
A PROOF OF PROPOSITION 1

For convenience, we restate the proposition.

Proposition 1. For m ≥ 3 clients with local datasets D1, . . . , Dm and unlabeled dataset U drawn
iid from D, let Ai for i ∈ [m] be a set of learning algorithms that all achieve a linearly increasing
training accuracy at for all labelings of U , i.e., there exists c ∈ R+ such that at ≥ 1 − c/t , then
there exists t0 ∈ N such that at ≥ 1/2 and FEDCT with majority vote converges with probability
1− δ, where
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)
and ζ(x, q) is the Hurwitz zeta function.

Proof. Let Pt denote the consensus label at time t ∈ N. We first show that the probability δt of
Pt ̸= Pt−1 is bounded. Since the learning algorithm A at time t ≥ t0 achieves a training accuracy
at ≥ 0.5, the probability can be determined via the CDF of the binomial distribution, i.e.,
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Applying the Chernoff bound and denoting by D(·∥·) the Kullback-Leibler divergence yields
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The union bound over all u ∈ U yields

δt ≤ |U |4
m
2 a

m
2
t (1− at)

m
2 .

To show convergence, we need to show that for t0 ∈ N it holds that
∞∑

t=t0

δt ≤ δ

for 0 ≤ δ < 1. Since we assume that at grows linearly, we can write wlog. at = 1− c/t for some
c ∈ R+ and t ≥ 2c. With this, the sum can be written as
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where ζ(x) is the Riemann zeta function and H
(x)
n is the generalized harmonic number. Note that

H
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B PROOF OF PROPOSITION 2

For convenience, we restate the proposition.
Proposition 2. For classification models h : X → Y , let ℓ be a loss function that upper bounds the
0 − 1-loss and A a learning algorithm that is on-average-leave-one-out stable with stability rate
ϵ(m) for ℓ. Let D ∪ U be a local training set with |U | = n, and δ ∈ (0, 1). Then with probability
1− δ, the sensitivity s∗ of A on U is bounded by

s∗ ≤
⌈
nϵ(n) + P

√
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P 2

3

⌉
,

where P = Φ−1(1− δ) with = Φ−1 being the probit function.

Proof. The sensitivity s∗ is defined as the supremum of the Frobenius norm of the symmetric
difference between the predictions on the unlabeled dataset U for two models hs and h′

s trained on
datasets s and s′ that differ by one instance.

s∗ = sup
S,S′
∥hS(U)∆hS′(U)∥F

Since A is on-average-replace-one stable with rate ϵ for ℓ and ℓ upper bounds the 0− 1-loss, A is
on-average-replace-one stable with rate at most ϵ for the 0− 1-loss. Thus, the expected change in
loss on a single element of the training set is bounded by ϵ(|D ∪ U |). Since the 0− 1-loss is either 0
or 1, this can be interpreted as a success probability in a Bernoulli process. The expected number
of differences on the unlabeled dataset then is the expected value of the corresponding binomial
distribution, i.e., |U |ϵ(|D∪U |) ≤ |U |ϵ(|U |). We are interested in the maximum number of successes
such that the cumulative distribution function of the binomial distribution is smaller than 1− δ. This
threshold k can be found using the quantile function (inverse CDF) for which, however, no closed
form exists. Short (2023) has shown that the quantile function Q(n, p,R) can be bounded by
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⌈
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,

where Φ−1 is the probit function (inverse of standard normal’s cdf). With n = |u|, p = ϵ(|U |), and
R = 1− δ, the number of differences in predictions on the unlabeled dataset, i.e., the sensitivity s∗,
is upper bounded by

s∗ ≤
⌈
|U |ϵ(|U |) + Φ−1(1− δ)

√
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⌉
with probability 1− δ.

C DETAILS ON EXPERIMENTS

C.1 DETAILS ON PRIVACY VULNERABILITY EXPERIMENTS

We measure privacy vulnerability by performing membership inference attacks against FEDCT and
FEDAVG In both attacks, the attacker creates an attack model using a model it constructs from its
training and test datasets. Similar to previous work Shokri et al. (2017), we assume that the training
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data of the attacker has a similar distribution to the training data of the client. Once the attacker has
its attack model, it uses this model for membership inference. In blackbox attacks (in which the
attacker does not have access to intermediate model parameters), it only uses the classification scores
it receives from the target model (i.e., client’s model) for membership inference. On the other hand,
in whitebox attacks (in which the attacker can observe the intermediate model parameters), it can use
additional information in its attack model. Since the proposed FEDCT does not reveal intermediate
model parameters to any party, it is only subject to blackbox attacks. Vanilla federated learning on
the other hand is subject to whitebox attacks. Each inference attack produces a membership score of
a queried data point, indicating the likelihood of the data point being a member of the training set.
We measure the success of membership inference as ROC AUC of these scores. The vulnerability
(VUL) of a method is the ROC AUC of membership attacks over K runs over the entire training set
(also called attack epochs) according to the attack model and scenario. A vulnerability of 1.0 means
that membership can be inferred with certainty, whereas 0.5 means that deciding on membership is a
random guess.

We assume the following attack model: clients are honest and the server may be semi-honest (follow
the protocol execution correctly, but it may try to infer sensitive information about the clients). The
main goal of a semi-honest server is to infer sensitive information about the local training data
of the clients. This is a stronger attacker assumption compared to a semi-honest client since the
server receives the most amount of information from the clients during the protocol, and a potential
semi-honest client can only obtain indirect information about the other clients. We also assume that
parties do not collude.

The attack scenario for FEDCT and DD is that the attacker can send a (forged) unlabeled dataset
to the clients and observe their predictions, equivalent to one attack epoch (K = 1); the one for
FEDAVG and DP-FEDAVG is that the attacker receives model parameters and can run an arbitrary
number of attacks—we use K = 500 attack epochs.

C.2 DATASETS

We use 3 standard image classification datasets: CIFAR10 (Krizhevsky et al., 2010), Fashion-
MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011). We describe the datasets and our
preprocessing briefly.

CIFAR10 consists of 50 000 training and 10 000 test 32× 32 color images in 10 classes with equal
distribution (i.e., a total of 6 000 images per class). Images are normalized to zero mean and unit
variance. FashionMNIST consists of 60 000 training and 10 000 test 28 × 28 grayscale images of
clothing items in 10 classes with equal distribution. Images are not normalized. SVHN (Street View
House Numbers) consists of 630 420 32× 32 color images of digits from house numbers in Google
Street View, i.e., 10 classes. The datasest is partitioned into 73 257 for training, 26 032 for testing,
and 531 131 additional training images. In our experiments, we use only the training and testing set.
Images are not normalized.

We use five standard datasets from the UCI Machine Learning repository for our experiments on
collaboratively training interpretable models: WineQuality (Cortez et al., 2009), BreastCancer (Sud-
low et al., 2015), AdultsIncome (Becker & Kohavi, 1996), Mushroom (Bache & Lichman, 1987),
and Covertype (Blackard, 1998). A short description of the five datasets follows. WineQuality is a
tabular dataset of 6 497 instances of wine with 11 features describing the wine (e.g., alcohol content,
acidity, pH, and sulfur dioxide levels) and the label is a wine quality score from 0 to 10. We remove
duplicate rows and transform the categorial type attribute to a numerical value. We then normalize all
features to zero mean and unit variance. BreastCancer is a medical diagnostics tabular dataset with

Dataset training size testing size unlabeled size |U | communication period b number of rounds T
CIFAR10 40 · 103 10 · 103 10 · 103 10 3 · 103

FashionMNIST 10 · 103 10 · 103 50 · 103 50 20 · 103
Pneumonia 4386 624 900 20 20 · 103

MRI 30 53 170 6 2 · 103
SVHN 38 257 26 032 35 · 103 10 20 · 103

Table 3: Dataset descriptions for image classification experiments.
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Layer Output Shape Activation Parameters
Conv2D (32, 32, 32) ReLU 896

BatchNormalization (32, 32, 32) - 128
Conv2D (32, 32, 32) ReLU 9248

BatchNormalization (32, 32, 32) - 128
MaxPooling2D (16, 16, 32) - -

Dropout (16, 16, 32) - -
Conv2D (16, 16, 64) ReLU 18496

BatchNormalization (16, 16, 64) - 256
Conv2D (16, 16, 64) ReLU 36928

BatchNormalization (16, 16, 64) - 256
MaxPooling2D (8, 8, 64) - -

Dropout (8, 8, 64) - -
Conv2D (8, 8, 128) ReLU 73856

BatchNormalization (8, 8, 128) - 512
Conv2D (8, 8, 128) ReLU 147584

BatchNormalization (8, 8, 128) - 512
MaxPooling2D (4, 4, 128) - -

Dropout (4, 4, 128) - -
Flatten (2048,) - -
Dense (128,) ReLU 262272

BatchNormalization (128,) - 512
Dropout (128,) - -
Dense (10,) Linear 1290

Table 4: CIFAR10 architecture

569 instances of breast cell samples with 30 features describing cell nuclei with 2 classes (malignant
and benign). We followed the same preprocessing steps as WineQuality dataset. AdultIncome is a
tabular dataset with 48, 842 instances of adults from various backgrounds with 14 features describing
attributes such as age, work class, education, marital status, occupation, relationship, race, gender,
etc. The dataset is used to predict whether an individual earns more than 50, 000$ a year, leading to
two classes: income more than 50, 000$, and income less than or equal to 50, 000$. Mushroom is
a biological tabular dataset with 8124 instances of mushroom samples with 22 features describing
physical characteristics such as cap shape, cap surface, cap color, bruises, odor, gill attachment, etc.
The dataset is used to classify mushrooms as edible or poisonous, leading to two classes: edible
and poisonous. Covertype is an environmental tabular dataset with 581, 012 instances of forested
areas with 54 features describing geographical and cartographical variables, such as elevation, aspect,
slope, horizontal distance to hydrology, vertical distance to hydrology, horizontal distance to road-
ways, hillshade indices, and wilderness areas and soil type binary indicators. The dataset is used to
predict forest cover type, leading to 7 distinct classes: Spruce/Fir, Lodgepole Pine, Ponderosa Pine,
Cottonwood/Willow, Aspen, Douglas-fir, and Krummholz.

Furthermore, we use 2 medical image classification datasets, Pneumonia (Kermany et al., 2018),
and MRI3. Pneumonia consists of 5 286 training and 624 test chest x-rays with labels normal, viral
pneumonia, and bacterial pneumonia. We simplify the labels to healthy and pneumonia with a class
imbalance of roughly 3 pneumonia to 1 healthy. The original images in the Pneumonia dataset do not
have a fixed resolution as they are sourced from various clinical settings and different acquisition
devices. We resize all images to a resolution of 224×224 pixels without normalization. MRI consists
of 253 MRI brain scans with a class imbalance of approximately 1.5 brain tumor scans to 1 healthy
scan. Out of the total 253 images, we use 53 images as testing set. Similar to the pneumonia dataset,
the original images have no fixed resolution and are thus resized to 150× 150 without normalization.

C.3 EXPERIMENTAL SETUP

We now describe the details of the experimental setup used in our empirical evaluation.

3https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
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Layer Output Shape Activation Parameters
Flatten (784,) - -
Linear (784, 512) - 401,920
ReLU (512,) ReLU -
Linear (512, 512) - 262,656
ReLU (512,) ReLU -
Linear (512, 10) - 5,130

Table 5: FashionMNIST architecture

In our privacy-utility trade-off experiments, we use m = 5 clients for all datasets. We report the
split into training, test, and unlabeled dataset per dataset, as well as the used communication period b
and number of rounds T in Table 3. For the scalability experiments, we use the same setup, varying
m ∈ {5, 10, 20, 40, 80} clients. For the experiments on heterogeneous data distributions, we use
the same setup as for the privacy-utility trade-off, but we sample the local dataset from a Dirichlet
distribution as described in the main text.

For all experiments, we use Adam as an optimization algorithm with a learning rate 0.01 for CIFAR10,
and 0.001 for the remaining datasets. A description of the DNN architecture for each dataset follows.

The neural network architectures used for each dataset are given in the following. For CIFAR10
we use a CNN with multiple convolutional layers with batch normalization and max pooling. The
details of the architecture are described in Table 4. For FashionMNIST, we use a simple feed forward
architecture on the flattened input. The details of the architecture are described in Table 5. For
Pneumonia, we use a simple CNN, again with batch normalization and max pooling, with details
given in Table 6. For MRI we use an architecture similar to pneumonia with details described in
Table 7. For SVHN, we use again a standard CNN with batch normalization and max pooling,
detailed in Table 8.

For our experiments on interpretable models, we use m = 5 clients. For decision trees (DT), we
split by the Gini index with at least 2 samples for splitting. For RuleFit, we use a tree size of 4
and a maximum number of rules of 200. For the WineQuality dataset, we use an unlabeled dataset
size of U = 4100, a training set size of 136, and a test set size of 1059. For BreastCancer, we use
an unlabeled dataset of size U = 370, a training set of size 85, and a test set of size 114. For the
AdultsIncome dataset, we use an unlabeled dataset of size U = 104, a training set of size 31, 073,
and a test set of size 7769. For the Mushroom dataset, we use an unlabeled dataset of size U = 4000,
a training set of size 2499, and a test set of size 1625. For the covertype dataset, we use an unlabeled
dataset of size U = 5 · 104, a training set of size 414, 810, and a test set of size 116, 202.

Layer Output Shape Activation Parameters
Conv2d (3, 32, 32) - 896

BatchNorm2d (32, 32, 32) - 64
Conv2d (32, 32, 32) - 18,464

BatchNorm2d (64, 32, 32) - 128
MaxPool2d (64, 16, 16) - -

Conv2d (64, 16, 16) - 36,928
BatchNorm2d (64, 16, 16) - 128
MaxPool2d (64, 8, 8) - -

Flatten (4096,) - -
Linear (2,) - 4,194,306

Table 6: Pneumonia architecture
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Layer Output Shape Activation Parameters
Conv2d (3, 32, 32) - 896

BatchNorm2d (32, 32, 32) - 64
Conv2d (32, 32, 32) - 18,464

BatchNorm2d (64, 32, 32) - 128
MaxPool2d (64, 16, 16) - -

Conv2d (64, 16, 16) - 36,928
BatchNorm2d (64, 16, 16) - 128
MaxPool2d (64, 8, 8) - -

Flatten (32768,) - -
Linear (2,) - 2,636,034

Table 7: MRI architecture

Layer Output Shape Parameters
Conv2d (3, 32, 32) 896

BatchNorm2d (32, 32, 32) 64
Conv2d (32, 32, 32) 9,248

MaxPool2d (32, 16, 16) -
Dropout2d (32, 16, 16) -

Conv2d (32, 16, 16) 18,464
BatchNorm2d (64, 16, 16) 128

Conv2d (64, 16, 16) 36,928
MaxPool2d (64, 8, 8) -
Dropout2d (64, 8, 8) -

Conv2d (64, 8, 8) 73,856
BatchNorm2d (128, 8, 8) 256

Conv2d (128, 8, 8) 147,584
MaxPool2d (128, 4, 4) -
Dropout2d (128, 4, 4) -

Flatten (2048,) -
Linear (128,) 262,272

Dropout (128,) -
Linear (10,) 1,290

Table 8: SVHN architecture

18


