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ABSTRACT

In many critical applications, sensitive data is inherently distributed. Federated
learning trains a model collaboratively by aggregating the parameters of locally
trained models. This avoids exposing sensitive local data. It is possible, though,
to infer upon the sensitive data from the shared model parameters. At the same
time, many types of machine learning models do not lend themselves to parameter
aggregation, such as decision trees, or rule ensembles. It has been observed that in
many applications, in particular healthcare, large unlabeled datasets are publicly
available. They can be used to exchange information between clients by distributed
distillation, i.e., co-regularizing local training via the discrepancy between the
soft predictions of each local client on the unlabeled dataset. This, however, still
discloses private information and restricts the types of models to those trainable
via gradient-based methods. We propose to go one step further and use a form
of federated co-training, where local hard labels on the public unlabeled datasets
are shared and aggregated into a consensus label. This consensus label can be
used for local training by any supervised machine learning model. We show that
this federated co-training approach achieves a model quality comparable to both
federated learning and distributed distillation on a set of benchmark datasets and
real-world medical datasets. It improves privacy over both approaches, protecting
against common membership inference attacks to the highest degree. Furthermore,
we show that federated co-training can collaboratively train interpretable models,
such as decision trees and rule ensembles, achieving a model quality comparable
to centralized training.

1 INTRODUCTION

Can we collaboratively train models from distributed sensitive datasets while maintaining data privacy
at a level required in critical applications, such as healthcare? Federated learning (FL) (McMahan
et al., 2017) allows distributed sites, e.g., hospitals or clinics, to collaboratively train a joint model
without directly disclosing their sensitive data by instead periodically sharing and aggregating pa-
rameters of locally trained models. It is possible for an attacker or curious observer, though, to
make non-trivial inferences about local data from model parameters (Ma et al., 2020) and model
updates (Zhu & Han, 2020). Differential privacy provides a rigorous and measurable privacy guaran-
tee (Dwork et al., 2014) that can be achieved by perturbing model parameters appropriately (Wei
et al., 2020). This perturbation, however, can reduce model quality, resulting in a trade-off between
privacy and quality that is typically poor: differentially private distributed SGD with descent utility
has slim to no actual privacy (i.e., ϵ = 145, δ = 10−5) (Xiao et al., 2022). Moreover, federated
learning requires models that can be aggregated, i.e., models with a parameterization in a vector
space such that geometric operations like averaging can be applied. This excludes many interpretable
models, such as XGBoost, decision trees, Random forest, and rule ensembles.

In many fields, large unlabeled datasets are commonly available to the public. For example in
healthcare, large national health databases contain large amounts of public patient data such as the US
NCHS databases, the UK’s NHS databases, the UK Biobank (Sudlow et al., 2015), the MIMIC-III
database (Johnson et al., 2016), or the planned European EHDS contain vast amounts of patient data
that can be used in many application scenarios. For specific diseases, however, no label exists in
those databases. Instead, hospitals and clinics each hold small labeled samples for this disease. For
example, the public TCGA dataset (Weinstein et al., 2013) contains gene expressions for 33 different
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types of tumors, but is unlabeled for the rest of the over 200 types of tumors. This public data can be
used to exchange information between clients by applying concepts from semi-supervised learning to
the distributed setup. Distributed distillation (DD) (Bistritz et al., 2020) uses a distributed knowledge
distillation approach. It shares soft predictions on the unlabeled dataset and adds a local regularization
term that promotes clients to agree on the unlabeled data, similar to co-regularization (Sindhwani
et al., 2005; Ullrich et al., 2017). Since in deep learning, models are typically large, while the
unlabeled dataset can be moderate in size, this approach can substantially reduce communication.
At the same time, it allows each client to use a different network architecture, yet excludes types of
models that are not trainable via gradient-based methods.

We propose to use a federated form of co-training, instead, that does not share soft predictions but
goes one step further: clients iteratively share predictions on the unlabeled dataset, the server forms
a consensus, and clients use this consensus as pseudo-labels for the unlabeled dataset in their local
training. A straightforward consensus mechanism for classification problems is a majority vote. This
federated co-training (FEDCT) allows us to locally use any supervised learning method. At the same
time, sharing only hard predictions improves privacy not only over federated learning but also over
distributed distillation, while retaining the communication advantage of DD.

We show theoretically that FEDCT converges for local learning methods with increasing training
accuracy, and that ϵ-differential privacy can be achieved by applying a randomized mechanism
suitable to binary data, such as the XOR-mechansim (Ji et al., 2021). In an extensive empirical
evaluation on classification problems, we show that federated co-training achieves a model quality
similar to federated learning and distributed distillation on three benchmarks and two real-world
medical datasets, including non-iid data. At the same time, the empirical vulnerability to privacy
attacks (Murakonda & Shokri, 2020) is substantially lower than standard FL, FL with differential
privacy (Noble et al., 2022) and distributed distillation. For example, on the Pneumonia dataset,
FEDCT achieved a vulnerability score of 0.51 (i.e., the success probability of a membership inference
attack, so this is basically a random guess), compared to 0.76 (FEDAVG) and 0.63 (DD). Furthermore,
we show that FEDCT collaboratively trains decision trees, rule ensembles, random forests, and
XGBoost to a quality similar to centralized training on 5 benchmark datasets.

Our contributions are

(i) a novel federated co-training (FedCT) approach to collaboratively train models from privacy-
sensitive distributed data sources via a public unlabeled dataset that achieves model quality
comparable to standard federated learning and distributed distillation;

(ii) a practical and theoretical privacy analysis showing that FedCT achieves an excellent privacy-
utility trade-off, i.e., a high utility for differentially private FedCT even under high privacy
demands, and in practice nearly no vulnerability to known membership inference attacks.

(iii) and, the ability to seamlessly integrate any supervised learning method on clients in the
federated system, including interpretable models, such as XGboost, decision trees, Random
forest, and rule ensembles.

2 RELATED WORK

Semi-supervised learning: Semi-supervised learning utilizes both a labeled and unlabeled dataset,
where the unlabeled set is typically large (Zhou & Li, 2005; Rasmus et al., 2015). Co-training is a
semi-supervised learning approach where two classifiers are independently trained on two distinct
feature sets of labeled data. It has been used to improve models using unlabeled data, typically
in centralized multi-view settings (Blum & Mitchell, 1998; Ullrich et al., 2017). Semi-supervised
learning has also been used in knowledge distillation.Papernot et al. (2016) proposed to collaboratively
local train models from distributed sensitive datasets via using a teachers-student scheme. In a setting
where teachers are trained locally on distributed sensitive datasets and then the majority vote over
their predictions on unlabeled data is used to train a student network. They show that the data with
teachers trained can be protected by adding Laplacian noise to the majority vote. Since the Laplacian
mechanism is only applied to the majority vote, the individual predictions remain unprotected.

Distributed semi-supervised learning: Bistritz et al. (2020) propose to share soft predictions
on a public unlabeled dataset instead of model parameters to reduce communication in federated
deep learning. Inspired by knowledge distillation, this co-regularizes local models to have similar
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soft predictions. This approach performs similar to distributed SGD and—in contrast to federated
learning—allows local neural networks to have different architectures. Chen & Chao (2020) presented
FedBE, which employs knowledge distillation to train a student model based on predictions from a
Bayesian model ensemble. Similarly, (Lin et al., 2020)’s FedDF also uses knowledge distillation in a
federated context to create a global model by fusing client models. While FedDF allows for local
neural models with varying sizes or structures, this method still requires a differentiable loss function.

Privacy in Federated Learning: Collaboratively training a model without sharing sensitive data is
a key advantage of (horizontal) federated learning (McMahan et al., 2017) which trains local models
and aggregates their parameters periodically. It has been shown, however, that communicating only
model parameters for aggregation does not entirely protect local data: An attacker or curious observer
can make inferences about local data from model parameters (Shokri et al., 2017; Ma et al., 2020) and
model updates (Zhu & Han, 2020). Should a malicious client obtain model updates through additional
attacks, a common defense is applying appropriate clipping and noise before sending models. This
guarantees ϵ, δ-differential privacy for local data (Wei et al., 2020) at the cost of a moderate loss in
model quality. This technique is also proven to defend against backdoor and poisoning attacks (Sun
et al., 2019). The practical utility-privacy trade-off, however, is poor: in fact, DP-Dist-SGD with
descent utility achieves (ϵ = 145, δ = 10−5)-differential privacy) (Xiao et al., 2022). Note that the
probability of an adversary learning about an individual from a dataset of size n is ≳ n−1eϵ (Lee &
Clifton, 2011). Truex et al. (2019) proposes enhancing the privacy of data exchange in traditional
distributed algorithms through the use of secure multi-party communication (SMPC) and differential
privacy (DP). While this enables the application of both classical distributed decision tree algorithms
and federated learning methods, SMPC has scalability and efficiency limitations and DP involves a
trade-off between privacy and utility. Moreover, this approach does not allow the federated training
of decision trees, that is, training local models and aggregating them.

3 FEDERATED SEMI-SUPERVISED LEARNING

3.1 PRELIMINARIES

We assume learning algorithms A : X × Y → H that produce models h ∈ H using a dataset
D ⊂ X × Y from an input space X and output space Y , i.e., ht+1 = A(D), or iterative learning
algorithms (cf. Chp. 2.1.4 Kamp, 2019)A : X ×Y ×H → H that update a model ht+1 = A(D,ht).
Given a set of m ∈ N clients with local datasets D1, . . . , Dm ⊂ X × Y drawn iid from a data
distribution D and a loss function ℓ : Y × Y → R, the goal is to find a set of local models
h1∗, . . . , hm∗ ∈ H that each minimize the risk

ε(h) = E(x,y)∼D[ℓ(h(x), y)] . (1)

In centralized learning, datasets are pooled as D =
⋃

i∈[m] D
i and A is applied to D until con-

vergence. Note that applying A on D can be the application to any random subset, e.g., as in
mini-batch training, and convergence is measured in terms of low training loss, small gradient, or
small deviation from previous iterations. In standard federated learning (McMahan et al., 2017), A
is applied in parallel for b ∈ N rounds on each client locally to produce local models h1, . . . , hm.
These models are then centralized and aggregated using an aggregation operator agg : Hm → H, i.e.,
h = agg(h1, . . . , hm). The aggregated model h is then redistributed to local clients which perform
another b rounds of training using h as a starting point. This is iterated until convergence of h. When
aggregating by averaging, this method is known as federated averaging (FEDAVG).

In federated semi-supervised learning, a public unlabeled dataset U is available to all clients. Dis-
tributed distillation (Bistritz et al., 2020) proposes to share soft predictions of clients on U and
incorporate them into the optimization problem, similar to knowledge distillation. This can also be
viewed as a distributed form of co-regularization (Sindhwani et al., 2005; Ullrich et al., 2017), where
clients take up the role of views. This approach allows using different network architectures at each
client, but requires gradient-based methods for local training.

3.2 A FEDERATED CO-TRAINING APPROACH

We propose to produce a pseudo-labeling of U as a consensus of the labels generated by the local
models of each client, resulting in a federated form of co-training (Blum & Mitchell, 1998). That
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Algorithm 1: Federated Co-Training (FEDCT)

Input: communication period b, m clients with local datasets D1, . . . , Dm and local learning
algorithms algorithms A1, . . .Am, unlabeled shared dataset U , total number of rounds T

Output: final models h1
T , . . . , h

m
T

1 initialize local models h1
0, . . . , h

m
0 , P ← ∅

2 Locally at client i at time t do
3 hi

t ← Ai(Di ∪ P, hi
t−1)

4 if t% b = b− 1 then
5 Li

t ← hi
t(U)

6 send Li
t to server and receive Lt

7 P ← (U,Lt)
8 end
9 At server at time t do

10 receive local pseudo-labels L1
t , . . . , L

m
t

11 Lt ← consensus(L1
t , . . . , L

m
t )

12 send Lt to all clients

is, in a communication round t ∈ N each client i ∈ [m] shares local labels Li
t = hi

t(U) (not soft
predictions) on U with the server, which produces a consensus labeling L ⊂ Y via an appropriate
consensus mechanism. The consensus labels are used to augment local datasets. We call this approach
federated co-training (FEDCT). Sharing hard labels not only improves privacy over both federated
averaging and distributed distillation, but also allows us to use any supervised learning method for
local training. We describe federated co-training in Algorithm 1: at each client i, the local model is
updated using the local dataset Di combined with the current pseudo-labeled public dataset P (line
4). In a communication round (line 5), the updated model is used to produce improved pseudo-labels
Li for the unlabeled data U (line 6), which are sent to a server (line 7). At the server, as soon as all
local prediction L1, . . . , Lm are received (line 12), a consensus L is formed (line 13) and broadcasted
back to the clients (14). At the client, upon receiving the consensus labels (line 8), the pseudo-labeled
dataset is updated (line 9), and another iteration of local training is performed. For classification
problems where Y ⊂ N, the majority vote is a reliable consensus mechanism (Papernot et al., 2016).
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Figure 1: Numerical evaluation of the upper
bound on δ for |U | = 10000.

Convergence Analysis: The convergence of fed-
erated co-training depends of course on the conver-
gence of the local learning algorithms

(
Ai
)
i∈[m]

. Un-
der the natural assumption that these algorithms con-
verge on a fixed training set, it remains to show that
there is a time from which the training set does not
change anymore. That is, there exists a round t0 ∈ N
such that for all t > t0 it holds that Lt = Lt−1. For
classification problems, this naturally depends on the
local training accuracy. If local training accuracy
at = 1.0, then the approach trivially converges, since
local models will reproduce Lt in every subsequent
round. This assumption is usually fulfilled for over-
parameterized models. In the following, we show that
the approach also converges with high probability, if
the training accuracy is ≤ 1, but linearly increasing with t.

Proposition 1. For m ≥ 3 clients with local datasets D1, . . . , Dm and unlabeled dataset U drawn
iid from D, let Ai for i ∈ [m] be a set of learning algorithms that all achieve a linearly increasing
training accuracy at for all labelings of U , i.e., there exists c ∈ R+ such that at ≥ 1 − c/t , then
there exists t0 ∈ N such that at ≥ 1/2 and FEDCT with majority vote converges with probability
1− δ, where

δ ≤ |U |(4c)m
2 ζ
(m
2
, t0 + 1

)
and ζ(x, q) is the Hurwitz zeta function.
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Proof. Sketch:We show that if local models are of sufficient quality, then in round t ≥ t0, the
probability that the consensus labels change, δt, is bounded. Indeed, the probability can be determined
via the CDF of the binomial distribution, which can be bounded via the Chernoff bound, yielding

δt ≤ |U |4
m
2 a

m
2
t (1− at)

m
2 .

We then show that the probability that the consensus labels remain constant for the remainder, i.e.,
the sum of δt from t0 to∞, is bounded as well. Using the assumption that at grows linearly, we can
express this infinite series as

∞∑
t=t0

δt ≲
∞∑
t=0

1

t

m
2

−
t0∑
t=0

1

t

m
2

,

that is, the difference of the Riemann zeta function and the t0-th generalized harmonic number,∑∞
t=t0

δt ≲ ζ(m/2) − H
m/2
t0 .This difference can be expressed via the Hurwitz zeta function

ζ(m/2, t0 + 1).

The full proof is provided in Appendix A. Note that δ → 0 for t0 → ∞, and δ is monotonically
decreasing with m. We plotted δ wrt. t0 in Figure 1. For t0 = 1000, FEDCT converges with
probability ≈ 1.0 for m = 50 and m = 100 with c ∈ {1, 2, 10}. It converges with 1− δ = 0.9993
for c = 1,m = 5, 1− δ = 0.9962 for c = 2,m = 5, and 1− δ = 0.7868 for c = 10,m = 5.

Communication Complexity: The communication complexity of FEDCT is in the same order
as standard federated learning, i.e., treating the message size as a constant, the communication
complexity is in O(T/b), where b is the communication period. However, the number of bits
transferred in each round depends on the size of U . Since the predictions can be encoded as
binary vectors, for a classification problem with C ∈ N classes the communication complexity
is in O(TC|U |/b). As Bistritz et al. (2020) observed, transferring predictions on U can reduce
communication substantially over transferring the weights of large neural networks. For example,
with |U | = 104, FEDCT achieved an ACC of 0.80 on a neural network with 669 706 parameters,
reducing communication over FEDAVG by a factor of ≈ 67.

4 DIFFERENTIALLY PRIVACY FOR FEDERATED CO-TRAINING

We assume the following attack model: clients are honest and the server may be semi-honest (follow
the protocol execution correctly, but it may try to infer sensitive information about the clients). The
main goal of a semi-honest server is to infer sensitive information about the local training data
of the clients. This is a stronger attacker assumption compared to a semi-honest client since the
server receives the most amount of information from the clients during the protocol, and a potential
semi-honest client can only obtain indirect information about the other clients. We also assume that
parties do not collude. Details are referred to Appendix C.1. Sharing predictions on an unlabeled
dataset (pseudo-labeling) empirically improves the privacy of sensitive local data substantially, in
particular, since FEDCT only shares predictions on an unlabeled dataset, as we show in Section 5.
Note that this differs from label leakage (Li & Zhang, 2021), where predictions on the private data
are shared. An empirical improvement in privacy is, however, no guarantee. Differential privacy
instead provides a fundamental guarantee of privacy which is achieved through randomization of
shared information.
Definition 1 ((Dwork et al., 2014)). A randomized mechansimM with domain X and range Y is
ϵ-differential private if for any two neighboring inputs D,D

′ ⊂ X and for a substet of outputs S ∈ Y
it holds that

P (M(D) ∈ S) ≤ exp(ϵ)P
(
M(D

′
) ∈ S

)
.

To obtain differential privacy (DP), the randomization has to be suitable to the information that is
published. In FEDCT local clients share the predictions on an unlabeled dataset. For classification,
this means sharing binary vectors. Standard DP mechanisms, like the Gaussian (Dwork et al., 2014)
or Laplacian mechanissm (Dwork et al., 2006) are not suitable for binary data. Therefore, we use
a DP mechanism for binary data based on computing the XOR operation of the original data and a
random binary matrix (Ji et al., 2021).
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The XOR-Mechanism: Federated co-training shares predictions on an unlabeled dataset that for
classification problems can be interpreted as binary matrices via one-hot encoding. With a given
unlabeled dataset U and a classification problem with C ∈ N classes, the predictions sent by a client
with local dataset D ⊂ X to the server can be interpreted as the binary matrix output of a deterministic
mechanism f(D) ∈ {0, 1}|U |×C . Given two neighboring datasets D,D′ (i.e., they differ only in a
single element), the sensitivity of f is defined as sf = supf(D),f(D′) ∥f(D)⊕ f (D′)∥2F , where
⊕ denotes binary XOR. Now let B ∈ {0, 1}N×P to denote a matrix-valued Bernoulli random
variable, i.e., B ∼ BerN,P (Θ,Λ1,2, · · · ,ΛN−1,N ) with a matrix-valued Bernoulli distribution
with quadratic exponential dependence structure. Here, Θ is the P × P association parametric
matrix including log-linear parameters describing the association structure of the columns, and
Λi,j is the P × P association parametric matrix of rows i and j. The XOR-mechanism applies
this random matrix to the output of the deterministic mechanism via the XOR operator ⊕ and
yields a randomized mechanismM(D) = f(D)⊕ B. Applying this XOR-mechanism to federated
co-training means representing local predictions Li

t as binary matrices and producing randomized
predictions L̂i

t = Li
t ⊕ B that are then send to the server, resulting in differentially private distributed

co-training (DP-FEDCT): Defining the sensitivity of DP-FEDCT as s∗ = max{sf1 , . . . , sfm}, it
follows directly from Theorem 1 in Ji et al. (2021) that DP-FEDCT achieves ϵ-differential privacy.
Corollary 1. Applying XOR mechanism to FEDCT with sensitivity s∗ achieves ϵ-DP if Θ and Λi,j

satisfy
s∗(||λ(Θ)||2 +

∑N−1
i=1

∑N
j=i+1 ||λ(Λi,j)||2

)
≤ ϵ, (2)

where ||λ(Θ)||2 and ||λ(Λi,j)||2 are the l2 norms of the eigenvalues of Θ and Λi,j .

It remains to bound the sensitivity of FEDCT. The sensitivity of FEDCT measures how much the
predictions of a client on the unlabeled dataset can change if one element of its local training set is
removed. For learning algorithms that are on-average-one-stable, the sensitivity can be bounded.
Definition 2 ((Shalev-Shwartz & Ben-David, 2014)). (On-Average-Replace-One-Stable) Let ϵ : N→
R be a monotonically decreasing function, and ℓ a loss function. We say that a learning algorithm A
is on-average-replace-one-stable with rate ϵ(m) if for every distribution D

E
(S,z′)∼Dm+1,i∼U(m)

[
ℓ
(
A
(
S(i), zi

))
− ℓ (A(S), zi)

]
≤ ϵ(m).

Using this definition, we obtain the following bound for the sensitivity.
Proposition 2. For classification models h : X → Y , let ℓ be a loss function that upper bounds the
0 − 1-loss and A a learning algorithm that is on-average-leave-one-out stable with stability rate
ϵ(m) for ℓ. Let D ∪ U be a local training set with |U | = n, and δ ∈ (0, 1). Then with probability
1− δ, the sensitivity s∗ of A on U is bounded by

s∗ ≤
⌈
nϵ(n) + P

√
nϵ(n)(1− ϵ(n)) +

P 2

3

⌉
,

where P = Φ−1(1− δ) with = Φ−1 being the probit function.

The proof is provided in Appendix B. On-average-replace-one-stability holds for many supervised
learning methods. For example, every regularized risk minimizer for a convex, Lipschitz loss using a
strongly convex regularizer, like Thikonov-regularization, is on-average-replace-one-stable (cf. Chp.
13.3 in Shalev-Shwartz & Ben-David, 2014). We empirically evaluate the privacy-utility trade-off of
FEDCT with differential privacy in Sec. 5.

5 EMPIRICAL EVALUATION

We empirically show that federated co-training presents a more favorable privacy-utility trade-off
compared to federated learning by showing that it achieves similar test accuracy with substantially
improved privacy. We compare FEDCT to standard federated averaging (McMahan et al., 2017)
(FEDAVG), differentially private federated averaging (DP-FEDAVG) achieved through applying the
Gaussian mechanism to FEDAVG (Geyer et al., 2017), and distributed distillation (Bistritz et al.,
2020) (DD)1 on 5 benchmark datasets and 2 medical image classification datasets.

1The code is available at https://anonymous.4open.science/r/federatedcotraining-B03C
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Experimental Setup We evaluate FEDCT on three benchmark image classification datasets, CI-
FAR10 (Krizhevsky et al., 2010), FashionMNIST (Xiao et al., 2017), and SVHN (Netzer et al.,
2011), as well as two real medical image classification datasets, MRI scans for brain tumors,2, and
chest X-rays for pneumonia (Kermany et al., 2018). For interpretable models, we use five benchmark
datasets, WineQuality (Cortez et al., 2009), Breastcancer (Street et al., 1993), AdultsIncome (Becker
& Kohavi, 1996), Mushroom (Bache & Lichman, 1987), and Covertype (Blackard, 1998). We first
divide each dataset into a test and training set and further divide the training set into an unlabeled
dataset U and a set of m local training sets (sampling iid. for all experiments, except for the experi-
ments on heterogeneous data distributions). The architectures of the neural networks are provided in
Appendix C. The parameters of the optimizer, as well as the communication period, are optimized
individually for all methods on a subset of the training set via cross-validation. We select the number
of rounds to be the maximum rounds required so that all methods converge, i.e., T = 2 ∗ 104.

We measure empirical privacy vulnerability by performing a large number of membership inference
attacks and compute the probability of inferring upon sensitive data, using the ML Privacy Meter
tool (Murakonda & Shokri, 2020). The vulnerability (VUL) of a method is the ROC AUC of
membership attacks over K runs over the entire training set. A vulnerability of 1.0 means that
membership can be inferred with certainty, whereas 0.5 means that deciding on membership is a
random guess.

Privacy-Utility-Trade-Off: We first evaluate the performance of FEDCT and the baselines for
deep learning on a homogeneous data distribution for 5 image classification datasets. We use an
unlabeled dataset of size |U | = 104 for CIFAR10, |U | = 5 · 104 for FashionMNIST, |U | = 170 for
MRI, |U | = 900 for Pneumonia, and |U | = 35 · 104 for SVHM. Note that only FEDCT, differentially
private FEDCT (DP-FEDCT), and distributed distillation (DD) use the unlabeled dataset. The
remaining training data is distributed among the m = 5 clients. We repeat all experiments 3 times
and report average test accuracy and standard deviation. Further details are deferred to Appendix C.

The results presented in Table 1 show that FEDCT achieves a test accuracy comparable to both
FEDAVG and DD, while preserving privacy to the highest level. That is, FEDCT performs best on
CIFAR10, has a similar performance to both on FashionMNIST, Pneumonia, and SVHN, and is
slightly worse on MRI. The vulnerability is around 0.5, so that membership inference attacks are
akin to random guessing. FEDAVG instead consistently has a vulnerability over 0.7. DP-FEDAVG
improves privacy, but also reduces the test accuracy substantially. Our experiments show that
DD substantially improves privacy over both FEDAVG and DP-FEDAVG, yet it is still vulnerable
(V UL ≈ 0.6). We show the convergence behavior of individual client models in FEDCT in terms of
test accuracy on CIFAR10 and compare it to FEDAVG in Figure 2. FEDCT converges faster than
FEDAVG, though the latter increases its test accuracy slightly further, eventually. Plotting the standard
deviation of test accuracies of local models in Figure 2, we see that they converge to a consensus
after around 700 rounds with only slight deviations afterward.

2https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
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Dataset FEDCT DP-FEDCT FEDAVG DP-FEDAVG DD
ACC VUL ACC VUL ACC VUL ACC VUL ACC VUL

CIFAR10 0.77± 0.003 0.52 0.76± 0.002 0.51 0.77± 0.020 0.73 0.68± 0.002 0.70 0.63 0.61
FashionMNIST 0.82± 0.004 0.51 0.80± 0.001 0.52 0.83± 0.024 0.72 0.69± 0.002 0.71 0.82 0.60

Pneumonia 0.76± 0.008 0.51 0.75± 0.004 0.51 0.74± 0.013 0.76 0.61± 0.004 0.69 0.77 0.63
MRI 0.63± 0.004 0.52 0.62± 0.002 0.51 0.66± 0.015 0.73 0.56± 0.003 0.62 0.68 0.60

SVHN 0.88± 0.002 0.53 0.86± 0.001 0.53 0.91± 0.026 0.71 0.71± 0.005 0.70 0.73 0.59

Table 1: Test accuracy (ACC) and privacy vulnerability (VUL, smaller is better) for m = 5 clients
and homogeneous local data distributions.
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Figure 4: Accuracy (ACC) of DP-FEDCT on
the FashionMNIST dataset under different levels
of privacy ϵ.
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Figure 5: Test accuracy (ACC) of FEDCT and
FEDAVG (FL) FashionMNIST with |U | = 5·105
for various numbers of clients m.

Privacy-Utility Trade-Off With Differential Privacy: Differential privacy guarantees typically
come at a cost in terms of utility, which in our case means a loss in model quality. Analyzing
this privacy-utility trade-off requires estimating the sensitivity. Since stability-bounds for neural
networks tend to underestimate the on-average-replace-one stability, leading to vacuous results for
generalization (Nagarajan & Kolter, 2019; Petzka et al., 2021), using them to bound sensitivity would
underestimate utility. Using an empirical approximation provides a more accurate estimate for the
privacy-utility trade-off (Rubinstein & Aldà, 2017). To get this approximation, we apply FEDCT
with m = 5 clients on the FashionMNIST dataset (Xiao et al., 2017) for various privacy levels ϵ.
We estimate the sensitivity of DP-FEDCT by sampling n = 100 datasets D′

1, . . . , D
′
n neighboring a

local training set D to approximate

s∗ ≈ max
i∈[n]
∥f(D)⊕ f(D′

i)∥2F ,

which yields s∗ ≈ 3000.Using this estimate, Figure 4 shows that DP-FEDCT achieves a high utility
in terms of test accuracy even for moderate-to-high privacy levels ϵ with an accuracy of 0.8 for
ϵ = 0.1 (without any noise, FEDCT achieves an accuracy of 0.82 in this setup). This hints at a
substantially improved privacy-utility trade-off over DP-SGD, which achieves a privacy level of
ϵ = 145 with high utility (Xiao et al., 2022). A reason for the good trade-off could lie in the consensus
mechanism: for a single unlabeled example µ > m/2 clients predict the majority class; the noise of
the XOR-mechanism has to change the predictions of at least µ−m/2 many clients to change the
consensus. Note that using the trivial upper bound of sW∗ = |U | = 5 · 104 instead of the estimate
results in a slightly higher epsilon: for a noise level that achieves ϵ = 0.1 with the empirical estimate
of s∗, the worst-case bound results in ϵ = 0.1 · sW∗ /s∗ = 5/3, instead.

Heterogeneous Data Distributions: In most realistic applications, local datasets are not iid dis-
tributed. While this is not the main focus of this work, we show that FEDCT performs similar to
FEDAVG for non-pathological non-iid data distributions. We compare FEDCT and FEDAVG on
local datasets where half is sampled from a Dirichlet distribution over labels with α = 2 (mild
heterogeneity) and half from with α = 100. The accuracy remains high for both methods with 0.81
for FEDCT and 0.82 for FEDAVG and vulnerability is similar to the iid case with 0.53 for FEDCT
and 0.71 for FEDAVG. We observe, however, that the test accuracies of individual clients have greater
variance, as shown in Figure 3.
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Dataset DT RuleFit XGBoost Random Forest
FEDCT CENTRALIZED FEDCT CENTRALIZED FEDCT CENTRALIZED FEDCT CENTRALIZED

WineQuality 0.95± 0.01 0.92 0.93± 0.01 0.95 0.94± 0.01 0.94 0.96± 0.01 0.98
BreastCancer 0.89± 0.01 0.89 0.92± 0.01 0.93 0.93± 0.01 0.94 0.90± 0.02 0.93
AdultsIncome 0.81± 0.01 0.82 0.84± 0.02 0.85 0.85± 0.02 0.87 0.85± 0.01 0.86

Mushroom 0.98± 0.01 1 0.98± 0.02 1 0.98± 0.01 1 0.99± 0.01 1
Covertype 0.88± 0.02 0.94 0.73± 0.02 0.76 0.84± 0.02 0.87 0.90± 0.01 0.95

Table 2: ACC of Interpretable Models.

Scalability: We compare the scalability in terms of the number of clients of FEDCT compared
to FEDAVG on FashionMNISt, using the same setup as before. We increase the number of clients
m ∈ {5, 10, 20, 40, 80} and keep the overall training set size constant, so for larger numbers of clients
the local training set size decreases. The results in Figure 5 show that higher levels of distribution
reduce the accuracy slightly, but both FEDCT and FEDAVG show only a moderate decline, with
FEDAVG performing slightly better than FEDCT.

Interpretable Models: A major advantage of FEDCT over FEDAVG and DD is that it allows
training interpretable models that do not lend themselves to aggregation. Examples of such models
are decision trees, XGBoost, Random Forest, and rule ensembles. For these approaches, no method
for aggregating local models exists, so they cannot be trained in a federated setup. To test this, we
run FEDCT on the WineQuality (Cortez et al., 2009), Breastcancer (Street et al., 1993), AdultsIn-
come (Becker & Kohavi, 1996), Mushroom (Bache & Lichman, 1987), and Covertype (Blackard,
1998) datasets with m = 5 clients and compare the performance of distributed co-training to pool-
ing all the data and training a model centrally (Centralized). For WineQuality we use U = 4100,
U = 370 for Breastcancer, U = 104 for AdultsIncome, U = 4000 for Mushroom, and U = 5 · 104
for Covertype. As models, we use classical decision trees, rule ensembles trained via the popular
RuleFit (Friedman & Popescu, 2008) algorithm, XGBoost as well as Random Forest. The results in
Table 2 show that FEDCT can train interpretable models in a federated learning setup, achieving a
model quality comparable to centralized training.

6 DISCUSSION AND CONCLUSION

We propose a semi-supervised, federated co-training approach that collaboratively trains models via
sharing predictions. It uses an unlabeled dataset U , producing pseudo-labels L for it by synthesis
from the predictions of all local models. Unlabeled data and pseudo-labels form an additional public,
shared dataset P that is combined with local data for training. While such an unlabeled dataset is not
always available, in many applications, such as healthcare, they are available or can be synthetically
generated (El Emam et al., 2020).

FEDCT allows clients to use different models, so that model type or neural network architecture
can be tailored to each site’s specific needs and characteristics. Exploring such heterogeneous local
models, as well as different consensus mechanisms, e.g., staple (Warfield et al., 2004) or averages for
regression, makes for excellent future work. Furthermore, investigating client subsampling in FEDCT
and its impact on the consensus mechanism, as well as other communication-efficient strategies (e.g.,
Kamp et al., 2016; 2019) is interesting. To ensure a meaningful consensus, the labels produced by
local models need to be of sufficient quality, so local datasets should not be too small. Thus, another
intriguing question is how strategies to mitigate small datasets in federated learning (Kamp et al.,
2023) can be applied.

We showed both theoretically and empirically that FEDCT achieves a model quality comparable to
FEDAVG and DD, while improving privacy over both FEDAVG and DD, as well as DP-FEDAVG.
Moreover, FEDCT allows us to train interpretable models, such as decision trees, rule of ensembles,
XGBoost, and random forest in a federated learning setup.
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A PROOF OF PROPOSITION 1

For convenience, we restate the proposition.

Proposition 1. For m ≥ 3 clients with local datasets D1, . . . , Dm and unlabeled dataset U drawn
iid from D, let Ai for i ∈ [m] be a set of learning algorithms that all achieve a linearly increasing
training accuracy at for all labelings of U , i.e., there exists c ∈ R+ such that at ≥ 1 − c/t , then
there exists t0 ∈ N such that at ≥ 1/2 and FEDCT with majority vote converges with probability
1− δ, where

δ ≤ |U |(4c)m
2 ζ
(m
2
, t0 + 1

)
and ζ(x, q) is the Hurwitz zeta function.

Proof. Let Pt denote the consensus label at time t ∈ N. We first show that the probability δt of
Pt ̸= Pt−1 is bounded. Since the learning algorithm A at time t ≥ t0 achieves a training accuracy
at ≥ 0.5, the probability can be determined via the CDF of the binomial distribution, i.e.,

δt =P

(
∃u ∈ U :
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Applying the Chernoff bound and denoting by D(·∥·) the Kullback-Leibler divergence yields
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The union bound over all u ∈ U yields

δt ≤ |U |4
m
2 a

m
2
t (1− at)

m
2 .

To show convergence, we need to show that for t0 ∈ N it holds that
∞∑

t=t0

δt ≤ δ

for 0 ≤ δ < 1. Since we assume that at grows linearly, we can write wlog. at = 1− c/t for some
c ∈ R+ and t ≥ 2c. With this, the sum can be written as
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where ζ(x) is the Riemann zeta function and H
(x)
n is the generalized harmonic number. Note that

H
(x)
n = ζ(x)− ζ(x, n+ 1), where ζ(x, q) is the Hurwitz zeta function, so that this expression can

be simplified to
∞∑

t=t0

δt ≤ |U |(4c)
m
2 ζ
(m
2

)
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(m
2

)
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(m
2
, t0 + 1

)
= |U |(4c)m

2 ζ
(m
2
, t0 + 1

)
.

B PROOF OF PROPOSITION 2

For convenience, we restate the proposition.
Proposition 2. For classification models h : X → Y , let ℓ be a loss function that upper bounds the
0 − 1-loss and A a learning algorithm that is on-average-leave-one-out stable with stability rate
ϵ(m) for ℓ. Let D ∪ U be a local training set with |U | = n, and δ ∈ (0, 1). Then with probability
1− δ, the sensitivity s∗ of A on U is bounded by

s∗ ≤
⌈
nϵ(n) + P

√
nϵ(n)(1− ϵ(n)) +

P 2

3

⌉
,

where P = Φ−1(1− δ) with = Φ−1 being the probit function.

Proof. The sensitivity s∗ is defined as the supremum of the Frobenius norm of the symmetric
difference between the predictions on the unlabeled dataset U for two models hs and h′

s trained on
datasets s and s′ that differ by one instance.

s∗ = sup
S,S′
∥hS(U)∆hS′(U)∥F

Since A is on-average-replace-one stable with rate ϵ for ℓ and ℓ upper bounds the 0− 1-loss, A is
on-average-replace-one stable with rate at most ϵ for the 0− 1-loss. Thus, the expected change in
loss on a single element of the training set is bounded by ϵ(|D ∪ U |). Since the 0− 1-loss is either 0
or 1, this can be interpreted as a success probability in a Bernoulli process. The expected number
of differences on the unlabeled dataset then is the expected value of the corresponding binomial
distribution, i.e., |U |ϵ(|D∪U |) ≤ |U |ϵ(|U |). We are interested in the maximum number of successes
such that the cumulative distribution function of the binomial distribution is smaller than 1− δ. This
threshold k can be found using the quantile function (inverse CDF) for which, however, no closed
form exists. Short (2023) has shown that the quantile function Q(n, p,R) can be bounded by

Q(n, p,R) ≤
⌈
np+Φ−1(R)

√
np(1− p) +

Φ−1(R)2

3

⌉
,

where Φ−1 is the probit function (inverse of standard normal’s cdf). With n = |u|, p = ϵ(|U |), and
R = 1− δ, the number of differences in predictions on the unlabeled dataset, i.e., the sensitivity s∗,
is upper bounded by

s∗ ≤
⌈
|U |ϵ(|U |) + Φ−1(1− δ)

√
|U |ϵ(|U |)(1− ϵ(|U |)) + Φ−1(1− δ)2

3

⌉
with probability 1− δ.

C DETAILS ON EXPERIMENTS

C.1 DETAILS ON PRIVACY VULNERABILITY EXPERIMENTS

We measure privacy vulnerability by performing membership inference attacks against FEDCT and
FEDAVG In both attacks, the attacker creates an attack model using a model it constructs from its
training and test datasets. Similar to previous work Shokri et al. (2017), we assume that the training
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data of the attacker has a similar distribution to the training data of the client. Once the attacker has
its attack model, it uses this model for membership inference. In blackbox attacks (in which the
attacker does not have access to intermediate model parameters), it only uses the classification scores
it receives from the target model (i.e., client’s model) for membership inference. On the other hand,
in whitebox attacks (in which the attacker can observe the intermediate model parameters), it can use
additional information in its attack model. Since the proposed FEDCT does not reveal intermediate
model parameters to any party, it is only subject to blackbox attacks. Vanilla federated learning on
the other hand is subject to whitebox attacks. Each inference attack produces a membership score of
a queried data point, indicating the likelihood of the data point being a member of the training set.
We measure the success of membership inference as ROC AUC of these scores. The vulnerability
(VUL) of a method is the ROC AUC of membership attacks over K runs over the entire training set
(also called attack epochs) according to the attack model and scenario. A vulnerability of 1.0 means
that membership can be inferred with certainty, whereas 0.5 means that deciding on membership is a
random guess.

We assume the following attack model: clients are honest and the server may be semi-honest (follow
the protocol execution correctly, but it may try to infer sensitive information about the clients). The
main goal of a semi-honest server is to infer sensitive information about the local training data
of the clients. This is a stronger attacker assumption compared to a semi-honest client since the
server receives the most amount of information from the clients during the protocol, and a potential
semi-honest client can only obtain indirect information about the other clients. We also assume that
parties do not collude.

The attack scenario for FEDCT and DD is that the attacker can send a (forged) unlabeled dataset
to the clients and observe their predictions, equivalent to one attack epoch (K = 1); the one for
FEDAVG and DP-FEDAVG is that the attacker receives model parameters and can run an arbitrary
number of attacks—we use K = 500 attack epochs.

C.2 DATASETS

We use 3 standard image classification datasets: CIFAR10 (Krizhevsky et al., 2010), Fashion-
MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011). We describe the datasets and our
preprocessing briefly.

CIFAR10 consists of 50 000 training and 10 000 test 32× 32 color images in 10 classes with equal
distribution (i.e., a total of 6 000 images per class). Images are normalized to zero mean and unit
variance. FashionMNIST consists of 60 000 training and 10 000 test 28 × 28 grayscale images of
clothing items in 10 classes with equal distribution. Images are not normalized. SVHN (Street View
House Numbers) consists of 630 420 32× 32 color images of digits from house numbers in Google
Street View, i.e., 10 classes. The datasest is partitioned into 73 257 for training, 26 032 for testing,
and 531 131 additional training images. In our experiments, we use only the training and testing set.
Images are not normalized.

We use five standard datasets from the UCI Machine Learning repository for our experiments on
collaboratively training interpretable models: WineQuality (Cortez et al., 2009), BreastCancer (Sud-
low et al., 2015), AdultsIncome (Becker & Kohavi, 1996), Mushroom (Bache & Lichman, 1987),
and Covertype (Blackard, 1998). A short description of the five datasets follows. WineQuality is a
tabular dataset of 6 497 instances of wine with 11 features describing the wine (e.g., alcohol content,
acidity, pH, and sulfur dioxide levels) and the label is a wine quality score from 0 to 10. We remove
duplicate rows and transform the categorial type attribute to a numerical value. We then normalize all
features to zero mean and unit variance. BreastCancer is a medical diagnostics tabular dataset with

Dataset training size testing size unlabeled size |U | communication period b number of rounds T
CIFAR10 40 · 103 10 · 103 10 · 103 10 3 · 103

FashionMNIST 10 · 103 10 · 103 50 · 103 50 20 · 103
Pneumonia 4386 624 900 20 20 · 103

MRI 30 53 170 6 2 · 103
SVHN 38 257 26 032 35 · 103 10 20 · 103

Table 3: Dataset descriptions for image classification experiments.
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Layer Output Shape Activation Parameters
Conv2D (32, 32, 32) ReLU 896

BatchNormalization (32, 32, 32) - 128
Conv2D (32, 32, 32) ReLU 9248

BatchNormalization (32, 32, 32) - 128
MaxPooling2D (16, 16, 32) - -

Dropout (16, 16, 32) - -
Conv2D (16, 16, 64) ReLU 18496

BatchNormalization (16, 16, 64) - 256
Conv2D (16, 16, 64) ReLU 36928

BatchNormalization (16, 16, 64) - 256
MaxPooling2D (8, 8, 64) - -

Dropout (8, 8, 64) - -
Conv2D (8, 8, 128) ReLU 73856

BatchNormalization (8, 8, 128) - 512
Conv2D (8, 8, 128) ReLU 147584

BatchNormalization (8, 8, 128) - 512
MaxPooling2D (4, 4, 128) - -

Dropout (4, 4, 128) - -
Flatten (2048,) - -
Dense (128,) ReLU 262272

BatchNormalization (128,) - 512
Dropout (128,) - -
Dense (10,) Linear 1290

Table 4: CIFAR10 architecture

569 instances of breast cell samples with 30 features describing cell nuclei with 2 classes (malignant
and benign). We followed the same preprocessing steps as WineQuality dataset. AdultIncome is a
tabular dataset with 48, 842 instances of adults from various backgrounds with 14 features describing
attributes such as age, work class, education, marital status, occupation, relationship, race, gender,
etc. The dataset is used to predict whether an individual earns more than 50, 000$ a year, leading to
two classes: income more than 50, 000$, and income less than or equal to 50, 000$. Mushroom is
a biological tabular dataset with 8124 instances of mushroom samples with 22 features describing
physical characteristics such as cap shape, cap surface, cap color, bruises, odor, gill attachment, etc.
The dataset is used to classify mushrooms as edible or poisonous, leading to two classes: edible
and poisonous. Covertype is an environmental tabular dataset with 581, 012 instances of forested
areas with 54 features describing geographical and cartographical variables, such as elevation, aspect,
slope, horizontal distance to hydrology, vertical distance to hydrology, horizontal distance to road-
ways, hillshade indices, and wilderness areas and soil type binary indicators. The dataset is used to
predict forest cover type, leading to 7 distinct classes: Spruce/Fir, Lodgepole Pine, Ponderosa Pine,
Cottonwood/Willow, Aspen, Douglas-fir, and Krummholz.

Furthermore, we use 2 medical image classification datasets, Pneumonia (Kermany et al., 2018),
and MRI3. Pneumonia consists of 5 286 training and 624 test chest x-rays with labels normal, viral
pneumonia, and bacterial pneumonia. We simplify the labels to healthy and pneumonia with a class
imbalance of roughly 3 pneumonia to 1 healthy. The original images in the Pneumonia dataset do not
have a fixed resolution as they are sourced from various clinical settings and different acquisition
devices. We resize all images to a resolution of 224×224 pixels without normalization. MRI consists
of 253 MRI brain scans with a class imbalance of approximately 1.5 brain tumor scans to 1 healthy
scan. Out of the total 253 images, we use 53 images as testing set. Similar to the pneumonia dataset,
the original images have no fixed resolution and are thus resized to 150× 150 without normalization.

C.3 EXPERIMENTAL SETUP

We now describe the details of the experimental setup used in our empirical evaluation.

3https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
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Layer Output Shape Activation Parameters
Flatten (784,) - -
Linear (784, 512) - 401,920
ReLU (512,) ReLU -
Linear (512, 512) - 262,656
ReLU (512,) ReLU -
Linear (512, 10) - 5,130

Table 5: FashionMNIST architecture

In our privacy-utility trade-off experiments, we use m = 5 clients for all datasets. We report the
split into training, test, and unlabeled dataset per dataset, as well as the used communication period b
and number of rounds T in Table 3. For the scalability experiments, we use the same setup, varying
m ∈ {5, 10, 20, 40, 80} clients. For the experiments on heterogeneous data distributions, we use
the same setup as for the privacy-utility trade-off, but we sample the local dataset from a Dirichlet
distribution as described in the main text.

For all experiments, we use Adam as an optimization algorithm with a learning rate 0.01 for CIFAR10,
and 0.001 for the remaining datasets. A description of the DNN architecture for each dataset follows.

The neural network architectures used for each dataset are given in the following. For CIFAR10
we use a CNN with multiple convolutional layers with batch normalization and max pooling. The
details of the architecture are described in Table 4. For FashionMNIST, we use a simple feed forward
architecture on the flattened input. The details of the architecture are described in Table 5. For
Pneumonia, we use a simple CNN, again with batch normalization and max pooling, with details
given in Table 6. For MRI we use an architecture similar to pneumonia with details described in
Table 7. For SVHN, we use again a standard CNN with batch normalization and max pooling,
detailed in Table 8.

For our experiments on interpretable models, we use m = 5 clients. For decision trees (DT), we
split by the Gini index with at least 2 samples for splitting. For RuleFit, we use a tree size of 4
and a maximum number of rules of 200. For the WineQuality dataset, we use an unlabeled dataset
size of U = 4100, a training set size of 136, and a test set size of 1059. For BreastCancer, we use
an unlabeled dataset of size U = 370, a training set of size 85, and a test set of size 114. For the
AdultsIncome dataset, we use an unlabeled dataset of size U = 104, a training set of size 31, 073,
and a test set of size 7769. For the Mushroom dataset, we use an unlabeled dataset of size U = 4000,
a training set of size 2499, and a test set of size 1625. For the covertype dataset, we use an unlabeled
dataset of size U = 5 · 104, a training set of size 414, 810, and a test set of size 116, 202.

Layer Output Shape Activation Parameters
Conv2d (3, 32, 32) - 896

BatchNorm2d (32, 32, 32) - 64
Conv2d (32, 32, 32) - 18,464

BatchNorm2d (64, 32, 32) - 128
MaxPool2d (64, 16, 16) - -

Conv2d (64, 16, 16) - 36,928
BatchNorm2d (64, 16, 16) - 128
MaxPool2d (64, 8, 8) - -

Flatten (4096,) - -
Linear (2,) - 4,194,306

Table 6: Pneumonia architecture

17



Layer Output Shape Activation Parameters
Conv2d (3, 32, 32) - 896

BatchNorm2d (32, 32, 32) - 64
Conv2d (32, 32, 32) - 18,464

BatchNorm2d (64, 32, 32) - 128
MaxPool2d (64, 16, 16) - -

Conv2d (64, 16, 16) - 36,928
BatchNorm2d (64, 16, 16) - 128
MaxPool2d (64, 8, 8) - -

Flatten (32768,) - -
Linear (2,) - 2,636,034

Table 7: MRI architecture

Layer Output Shape Parameters
Conv2d (3, 32, 32) 896

BatchNorm2d (32, 32, 32) 64
Conv2d (32, 32, 32) 9,248

MaxPool2d (32, 16, 16) -
Dropout2d (32, 16, 16) -

Conv2d (32, 16, 16) 18,464
BatchNorm2d (64, 16, 16) 128

Conv2d (64, 16, 16) 36,928
MaxPool2d (64, 8, 8) -
Dropout2d (64, 8, 8) -

Conv2d (64, 8, 8) 73,856
BatchNorm2d (128, 8, 8) 256

Conv2d (128, 8, 8) 147,584
MaxPool2d (128, 4, 4) -
Dropout2d (128, 4, 4) -

Flatten (2048,) -
Linear (128,) 262,272

Dropout (128,) -
Linear (10,) 1,290

Table 8: SVHN architecture
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