of the trees.

Lower the luminance of the 
trees, darken the trees area, 
reduce the brightness of the 

trees.

Make people's fusion effect 
bias towards infrared 

perception, make person more 
salient, promote the infrared 

fusion effect of people.

Bias the fusion effect of 
person towards visible light, 
enhance the person's detail, 

direct the visible attributes of 
person.

Remove noise from the road 
path, Clean up the road path 
by reducing noise, eliminate 

noise from the road path.

Figure 8: Examples of performing the fine-tuning on the
same region consecutively with similar text instructions.

alter the priors of noise originating from the source image, fusing
with the denoised source image is better than directly denoising
the noisy fused image. Credibly, noise removal can restore most
metrics and visual effects.

3.4 Text-driven Region-aware Fusion
Due to the excessive number of regions in the image, artificial one-
to-one text modulation is not feasible. Therefore, we present qualita-
tive results in Figures 8 and 9 for two different configurations. One
involves consecutively employing the same fine-tuning effect for
the same region with similar texts, the other is fine-tuning different
areas randomly with different texts. It is shown that our approach
can accurately analyze segmentation targets and fine-tuning tasks
from different text representations. When performing the same fine-
tuning tasks repeatedly, it can progressively enhance the effects. In
addition, when dealing with multi-objective fine-tuning tasks, it
can harmoniously integral different effects of different objectives.
In general, the high-quality fine-tuning results verify that TeRF
achieves flexible image fusion in handling diverse tasks and targets.

3.5 Time Consuming and Parameters
Furthermore, we conduct the efficiency experiments to record test
time consumption and model parameters for all methods, as de-
tailed in Table 3. The majority of deep methods exhibit high speed
in processing test image samples. However, the diffusion-based
method DDFM necessitates an amount of time for optimizing by
performing multi-step noise inference. In comparison, our base-
line demonstrates superior performance albeit at the expense of
parameters and time, which can be attributed to the incorporation
of multiple dense connections and the transformer-based attention
mechanism. Hence, it is generally acceptable. In addition, we also
provide the running time for each fine-tuning task. 𝐹×0 represents
the modification of the fusion attributes without fine-tuning unit.
𝐹×1 refers to the noise removal task with single unit and 𝐹×3 em-
ploys three units to adjust the illumination. Obviously, the time
cost for fine-tuning is relatively high. Because model training and
testing are performed as a whole, the running time includes both
of them. However, other deep learning methods require extensive
pre-training on large datasets before conducting fast testing.
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Figure 9: Examples of performing the fine-tuning consecutively with different text instructions.

Table 3: Computational efficiency comparison with eight SOTA fusion methods.

Method DDFM FusionGAN DIDFuse Res2Fusion SDNet RFNNest TarDAL LRRNet Ours 𝐹×0 𝐹×1 𝐹×3

Time (s) 49.0303 0.0276 0.0248 0.0378 0.0309 0.0826 0.0578 0.0305 0.0814 26.8641 6.2163 33.5312
Parameters (M) 552.663 0.926 0.260 0.098 0.064 30.097 0.296 0.196 1.765 1.765 0.0445 0.1281

Table 4: Detection performance validation on the LLVIP
dataset. Bold indicates the best, and underline indicates the
second best.

Precision Recall mAP
@0.50 @0.75 @[0.5:0.95]

Infrared 0.823 0.762 0.854 0.566 0.534
Visible 0.771 0.626 0.723 0.340 0.391
DDFM 0.868 0.722 0.847 0.547 0.518

FusionGAN 0.872 0.749 0.859 0.560 0.520
DIDFuse 0.874 0.738 0.850 0.514 0.508

Res2Fusion 0.851 0.751 0.843 0.523 0.503
SDNet 0.860 0.755 0.853 0.573 0.529
RFNNest 0.835 0.741 0.844 0.549 0.515
TarDAL 0.806 0.762 0.832 0.501 0.489
LRRNet 0.860 0.757 0.857 0.556 0.522
Baseline 0.875 0.773 0.867 0.610 0.544
Ours∗ 0.879 0.781 0.870 0.613 0.545

3.6 Performance on High-level Task
As aforementioned, we leverage the prior within large vision mod-
els to achieve region-aware fusion. It may potentially introduce
unfairness in comparing the performance of high-level vision tasks
using fine-tuning results. Therefore, We compare the detection
performance of our baseline with other methods to verify the im-
provement of downstream fusion performance on high-level tasks.
As source attribute inclination alters the characteristics of fused
images, the quality of their detection performance largely depends
on the original source images. We utilize general text prompts for
the illumination adjustments of primary targets and corresponding
background to verify priors from large models as well as fine-tuning
can promote detection performance, which is denoted as Ours∗.
We adopted YOLOv81 as the object detection backbone and fine-
tuning it on the LLVIP datasets. The qualitative comparisons are

1https://github.com/ultralytics/ultralytics

Visible

Infrared

DDFM DIDFuse FusionGAN LRRNet

Res2Fusion SDNet TarDALRFNNest

Ours

Ours*

Figure 10: Qualitative comparison of object detection perfor-
mance on the LLVIP datasets.

displayed in Figure 10. It is obvious that our baseline has higher de-
tection performance, while other methods miss detections or have
lower confidence. In addition, the fine-tuning results improve the
detection performance as well as visual appeal. Regarding the quan-
titative assessments, five metrics are provided, including precision
rate, recall rate, and mean average precision (mAP) with different
threshold values. The results are presented in Table 4. Clearly, our
method achieves the highest scores in all five provided metrics,
which indicates that our method is the most competitive in terms
of performance for object detection. In general, the fine-tuning as
well as the priors from the large models improves the detection
performance further.

4 CONCLUSION
This work proposes a text-driven and region-aware flexible visible
and infrared image fusion, termed as TeRF. Multiple large models
including LLaMa, GroundingDINO, and SAM, are encompassed
to improve the interactivity and flexibility of VIF. Besides, a high-
performance fusion network and a fine-tuning pipeline are devised
for comprehensive fusion strategies. The former component pro-
vides visually appealing fusion precursors with dense connections
and the transformer-based attention mechanism. The latter part
fully concerns the data credibility, scene illumination, and noise
degradation inherent in the source information with unified struc-
tures, which improve the information reliability and fidelity. All in
all, TeRF allows linguistically segmenting the specific region and
modifying the fusion effect accordingly with language instructions.

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
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