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A Definitions of More Voting Rules

WMG-based rules. A voting rule is said to be weighted-majority-graph-based (WMG-based) if
its winners only depend on the WMG of the input profile. In this paper we consider the following
commonly-studied WMG-based irresolute rules.

e Copeland. The Copeland rule is parameterized by a number 0 < « < 1, and is therefore
denoted by Cd,,. For any profile P, an alternative a gets 1 point for each other alternative
it beats in head-to-head competitions, and gets o points for each tie. Cd, chooses all
alternatives with the highest total score as winners.

e Maximin. For each alternative a, its min-score is defined to be MSp(a) =
minpe 4 wp(a,b). Maximin, denoted by MM, chooses all alternatives with the max min-
score as winners.

e Ranked pairs. Given a profile P, an alternative a is a winner under ranked pairs (denoted
by RP) if there exists a way to fix edges in WMG(P) one by one in a non-increasing order
w.r.t. their weights (and sometimes break ties), unless it creates a cycle with previously
fixed edges, so that after all edges are considered, a has no incoming edge. This is known
as the parallel-universes tie-breaking (PUT) [12].

e Schulze. The strength of any directed path in the WMG is defined to be the minimum
weight on single edges along the path. For any pair of alternatives a, b, let s[a, b] denote
the highest weight among all paths from a to b. Then, we write a > b if and only if
sla,b] > s[b,a], and Schulze [47] proved that the strict version of this binary relation,
denoted by >, is transitive. The Schulze rule, denoted by Sch, chooses all alternatives a
such that for all other alternatives b, we have a > b.

Condorcetified (integer) positional scoring rules. The rule is defined by an integer scoring vec-
tor § € Z™ and is denoted by Condg, which selects the Condorcet winner when it exits, and other-
wise uses 7'z to select the (co)-winners. For example, Black’s rule [6] is the Condorcetified Borda
rule.

B Per-Profile and Non-Per-Profile Axioms

In this section, we provide an (incomplete) list of 14 commonly-studied per-profile axioms and one
commonly-studied non-per-profile axiom that we do not see a clear per-profile representation.

Per-Profile Axioms. We present the definitions of the per-profile axioms in the alphabetical order.
Their equivalent X definition is often straightforward unless explicitly discussed below.

1. ANONYMITY states that the winner is insensitive to the identities of the voters. It is a
per-profile axiom as shown in [54].

2. CONDORCET CRITERION is a per-profile axiom as discussed in the Introduction.

3. CONDORCET LOSER requires that a Condorcet loser, which is the alternative who loses
to every head-to-head competition with other alternatives, should not be selected as the
winner. It is a per-profile axiom in the same sense as CC.

4. CONSISTENCY requires that for any profile P and any sub-profile P’ of P, if r(P’') =
r(P\ P’), then r(P) = r(P'). Therefore, for any profile P, we can define

[Consistency(r, P) = 1] <= [VP' C P,[r(P") =r(P\ P')] = [r(P) = r(P")]]

5. GROUP-NON-MANIPULABLE is defined similarly to NON-MANIPULABLE below, except
that multiple voters are allowed to simultaneously change their votes, and after doing so, at
least one of them strictly prefers the old winner.

6. INDEPENDENT OF CLONES requires that the winner does not change when clones of an
alternative is introduced. The clones and the original alternative must be ranked consecu-
tively in each vote. Let JoC' denote INDEPENDENT OF CLONES. For any profile P, we let
IoC(r, P) = 1if and only if for every alternative a and every profile P’ obtain from P by
introducing clones of a, we have r(P) = r(P’).
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7. MAJORITY CRITERION requires that any alternative that is ranked at the top place in more
than 50% of the votes must be selected as the winner. Majority criterion is stronger than
CONDORCET CRITERION.

8. MAJORITY LOSER requires that any alternative who is ranked at the bottom place in more
than 50% of the votes should not be selected as the winner. MAJORITY LOSER is weaker
than CONDORCET LOSER.

9. MONOTONICITY requires raising up the position of the current winner in any vote will
not cause it to lose. Let MONO denote MONOTONICITY. One way to define Mono is the
following.Let Mono' (r, P) = 1 if and only if for every profile P’ that is obtained from
P by raising the position of (P) in one vote, we have r(P’) = r(P). Another definition
is: Mono? (r, P) = 1 if and only if for every profile P’ that is obtained from P by raising
the position of r(P) in arbitrarily many votes, we have r(P’) = r(P). Notice that the
classical (worst-case) MONOTONICITY is satisfied if and only if minp Mono® (r,P)=1
or equivalently, minp M 07102(1"7 P) = 1. The semi-random satisfaction of minp M ono'
might be different from minp M ono?, which is beyond the scope of this paper.

10. NEUTRALITY states that the winner is insensitive to the identities of the alternatives. It is
a per-profile axiom as shown in [54].

11. NON-MANIPULABLE requires that no agent has incentive to unilaterally change his/her
vote to improve the winner w.r.t. his/her true preferences. More precisely, for any profile
P =(Ry,...,R,), we have

[Non — Manipulable(r, P) = 1] & [Vj < n,VR} € L(A),r(P) =g, r(P U{R;}\ {R;})]

12. PARTICIPATION is a per-profile axiom as discussed in the Introduction.

13. REVERSAL SYMMETRY requires that the winner of any profile should not be the winner
when all voters’ rankings are inverted.

Non-Per-Profile Axiom(s). We were not able to model NON-DICTATORSHIP (ND) as a per-
profile axiom studied in this paper. A voting rule is not a dictator if for each j < n, there exists a
profile P whose winner is not ranked at the top of agent j’s preferences.

C Materials for Section 4: The Categorization Lemma

While the categorization lemma (Lemma 1) was presented after Theorems 1 through 6 in the main
text, the proofs of the theorems depend on the lemma. Therefore, we present materials for the
categorization letter before the proofs for the theorems in the appendix.

C.1 Modeling Satisfaction of PAR as A Union of Polyhedra

PAR under Copeland,. We now show how to approxi-
mately model the satisfaction of PAR under Copeland,,. For

1 1
every pair of unweighted directed graphs G, G2 over A and Ceraen
every R € L(A), we define a polyhedron H%1: G2 to rep- —_
resent the histograms of profile P that contains an R-vote, G, G,
3

G1 = UMG(P), and G, = UMG(P \ {R}). The linear 2———>3 2
inequalities used to specify the UMGs of P and (P \ {R}) ]

are similar to £ defined above, as illustrated in the following Figure 3: G, G2, and R.
example.

Example 6. Letm = 3, R = [2 = 3 = 1], and let Gy, G5 denote the graphs in Figure 3. HE1 G2
is represented by the following inequalities.
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—1r231 < —1 (6)
(7213 + 231 + T321) — (T123 + T132 + T312) < —1
(x123 + T132 + T213) — (T231 + T321 + X312) < —1 @)
(w132 + 312 + 321) — (@123 + T213 + 2231) < —1
(213 + w231 — 1 + 2321) — (X123 + T132 + T312) < —1
(w123 + 132 + 213) — (T231 — 1 + 2301 + 2312) < —1 ®)
(132 + w312 + 2321) — (123 + T213 + 2231 — 1) <0
(123 + w213 + 2231 — 1) — (2132 + 2312 + T321) <0
(6) guarantees that P contains an R-vote. The three inequalities in (7) represent UMG(P) = G,

and the four inequalities in (8) represent UMG(P) = Gs.

We do not require x’s to be non-negative, which does not affect the results of the paper, because
the histograms of randomly-generated profiles are always non-negative.

By enumerating G'1, R, and G that correspond to a violation of PAR, the polyhedra that represent
satisfaction of PAR under Copeland,, are:

C = U G1,R,G2
G1,R,G2:Copeland , (G1)>= rCopeland , (G2)

C.2 Formal Statement of the Categorization Lemma and Proof

We first introduce notation for polyhedra. Given ¢ € N, L € N, an L x ¢ integer matrix A, a
g-dimensional row vector b, we define

Hé{feRq:A~(f)T< @T}’ ”<0é{f€Rq:A'@)T< @T}

That is, H is the polyhedron represented by A and b and H<o is the characteristic cone of H.

Example 7 (Poisson multinomial variable (PMYV) Xﬁ). In the setting of Example 1, we have
g=m!=06.Letn=2and T = (71'2, 7r1). X3 is the histogram of two random variables Y1, Y, over

[q], where Y7 (respectively, Ys) is distributed as 7° (respectively, 7*).

For example, let € {0,1,2}*Y denote the vector whose 123 and 231 components are 1 and all

other components are 0. We have Pr(Xz = %) = 2 x 2+ L x L = L.

Definition 4 (Almost complement). Let C denote a union of finitely many polyhedra. We say that
a union of finitely many polyhedra C* is an almost complement of C, if (1) C N C* = () and (2)
ZCCcuUcCH.

C* is called an “almost complement” (instead of “complement”) of C because C* U C # R?. Effec-
tively, CZ, can be viewed as the complement of C when only integer vectors are concerned. It it not
hard to see that C is an almost complement of C*. The following result states that the characteristic
cones of C and C*, which may overlap, cover R?.

Proposition 1. For any union of finitely many polyhedra C and any almost complement C* of C, we
have C<o UCZ, = R1.

Proof. Suppose for the sake of contradiction that C<o U C%, # R%. Let & € R?\ (C<o UC%y)
with |Z]; = 1. Because C<( and C%, are unions of polyhedra, there exists an § > 0 neighborhood
Bs ={7 e R?: |7 — ¥ < I} of & in R that is > 0 away from C<o UC%,. Therefore, there
existsn € Nwithn > £ suchthatnBs = {ni’ : # € B;} do not overlap CUC*. Because the radius

of n By is larger than 1, there exists an integer vector in nB;s, which contradicts the assumption that
71 Ccucr. O

W.Lo.g., in this paper we assume that all polyhedra are represented by integer matrices A where the
entries of each row are coprimes, which means that the greatest common divisor of all entries in the
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row is 1. For any C = J,.; H; where H; is the polyhedron characterized by integer matrices A

with coprime entries and Bi, its almost complement always exists and is not unique. Let us define
an specific almost complement of C that will be commonly used in this paper.

Definition 5 (Standard almost complement). Let C = U;<H; denote a union of I rational poly-
hedra characterized by A; and Bi, we define its standard almost complement, denoted by C, as

follows.
5 _ q._ _
C= U&‘ieAi:ViSI ﬂi<[ {7eR G- &< —b; — 1},

- . . /. . . = . 5 _ »
where @; is a row in A; and b, is the corresponding component in b;. We write C = Ui*g 7 Hixs

where I € N and each H;- is a rational polyhedron.

It is not hard to verify that C is indeed an almost complement of C. Let us take a look at a simple
example for ¢ = 2.

Example 8. Let C = Hy U Ho, where Hy = {fe R2 . { _% _(1] ] (;i:’)T < [ _(2) ]} and
Ho = {fe R2: [ _% _; . (f)T < S ]} It follows that C = H1 U Hs U7:[3 U Hy, where

~ . 1 0] ,. [ -1 ~ . 10 . -1
7—[1:{x€R2:[1 _2_-(m)T§__9}},7-[2:{&06]1@2:[_1 2}-(@*3[_9]}
~ . -2 11 .. 1 ~ . -2 1 . 1
ng{xeRQ:[ 1 _2-'($)T§-_9:|},H4:{CEGR2:|:_1 2} (x)TS[_g]}

Figure 4 (a) shows C and C. Figure 4 (b) shows C<q and égo, where Ho is a one-dimensional
polyhedron, i.e., a straight line. Note that C U C # R? and C<y U C<o = R

&\\\\\\

(a) C and C. (b) C<o and C<.

Flgure 4: In (a), C = H1 U Hz, where H; is the green area and H- is a shaded area, and ¢ = ’Hl U 7—[2 U
Fs U Hy, where H is a shaded area, and F1, Hs, and 74 are the yellow, red, and blue areas, respectively. In
(b),C<o U Cgo = RY, where H> is a straight line.

To present the categorization lemma, we recall the definitions of o, 3,,, and Theorem 2 in [55]. We
first recall the definition of the activation graph.

Definition 6 (Activation graph [55]). For eachll, H;, and n € N, the activation graph, denoted by
Gr1,¢.n, IS defined to be the complete bipartite graph with two sets of vertices CH(II) and {H,; : i <
I}, and the weight on the edge (7, H,;) is defined as follows.

—o0 lf'HzZn =0
wp (T, 1) = s otherwise, if T ¢ H; <o

dim(H;,<0) otherwise

where ’HiZ’n is the set of non-negative integer vectors in H; whose Ly norm is n.
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Definition 6 slightly abuses notation, because its vertices {#; : ¢ < I'} are not explicitly indicated
in the subscript of Gry ¢ . This does not cause confusion when they are clear from the context.

When H?, = () we say that }; is inactive (at n), and when HZ, # () we say that ; is active (at
n). In addition, if the weight on any edge (7, H;) is positive, then we say that 7 is active and is
activated by H; (which must be active at n).

Roughly speaking, for any sufficiently large n and # = (my,...,7m,) € I™, letm = 1 Z;’:l T,
then [55, Theorem 1] implies
Pr(X: € H;) ~ nvn(mHi)=a

It follows that Pr()?ﬁ € C) is mostly determined by the heaviest weight on edges connected to T,

max

denoted by dim¢'* (), which is formally defined as follows:

dim§* () £ max;<; wy (m, Hs)

Then, a max-(respectively, min-) adversary aims to choose @ = (71,...,7,) € II" to maximize
max

(respectively, minimize) dimg’,,; (% Z;'L:1 m;), which are characterized by «,, (respectively, 5,,)
defined as follows.

A . Imax
Q= maXyecy(m dimey, ()
A : . max
Bn = MIN7eCH(IT) dlmc,n ()

We further define the following notation that will be frequently used in the proofs of this paper. Let
CZ denote the set of all non-negative integer vectors in C whose L; norm is n. That is,

Cr = Hin
i<t v
By definition, C{ZL = () if and only if all #;’s are inactive at n. Therefore, we have
(an = —00) == (B = —00) == (C; = 0)
For completeness, we recall [55, Theorem 2] below.

Theorem 2 in [55] (Semi-random likelihood of PMV-in-C). Given any q,I € N, any closed and
strictly positive 11 over [q], and any set C = |J,; H; that is the union of finitely many polyhedra
with integer matrices, for any n € N, -

0 if a, = —00
sup Pr (X'ﬁ c c) = { exp(=O(n)) if — o0 <an <0 ’
reln S) (n E q) otherwise (i.e. a, > 0)
0 lfﬁn = -
inf Pr(Xzec)={ o-OM) i —o0<fu<0
Telln

© (n%) otherwise (i.e. 3, > 0)

For any almost complement C* of C, let ), and G} denote the counterparts of «, and 3, for C*,
respectively. We note that o and /3 depend on the polyhedra used to representation C*. We are
now ready to present the full version of the categorization lemma as follows.

Lemma 1. (Categorization Lemma, Full Version). Given any q,I € N, any closed and strictly
positive L over [q], any C = \J,; H; and its almost complement C* = J;.. ;. H}, for anyn € N,

0 ifﬂn = -
exp(—0O(n)) if —oo< B, <0
O (n**) if0 < B <q

inf Pr(Xzec) =4 O)A(I=6(1) ifa}=pu=g
mell”
o<y, <q

1—exp(—O(n)) if —co<al <0
1 if a)y =00
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0 if a, = —00

exp(—0O(n)) if —co<a, <0

O (n™" ifo<a, <q
sup Pr (X7 eC) ={ O)A1=O0) ifou=0; =g
e 1—e(n™")  y0<Bi<q

\

1—exp(—0O(n)) if —co<fBr<0

if By = —oo

Proof. We present the proof for the inf part of Lemma 1 and the proof for the sup part is similar.

Notice that Z? C C U C*, we have:

inf e Pr ()Z'ﬁ c c) —1-

SUPzerm Pr ()Z';r € C*)

The proof is done by combining the inf part of [55, Theorem 2] (applied to C) and one minus the

sup part of [55, Theorem 2] (applied to C*).

e The 0, exp(—©(n)) and © (nﬁnz_q>
of [55, Theorem 2] applied to C.

cases follow after the corresponding inf part

e The ®(1) A (1 — ©(1)) case. The condition of this case implies that the polyno-
mial bounds in the inf part of [55, Theorem 2] (applied to C) hold, which means that

infzcn Pr (Xﬁ € C) = O(1), and the polynomial bounds in the sup part of [55, Theo-
rem 2] (applied to C*) hold, which means that

infzenn Pr ()?;r € C’) =1—supzcpn Pr (Xﬁ € C*) =1-0(1)

*
oy —q

e Thel — © (n 2 ), 1 — exp(—©®(n)), and 1 cases follow after one minus the sup

part of [55, Theorem 2] (applied to C*).

Remarks. The conditions for all, except 0 and 1,
cases are different between sup and inf parts of the
lemma. Moreover, the degrees of polynomial in the
L and U cases may be different between sup and inf
parts. Let us use the setting in Example 8 and Fig-
ure 5 to illustrate the conditions for the inf case. For
the purpose of illustration, we assume that all poly-
hedra in C and C* are active at n.

e The O (respectively, 1) case holds when no non-
negative integer with L, norm n is in C (respectively,
in C*).

e The VU case. Given that the 0 and 1 cases do
not hold, the VU case holds when CH(II) contains a
distribution 7yy that is not in C<g. Notice that C<q
is a closed set and C<o U CZ, = RY. This means
that 7ryy is an interior point of C% . For example, in
Figure 5, myy is not in C<( and is an interior point
of 7‘[3750 .

Figure 5: An Illustration of myy, 7y, mm, and yi.
for the inf part of Lemma 1.

o The U case holds when CH(IT) C C<(, and CH(II) contains a distribution 7y that lies on a (low-
dimensional) boundary of C<y. For example, in Figure 5, my lies in a 1-dimensional polyhedron
Ha <0 € C<o, and is not in any 2-dimensional polyhedron in C<g.
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e The M case holds when the U case does not hold, and CH(II) contains a distribution 7y that lies
in the intersection of a g-dimensional subspace of C<o and a g-dimensional subspace of CZ,,. For

example, in Figure 5, my lies in H1, <o and 7:[350, both of which are 2-dimensional.
o The L case holds when every distribution in CH(II) is in a ¢-dimensional subspace of C<¢, and

there exists m, € CH(II) that lies in a (low-dimensional) boundary of C%,. No such 7, exists in
Figure 5’s example, but if we apply Lemma 1 to C*, then 7y in Figure 5 is an example of 7y, for C*.

o The VL case holds when every distribution in CH(II) is an inner point of C<y. For example, in
Figure 5, 7y is an inner point of H; <o C C.

D GISRs and Their Algebraic Properties

D.1 Definition of GISRs

All irresolute voting rules studied in this paper are generalized irresolute scoring rules (GISR) [22,
53], whose resolute versions are known as generalized scoring rules (GSRs) [56]. We recall the
definition of GISRs based on separating hyperplanes [57, 38].

For any real number z, let Sign(z) € {4, —, 0} denote the sign of x. Given a set of K hyperplanes
in the g-dimensional Euclidean space, denoted by H = (h1,...,hK), for any & € RY, we let
Sign; (%) = (Sign(Z - hy),...,Sign(Z - hx)). In other words, for any k < K, the k-th component
of Sign ;(Z) equals to 0, if p'lies in hyperplane hy; and it equals to + (respectively, —) if p'lies in
the positive (respectively, negative) side of hy,. Each element in {+, —,0} % is called a signature.
Definition 7 (Generalized irresolute scoring rule (GISR)). A generalized irresolute scoring rule
(GISR) 7 is defined by (1) a set of K > 1 hyperplanes H = (hy,...,hx) € (R™)X and (2) a
function g = {+,—,0} — (24\ ). For any profile P, we let 7(P) = g(Signz(Hist(P))). T is
called an integer GISR (int-GISR) if H € (Z™)E . If for all profiles P, we have |7(P)| = 1, then 7
is called a generalized scoring rule (GSR). Int-GSRs are defined similarly to int-GISRs.

Definition 8 (Feasible and atomic signatures). Given integer H with K = |ﬁ , let S =
{+,—,0}%. A signature t € Sk is feasible, if there exists & € R™ such that Signz (%) = t.
Let S C Sk denote the set of all feasible signatures.

A signature t is called an atomic signature if and only if t € {+, =K. Let S% denote the set of all
feasible atomic signatures.

The domain of any GISR 7 can be naturally extended to R™" and to S 7. Specifically, for any tes I
we let 7(£) = g(t). It suffices to define g on the feasible signatures, i.e., S I

Notice that the same voting rule can be represented by different combinations of (ﬁ ,g). In the
following section we recall int-GISR representations of the voting rules studied in this paper.

D.2 Commonly-Studied Voting Rules as GISRs

As discussed in [55], the irresolute versions of Maximin, Copeland,,, Ranked Pairs, and Schulze
belong to the class of edge-order-based (EO-based) rules, which are defined over the weak order on
edges in WMG(P). We recall its formal definition below.

Definition 9 (Edge-order-based rules). A (resolute or irresolute) voting rule T is edge-order-based
(EO-based), if for any pair of profiles Py and Ps such that for every combination of four different
alternatives {a,b,c,d} C A, [wp, (a,b) > wp, (c,d)] < [wp,(a,b) > wp,(c,d)], we have 7(Py) =
7(P2).

All EO-based rules can be represented by a GISR using a set of hyperplanes that represents the
orders over WMG edges. We first recall pairwise difference vectors as follows.

Definition 10 (Pairwise difference vectors [54]). For any pair of different alternatives a,b, let
Pair,, denote the m!-dimensional vector indexed by rankings in L(A): for any R € L(A), the
R-component of Pairg y, is 1 if a =g b; otherwise it is —1.
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We now define the hyperplanes for edge-order-based rules.

Definition 11 (Hgo). Hgo consists of (m("g_l)) hyperplanes indexed by 561762, where e; =
(a1, az2) and es = (ag, be) are two different pairs of alternatives, such that

hel-,CZ - Palralybl — Pairq, p,

That is, for any (fractional) profile P, l_iel e, -‘Hist(P) < 0if and only if the weight on e; in WMG(P)
is no more than the weight on e> in WMG(P). Therefore, given Signg (P), we can compare

the weights on pairs of edges, which leads to the weak order on edges in WMG(P) w.r.t. their
weights. Consequently, for any profile P, Sign ; (P) contains enough information to determine the
(co-)winners under any edge-order-based rules. Formally, the GISR representations of these rules
used in this paper are defined by Hgo and the following g functions that mimic the procedures of
choosing the winner(s).

Definition 12. Let MM, Cd,, RP, Sch denote the int-GISRs defined by Hgo and the following g
functions. Given a feasible signature t € S oo’

e gnmM first picks a representative edge e, whose weight is no more than all other outgoing
edges of a, then compare the weights of e,’s for all alternatives and choose alternatives a
whose e, has the highest weight as the winners.

® gcd, compares weights on pairs of edges a — b and b — a, and then calculate
the Copeland,, scores accordingly. The winners are the alternatives with the highest
Copeland,, score.

e ggrp mimics the execution of PUT-Ranked Pairs, which only requires information about the
weak order over edges w.r.t. their weights in WMG.

® gsch first computes an edge ey, with the minimum weight on any given directed path p, then
for each pair of alternatives a and b, computes an edge e, ) that represents the strongest
edge among all paths from a to b. gs.;, then mimics Schulze to select the winner(s).

While Copeland can be represented by Hgo and gcd,, as in the definition above, in this paper we use

another set of hyperplanes, denoted by Hcq,, , that represents the UMG of the profile. The reason is
that in this way any refinement of Cd,, would break ties according to the UMG of the profile, which
is needed in the proof of Theorem 4.

Definition 13 (Cd,, as a GISR). Cd,, is represented by H, cd,, and gcq,, defined as follows. For every
pair of different alternatives (a,b), ﬁCda contains a hyperplane H(a,b) = Fair, p, — Pairy q. For any
profile P, gca,, first computes the outcome of each head-to-head elections between alternatives a and

b by checking f_i(ayb) -Hist(P), then calculate the Copeland,, score, and finally choose all alternatives
with the maximum score as the winners.

The GISR representation of MRSE rules is based on the fact that the winner(s) can be computed
from comparing the scores between any pair of alternatives (a, b) after a set of alternatives B is
removed. This idea is formalized in the following definition. For any R € £(.A) and any B C A,
let R| 4\ g denote the linear order over (A \ B) that is obtained from R by removing alternatives in
B.

Definition 14 (MRSE rules as GISRs). Any MRSET = (T2, ...,Tp,) is represented by H and g
defined as follows. Given an int-MRSE rule T = (Ta, . ..,Tm ), for any pair of alternatives a, b and

any subset of alternatives B C (A \ {a,b}), we let Score%mb denote the vector, where for every
R € L(A), the R-th component ofScore%a’b is smTIBl _ gm-IBl

g s; , where i and j are the ranks of a
and b in R| 4\ p, respectively.

For any pair of different alternatives {a,b} C (A\ B), H contains a hyperplane Scoreﬁ_’a_’b. For

any profile P, g= mimics T to compute the PUT winners based on whether E(Bﬂ’b) - Hist(P) is < 0,
=0, or> 0.

In fact, the GISR representation of 7 in Definiton 14 corresponds to the PUT structure [55], which
we do not discuss in this paper for simplicity of presentation. Any GSR refinement of 7, denoted
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by r, uses the same H in Definiton 14 and a different g function that always chooses a single loser
to be eliminated in each round. The constraint is, for any profile P, the break-tie mechanisms used
in g only depends on Sign(P) (but not any other information contained in P). For example,
lexicographic tie-breaking w.r.t. a fixed order over alternatives is allowed but using the first agent’s
vote to break ties is not allowed.

D.3 Minimally Continuous GISRs

Next, we define (minimally) continuous GISR in a similar way as Freeman et al. [22], except that in
this paper the domain of GISR is R (in contrast to R’Z”é in [22]).

Definition 15 ((Minimally) continuous GISR). A GISR 7 is continuous, if for any ¥ € R™, any
alternative a, and any sequence of vectors (Z1,Z5 . . .) that converges to T,

Vj € N,a € 7(Z;)] = [a € T(Z)]

A GISR 7 is called minimally continuous, if it is continuous and there does not exist a continuous
GISR 7" such that (1) for all ¥ € R™, 7* (%) C 7(&), and (2) the inclusion is strict for some 7.

Equivalently, a continuous GISR 7 is minimally continuous if and only if the (fractional) profiles
with unique winners is a dense subset of R™" . That is, for any vector in R™, there exists a sequence
of profiles with unique winners that converge to it. As commented by Freeman et al. [22], many
commonly-studied irresolute voting rules are continuous GISRs. It is not hard to verify that posi-
tional scoring rules and MRSE rules are minimally continuous GISRs, which is formally proved in
the following proposition.

Proposition 2. Positional scoring rules and MRSE rules are minimally continuous.

Proof. Let § = (s1,...,8m) denote the scoring vector. We first prove that 7z is continuous. For
any ¥ € R™, any a € A, and any sequence (1, Zo, . . .) that converges to Z such that for all j > 1,
a € 7(Z;), we have that for every b € A, 5(&;,a) > 5(&;,b). Notice that 5(Z;, a) (respectively,
5(&;, b)) converges to 5(Z, a) (respectively, 5(Z, b)). Therefore, 5(Z, a) > 5(Z, b), which means that
a € T3(Z), i.e., Tz is continuous.

To prove that 7'z is minimally continuous, it suffices to prove that for any # € R™' and any a € 75(Z),
there exists a sequence (&1, Z2, . ..) that converges to & such that for all j > 1, 7(Z;) = {a}. Leto
denote an arbitrary cyclic permutation among A \ {a} and P denote the following (m — 1)-profile.

P ={o'(a> others) : 1 <i<m—1}

Then, for every j € N, we let Z; = & + %Hist(P). It is easy to check that 7(Z;) = {a}, which
proves the minimal continuity of 7.

Let 7 = (Ta,...,Ty) denote the MRSE rule. We will use notation in Section E.3 to prove the
proposition for 7. We first prove that 7 is continuous. Let Z € R™, a € A, and (1, 7o, ...)
be a sequence that converges to & such that for all j > 1, a € 7(Z;). Because the number of
different parallel universes is finite (more precisely, m!), there exists a subsequence of (Z1, o, . . .),
denoted by (&}, 2%, . ..), and a parallel universe O € L(.A) where a is ranked in the last position
(i.e., a is the winner), such that for all j € N, O is a parallel universe when executing 7 on ;E’;
Therefore, for all 1 < ¢ < m — 1, in round ¢, O[i] has the lowest T,,,11_; score in f}|o[i,m]
among alternatives in Oli, m]. It follows that O[i] has the lowest 7,1 score in Z|o; ] among
alternatives in O[i, m], which means that O is also a parallel universe when executing 7 on Z. This
proves that 7 is continuous.

The proof of minimal continuity of 7 is similar to the proof for positional scoring rules presented
above. For any & € R™ and any a € 75(Z), let O denote a parallel universe where a is ranked in
the last position. Let P denote the following profile of (m — 1)! 4+ (m — 2)! + - - - 4 2! votes, where
O is the unique parallel universe.

P={J" " {O0] = - = Ofi] = B : VR, € £(Ofi +1,m])}

Forany j € N, letZ; = & — %Hist(P). It is not hard to verify that (2, Zs, . . .) converges to &, and
forevery 1 < i < m — 1 and every j € N, alternative O[i] is the unique loser in round ¢, where
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—%Hist(P) is used as the tie-breaker. This means that for all j € N, 7(Z;) = {a}, which proves the
minimal continuity of 7. O

D.4 Algebraic Properties of GISRs

We first define the refinement relationship among (feasible or infeasible) signatures.

Definition 16 (Reﬁnement relationship <). For any pair of signatures t1,ty € Sk, we say that
t1 refines to, denoted by t1 iy, if for every k<K, lf[tg]k ;é 0 then [t = [ta]g. Ift1 <o and
t1 =+ tg, then we say that t1 strictly refines tg, denoted by t1 < t2

In words, ; refines 5 if 51 differs from 52 only on the 0 components in {5. By definition, {1 refines
itself. Next, given H and a feasible signature ¢, we define a polyhedron H ! to represent profiles
whose signatures are ¢.
Definition 17 (H ¥ (#F in short)). Forany H = (ny, ..., hx) € (R))X and any € S, we let
I
At = | At |, where
Aj

° Ai consists of a row —i_ii foreachi < K witht; = +.
o AY consists of a row El foreachi < K witht; = —

° A‘g consists of two rows —FLZ' and ﬁz foreachi < K witht; = 0.

o

et bt = | -1, -1, 0 |- The corresponding polyhedron is denoted by Hﬁ; or HY in short
for Ai for A’i for Ag

when H is clear from the context.

The following proposition follows immediately after the definition.
Proposition 3. Given H, for any pair of feasible signatures t1,to € S it t1 <ty if and only if
H<o 2 H<o

Proposition 4 (Algebraic characterization of (minimal) continuity). A GISR 7 is continuous, if
and only if

vt e Sp, we have 7(t) 2 Ut,es E,qtf(t_’)
at'd

7 is minimally continuous, if and only if

VE € S, we have T(t) = U 7(1), and(Z)VteS , we have [F(t)| =1

<At

The “continuity” part of Proposition 4 states that for any feasible signature ¢ and its refinement t’, we
must have 7(#') C 7(f). The “minimal continuity” part states that any minimally continuous GISR
is uniquely determined by its winners under atomic signatures (where a single winner is chosen for
any atomic signature).

Proof. The “if”” part for continuity. Suppose for the sake of contradiction that there exists ¢ € S i

such that 7(£) D Upcgo .77 (f) but 7 is not continuous. This means that there exists & € R™
.7

with Sign ; () = t, an infinite sequence (71, ¥z, . . .) that converge to Z, and an alternative a ¢ 7(Z),

such that for every j € N, a € F(fj). Because the total number of (feasible) signatures is finite,

there exists an infinite subsequence of (i, %>, .. .), denoted by (&, %, ...), and ¥ € S such that

for all j € N we have Sign; (7)) = t'. Note that (&, &, ...) also converges to . Therefore, the
following holds for every k < K.
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o If t;c = 0, then for every j € N we have Hk - Z; = 0, which means that ﬁk - =0,
i.e. tk =0.

o If t;c = +, then for every 7 € N we have fzk. - Z; > 0, which means that ﬁk -Z >0,
ie. ty €{0,+}.

e Similarly, if t?c = —, then for every j € N we have Ek -&; < 0, which means that i_ik -7 <0,
ie. t, €{0,—}.

This means that # < £. Recall that we have assumed 7(#) 2 |Jp c Sﬁ:ﬁQfF(t_’ ), which means that
a € 7(f') C 7(t) = 7(&). This contradicts the assumption that a ¢ 7(Z).

The “only if”’ part for continuity. Suppose for the sake of contradiction that 7 is continuous but
there exists ¢ € Sy such that Ugesﬁ:pqg?(?) ¢ 7(f). This means that there exist # < ¢ and

an alternative a such that a € 7(#) but a ¢ 7(t). Because both t and #' are feasible, there exists

— =

Z,7 € R™ such that Sign 7 () = t and Sign;(2") = t'. Itis not hard to verify that the infinite
sequence (T + &/, &+ 12, & + %a‘;”, ...) converge to 7, and for every j € N, Sign 5 (7 + %f’) =7,
which means that a € 7(Z + %f’ ). By continuity of 7 we have a € 7(Z) = 7(t), which contradicts
the assumption that a ¢ 7(Z).

The “if” part for minimal continuity. To simplify the presentation, we formally define refinements
of GISRs as follows.

Definition 18 (Refinements of GISRs). Let 7 and T be a pair of GISR such that for every ¥ € R™,
7(Z) C 7(&). T is called a refinement of 7. If additionally there exists T € R™ such that
7*(¥) C T(Z), then 7* is called a strict refinement of 7.

Suppose for every I € S; we have 7(f) = UF’ES%:pﬁf?(P)’ and for every ¢ € S7 we have
|7(f)] = 1. By the “continuity” part proved above, 7 is continuous. To prove that 7 is minimally

continuous, suppose for the sake of contradiction that 7 has a strict refinement, denoted by 7*.
Clearly for every atomic feasible signature € S;? we have 7 (t) = 7(f). Therefore, by the
“continuity” part proved above, for every feasible signature £ € S 5> we have
ro2 J w2 Y = U @) =70,
o - -

7 L AF [y g o T AF
ESH.t <t t Esﬁ.t <t t'eS2 't

:u.

which contradicts the assumption that 7* is a strict refinement of 7.

The “only if”” part for minimal continuity. Suppose 7 is a minimally continuous GISR. We define
another GISR 7* as follows.

e Foreveryt € SI‘}I we let ?*(f) C 7(t) and |?*(f)| =1.

e Forevery t € Sz, we let 7 () = Upcgo 7™ (T).
s

By the continuity part proved above, 7* is continuous. It is not hard to verify that 7 refines 7.
Therefore, if either condition for minimal continuity does not hold, then 7* is a strict refinement of
7, which contradicts the minimality of 7.

This proves Proposition 4. O

Next, we prove some properties about 7 that will be frequently used in the proofs of this paper.
The proposition has three parts. Part (i) characterizes profiles P whose histogram is in #'; part (ii)
characterizes vectors in ’Htgo; and part (iii) states that for every atomic signature , Htgo is a full
dimensional cone in R,

Claim 1 (Properties of ’H{). Given integer H, anyt € Sz,
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(i) for any integral profile P, Hist(P) € HE if and only if Sign ; (Hist(P)) = &
(ii) forany ¥ € R™, ¥ € ’Hgo if and only if t < Sign g (),

(iii) if T € S2 then dim(H%) = ml.

Proof. Part (i) follows after the definition. More precisely, Sign ; (Hist(P)) = ¢ if and only if for
every k < K, (1) tx, = + if and only if ka -Hist(P) > 0, which is equivalent to —i_ik -Hist(P) < —1
because i_ik € Z™; (2) likewise, t;, = — if and only if i_ik -Hist(P) < —1, and (3) if t;, = 0 if and
only if hy, - Hist(P) < 0 and —hy, - Hist(P) < 0. This proves Part (i).

Part (ii) also follows after the definition. More precisely, & € 7—[20 if and only if for every k£ < K,
(1) ty = + if and only if —hy, - & < 0, which is equivalent to [Sign 5 (7)]x € {0, +}; (2) likewise,
t, = — if and only if Ay, - & < 0, which is equivalent to [Sign (£)]r € {0, —}, and (3) if ¢}, = 0 if
and only if hy, - & < 0 and —hy, - Z < 0, which is equivalent to [Sign ()] = 0. This is equivalent
to t < Sign 5 (7).

We now prove Part (iii). Suppose ¢ € S}’?. Let # € Hi N R’Z”(!) denote an arbitrary non-negative
vector whose existence is guaranteed by the assumption that £ € S;’?. Therefore, for every k < K,

either ﬁk - < —1lor —i_ik - < —1, which means that there exists 6 > 0 such that any ’ with
|Z' — Z|o < 0, we have hy, - & < 0 or —hy, - Z < 0. This means that  is an interior point of %%, in
R™, which implies that dim(’HiO) =ml. O

E Materials for Section 3: Semi-random CONDORCET CRITERION

E.1 Lemma 2 and Its Proof

For any GISR 7, we first define Ry, (respectively, Ryw;) that corresponds to fractional profiles
where a Condorcet winner exists and is a co-winner (respectively, not a co-winner) under 7. CWW
(respectively, CWL) stands for “Condorcet winner wins” (respectively, “Condorcet winner loses”).
Réww = {Z € R™ : CW(Z) N7(Z) # 0}
Rewe, = {Z € R™ : CW(Z) N (A\ (D)) # 0}

For any set R C R™', let Closure(R) denote the closure of R in R™, that is, all points in R and
their limiting points. Next, we introduce four conditions to present Lemma 2 below.

Definition 19. Given a GISR 7 and n € N, we define the following conditions, where T € R™.
o Always satisfaction: Cas (7, n) holds if and only if for all P € L(A)", CC(7, P) = 1.
e Robust satisfaction: Cgrs(T, &) holds if and only if T ¢ Closure(Rl, ).
e Robust dissatisfaction: Crp (T, T) holds if and only if CW(Z) N (A\ 7(Z)) # 0.

e Non-Robust satisfaction: Cngs(7,Z) holds if and only if ACW(Z) # 0 and & ¢
Closure(R Ly )-

In words, Cas(7,n) means that 7 always satisfies CC for n agents. Robust satisfaction Cgrs (T, Z)
states that  is away from the dissatisfaction instances (i.e., Ry ) by a constant margin. Robust
dissatisfaction Crp (7, Z) states that the Condorcet winner exists under Z and is not a co-winner
under 7. Robust satisfaction and robust dissatisfaction are not “symmetric”, because there are two
sources of satisfaction: (1) no Condorcet winner exists and (2) the Condorcet winner exists and is
also a winner, while there is only one source of dissatisfaction: the Condorcet winner exists but is
not a winner.

The intuition behind Non-Robust satisfaction Cngrs (7, ) may not be immediately clear by definition.
It is called “satisfaction”, because ACW (&) # 0 implies that CW (&) = @, which means that 7
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satisfies CC at . The reason behind “non-robust” is that when a small perturbation #”’ is introduced,
UMG(Z + &) often contains a Condorcet winner that is not a co-winner under #, because Z is
constantly far away from R ¢y -

Example 9 (The four conditions in Definition 19). Let m = 3 and n = 14. Table 3 illustrates
four distributions, their UMG, the irresolute plurality winners, and their (dis)satisfaction of the four
conditions introduced defined in Definition 19. ', w2, and 7' are the same as in Example 1 and 3.
Notice that 7' is a linear combination of 7' and 2.

123]132]231|321 (213|312 Plu winner(s) | Cas | Crs | Crp | Cxrs

UMG
1
%/\ {1} N|N|N| Y
2 3

1 1 1 1 1 1
Q 202|888
1
2 1 1 3 1 1 1
™ 1§5|s|5|5|8]s /\ {2} N Y NN
2——3
1
1 1 1 1 1 1
T uni 6 6 6 6 6 6 {1,2,3} N N N N

3ri4n? | 7 7 3
4

w
%]
w
[\V)
=
oy
ool
ool

2 3
;/1\ {1} N|N|Y| N

2——3

Table 3: Distributions and their (dis)satisfaction of conditions in Definition 19.

Let P4 denote the 14-profile {6 x [1 = 2 = 3],4 x [2 = 3 = 1],4 x [2 = 1 = 3]}. Itis not
hard to verify that alternative 2 is the Condorcet winner under P14 and Plu(P14) = {1}. Therefore,
Cas(Plu, 14) = N.

7L, Crs(Plu, ') = N. To see this, let &’ denote the vector that corresponds to the single-
vote profile {2 = 3 = 1}. For any sufficiently small § > 0, 7' + 07" € RP%,  because 2
is the Condorcet winner and 1 is the unique plurality winner. Cgp(Plu, ") = N because
CW(rml) = 0. Cyrs(Plu,7t) =Y because ACW(r') = {2,3}, and for any ¥ € R® and
any 6 > 0 that is sufficiently small, in 7' + 5Z' we have that 2 or 3 is Condorcet winner
and 1 is the unique plurality winner, which means that ™ + 6% & Riyw-

72, Crs(Plu, %) =Y because the plurality score of 2 is strictly higher than the plurality
score of any other alternative, which means that for any & € R™, for any 6§ > 0 that is suf-
ficiently small, 2 is the Condorcet winner as well as the unique plurality winner in 72 + 0%
This means that w2 is not in the closure of vectors where CC is violated. Cgp(Plu, 7?) = N

because CW(1?) N (A \ Plu(r?)) = {2} N {1,3} = 0. Cpgs(Plu,7®) = N because
ACW(7?) = (.

Tuni- Crs (%, Tuni) = N. To see this, let T denote the vector that corresponds to the 14-
profile Py defined earlier in this example to prove Cys(Plu,14) = N. For any § > 0 that
is sufficiently small, we have ,,;+ 0T € R’g‘ﬂ‘”, because 2 is the Condorcet winner and 1 is

the unique plurality winner. Crp(Plu, T,ni) = N because CW (i) = 0. Cygs(Plut, Tyi) =
N because ACW(myp;) = 0.

#. Let v’ = %CRS(%, 7') = N because 7' € R@ Cro(Plu,7') =Y
because CW(r') N (A \ Plu(r’)) = {2} N {2,3} # 0. Cwgrs(Plu,7’) = N because
ACW(r') = 0

For any condition Y, we use —Y" to indicate that Y does not hold. For example, =Cas (7, n) means
that Cas (7, n) does not hold, i.e., there exists P € £(A)™ with CC(7, P) = 0. A GISR rule 7 is
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a refinement of another voting rule 7o, if for all # € R™', we have 71(Z) C ro(%). We note that
while the four conditions in Definition 19 are not mutually exclusive by definition, they provide a
complete characterization of semi-random CC under any refinement of any minimally continuous
int-GISR as shown in the lemma below.

Lemma 2 (Semi-random CC: Minimally Continuous Int-GISRs). For any fixed m > 3, let
M = (0,L(A), 1) be a strictly positive and closed single-agent preference model, let T be a
minimally continuous int-GISR and let r be a refinement of 7. For any n € N with 2 | n, we have

1 ifCAS(Fv TL)
1 —exp(—0O(n))  if 7Cus(T,n) and Vr € CH(II), Cgs(T, )
—~ min - _o. . (I) W= CH(H),"C (F,ﬂ') and
Cr (rn) =4 O(n™"?) i3 (2) 3 € CHII) s.t. Coms (7. )
exp(—0O(n)) if Ir € CH(II) s.t. Crp(T, )
O(1) A (1 —0(1)) otherwise

For any n € N with 2 1 n, we have

1 same as the 2 | n case
C'vcmin( ) = 1 —exp(—O(n))  same asthe 2 | n case
m \BT= N exp(—6(n)) if 3m € CH(II) s.t. Crp(, ) or Cygs(T, )

O(1) A (1 —=0(1)) otherwise

Lemma 2 can be applied to a wide range of resolute voting rules because it works for any refinement
r (i.e., using any tie-breaking mechanism) of any minimally continuous GISR (which include all
voting rules discussed in this paper). Notice that r is not required to be a GISR, the L case and the
0 case never happen, and the conditions of all cases depend on 7 but not 7.

Example 10 (Applications of Lemma 2 to plurality). Continuing the setting of Example 9, we let
Plu denote any refinement of Plu. We first apply the 2 | n part of Lemma 2 to the following four cases
of 11 for sufficiently large n using Table 3. The first three cases correspond to i.i.d. distributions, i.e.,
|TT| = 1. In particular, 11 = {m,,;} corresponds to IC.

I = {r!,7?}. We have CAEIEIH(Plu,n) = exp(—0O(n)), that is, the VU case holds. This
is because let ' = 3”11”2, we have 7' € CH(II) and Cgs(Plu,7') = N according to
Table 3.

I; = {x'}. We have (E\érrr[lin(Plu, n) = O(n=%5), that is, the U case holds.

[y = {n?}. We have CNCELH (Plu,n) =1 — exp(—©(n)), that is, the VL case holds.
o Il;c = {muni}. We have C/VCEIII(n (Plu,n) = ©(1) A (1 — O(1)), that is, the M case holds.
When 2t n and 11, = {7}, we have CNCEin(Plu, n) = exp(—0O(n)), that is, the VU case holds.

Intuitive explanations. The conditions in Lemma 2 can be explained as follows. Take the 2 | n
case for example. In light of various multivariate central limit theorems, the histogram of the
randomly-generated profile when the adversary chooses © = (m1,...,7,) is concentrated in a
©(n~%?) neighborhood of 3°7 , m;, denoted by Bz. Let avg(®) = 5 >_7_, m;, which means
that avg(7) € CH(II). The condition for the 1 case is straightforward. Suppose the 1 case does
not happen, then the VL case happens if all distributions in CH(IT), which includes avg(7), are
far from instances of dissatisfaction, so that no instance of dissatisfaction is in Bz. Suppose the
VL case does not happen. The U case happens if the min-adversary can find a non-robust satisfac-
tion instance (Cngs (7, 7)) but cannot find a robust dissatisfaction instance (—=Cgrp (7, 7)). And if the
min-adversary can find a robust dissatisfaction instance (Cgrp (7, 7)), then Bz does not contain any
instance of satisfaction, which means that the VU case happens. All remaining cases are M cases.

Odd vs. even n. The 2 t n case also admits a similar explanation. The main difference is that

when 2 { n, the UMG of any n-profile must be a complete graph, i.e., no alternatives are tied in the
UMG. Therefore, when Cngrs (T, ) is satisfied, a Condorcet winner (who is one of the two ACWs
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in ) must exist and constitutes an instance of robust dissatisfaction when 2  n. On the other hand,
it is possible that the two ACWs in 7 are tied in an n-profile when 2 | n, which constitutes a case
where CC is satisfied because the Condorcet winner does not exist. This happens with probability
©(n~%%). This difference leads to the ©(n~-5) case when 2 | n, and it becomes part of the
exp(—0O(n)) case when 2 { n .

Proof sketch. Before presenting the formal proof in the following subsection, we present a proof
sketch here.

We first prove the special case » = 7, which is done by applying Lemma 1 in the following three
steps. Step 1. Define C that characterizes the satisfaction of CC under 7, and an almost complement
C* of C. In fact, we will let C = Cnew U Ceww as in Section 4 and Section C.1, and prove that one
choice of C* is the union of polyhedra that represent profiles where the Condorcet winner exists but
is not an 7 co-winner. Step 2. Characterize ), and [3,,, which is technically the most involved part
due to the generality of the theorem. Step 3. Formally apply Lemma 1.

Then, let r denote an arbitrary refinement of 7. We define a slightly different version of CC, denoted
by CC*, whose satisfaction under 7 will be used as a lower bound on the satisfaction of CC under
r. For any GISR 7 and any profile P, we define

CC*(F, P) = 1 if CW(P) =0 or CW(P) =7(P)

0 otherwise
Compared to CC, CC™ rules out profiles P where a Condorcet winner exists and is not the unique
winner under 7. Therefore, for any @ € II", we have

PI'PNF(CC*(F7 P) = 1) < PrPNﬁ(CC(Ta P) = 1) < PrPNﬁ(CC(Fv P) = 1)

—— min —~ min

Then, we prove that semi-random CC*, i.e., CC*; (7, n), asymptotically matches CC; (7, n),
which concludes the proof of Lemma 2.

E.1.1 Proof of Lemma 2

Proof. The 1 cases of the theorem is trivial. In the rest of the proof, we assume that the 1 case
does not hold. That is, there exists an n-profile P such that CW(P) exists but is not in 7(P). We
will prove that the theorem holds for any n > Nz, where N7 € N is a constant that only depends
on 7 that will be defined later (in Definition 24). This is without loss of generality, because when n
is bounded above by a constant, the 1 case belongs to the U case (i.e., @(n_0'5)) and the VU case
(i.e., exp(—O(n))).

Let 7 be defined by H and g. We first prove the theorem for the special case where r = 7, and
then show how to modify the proof for general r. For any irresolute voting rule 7, we recall that
CC(7, P) = 1if and only if either P does not have a Condorcet winner, or the Condorcet winner is
a co-winner under 7.

Proof for the special case » = 7. Recall that in this case 7 is a minimally continuous GISR. In
light of Lemma 1, the proof proceeds in the following three steps. Step 1. Define C that characterizes
the satisfaction of CONDORCET CRITERION of 7 and an almost complement C* of C. Step 2.
Characterize Il¢ ,,, Il¢+ 1, By, and ;. Step 3. Apply Lemma 1.

Step 1: Define C and C*. The definition is similar to the ones presented in Section 4 for plurality.
We will define C = Cnew UCceww, Where Cnew represents the histograms of profiles that do not have
a Condorcet winner, and Ccww represents histograms of profiles where a Condorcet winner exists
and is a co-winner under 7. Cncw is similar to the set defined in [54, Proposition 5 in the Appendix].
For completeness we recall its definition using the notation of this paper.

Recall that Pair,, ; is the pairwise difference vector defined in Definition 10. It follows that for any
profile P and any pair of alternatives a, b, Pair, ; - Hist(P) > 0 if and only if there is an edge a — b
in UMG(P); Pair, s, - Hist(P) = 0 if and only if a and b are tied in UMG(P). Then, we use Pair, ;s
to define polyhedra that characterize histograms of profiles whose UMGs equal to a given graph G.
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Definition 20 (X ). Given an unweighted directed graph G over A, let A¢ = { é{dée }, where
tie

AG

edge
Pair, p, for each tie {a,b} in G. Letb® = —1 |, 0 ]and

for Aecdge for AG

tie

G

consists of rows Pairy, o for all edges a — b € G, and Ag,,

consists of two rows Pairy, , and

HE = {fe R™: AC . (7)< (BG)T}

Next, we define polyhedra indexed by an alternative a and a feasible signature £ € S 7 that charac-
terize the histograms of profiles P where a is the Condorcet winner and Sign 5 (P) = t.

Definition 21 (H*%). Given H = (hy,...,hx) € (R)K, a € A and i € Sy, we let A*F =

ACW=a _ , : : : .
[ Al , where AV=1 consists of pairwise difference vectors Pairy, o for each alternative b #
a, and A" is the matrix used to define H' in Definition 17. Letb®' = [ —1 | bt |and
~— =~

for ACW=a_ for AT
aq,t“_ - m! . a,f_ T _'a,{ T
HY ={ZeR™:A*" . () < (b }

Next, we use HE and H** as building blocks to define C = Cncw UCcww and an almost complement
of C, denoted by Ccwr. At a high level, Cnew corresponds to the profiles where no Condorcet
winner exists (NCW represents “no Condorcet winner”), Ccww corresponds to profiles where the
Condorcet winner exists and is also an 7 co-winner (CWW represents “Condorcet winner wins”),
and Ccwr corresponds to profiles where the Condorcet winner exists and is not an 7 co-winner (CWL
represents “Condorcet winner loses”).

Definition 22 (C and Ccwy). Given an int-GISR characterized by H and g, we define

HE and Ceww = | et

€ = Cnew U Ceww, - where Cnew = U a€ATES 5:a€7(T)
s Iz

G:CW(G)=0

a,t

Cowe = UaEA,{ESH:a¢F({) H

We note that some H®! can be empty. To see that Ccwr is indeed an almost complement of C =
Cnew U Coww, we note that C N Cewr, = (), and for any integer vector Z,

e if Z does not have a Condorcet winner then & € Cncew C C;

e if ¥ has a Condorcet winner a, which is also an 7 co-winner, then ¥ € HaSigng (F) C
Ceww C C;

e otherwise 7 has a Condorcet winner a, which is not an 7 co-winner. Then ¥ €
Ha751gnﬁ(5c') C CCWL~

Therefore, Z7 C C U Cowr..

Step 2: Characterize Il¢ ,,, Ilc.y ny Bn, and o). Recall that 3, and «; are defined by
dimg'* () and dimgy ,, (7) for m € CH(II) as follows:

Brn = mingccn(m) dimg’;’((w) = min;ecp(m) Max (dimgﬁ;yn(w), dimpa* ’ (w))

* s max
&, = IMaXzeCH(IT) dim (7T)

CewL,n

For convenience, we let II¢ ,, denote the distributions in CH(II), each of which is connected to an
edge with positive weight in the activation graph (Definition 6). Formally, we have the following
definition.
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Definition 23 (Il¢ ,,). Given a set of distributions 11 over ¢, C = Uigl Hi, andn € N, let

Hen={reCHI): 3i < Ist H}, #0andm € H; <o}

Table 4 gives an overview of the rest of the proof in Step 2, which characterizes dim¢'},* () and
dime o () by the membership of 7 € CH(II) in Il¢yy n, Heapw,ns @nd gy, n. respectively,

CcewL,n
WhereCWTLz > Ny for a constant Nr that will be defined momentarily (in Definition 24).

7 € ey * * N Y Y N
T € Hegww.n Y| Y N N N N
m € Hew Y| N Y Y N N
dlchCW () (Claim 3) * * oen |mlorm! =T[ m!
o :c}}W(n)(W) (Claim 6) ml| ml [< - <0 <0 /A
im,

| | __n max |
ma (dimg (), s, ()| ™| 7| T | AES ()| !
dimgro () (Claim 6) m! logn ml ml — logn

Table 4: dim¢'5,*(7) and dimgly ,, () for CC for 7 € CH(II) and sufficiently large n.

We will first specify Ny in Step 2.1. Then in Step 2.2, we will characterize Il¢y., ., and dimg. o , ()

Cnew,n

. . . . max - max . . .
in Claim 3, and characterize Tlc.yy n, dimee, , (7), Tleey, ns and dime s, () in Claim 6. Finally,

in Step 2.3 we will verify dimg'3*(7) and dimgyy; ,, () in Table 4.

Step 2.1. Specify N7 We first prove the following claim, which provides a sufficient condition
for a polyhedron to be active for sufficiently large N.

Claim 2. For any polyhedron H characterized by integer matrix A and b <0, if dim(H<p) = m!
and H N R’;’é # (), then there exists N € N such that for all n > N, H is active at n.

Proof. By Minkowski-Weyl theorem (see e.g., [46, p. 100]), X = V + H<o, where V is a finitely
generated polyhedron. Therefore, any affine space containing 7—[ can be shifted to contain H<q,
which means that dim(#) > dim(H<o) = m!. Because H N R # 0, it contains an interior point
(inner point with an full dimensional neighborhood), denoted by z, Whose 0 neighborhood (for some

0<d<1)in Ly is contamed in HNR™). Let B denote the § neighborhood of 7. Let N = %
Then, because b < 0 and B ‘ > 1, for every n > N and every ¥’ € B we have

T T T
n n — —
< #) <5 () <(5)
|Z]1 | %1
This means that ‘"‘ B C H N RY. Moreover, it is not hard to verify that @%B contains the
following non-negative integer n vector

(B R )

This proves Claim 2. O
We now define the constant N used throughout the proof.

Definition 24 (N5). Let Ny denote a number that is larger than m* and the maximum N obtain
from applying Claim 2 to all polyhedra H in Cycw, Coww, or Cowr where dim(H<o) = m! and

HORZ # 0.
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Step 2.2. Characterize Ilc, . .n, Hcoyw,ns and ey, n.

max
Cnew s

4

Claim 3 (Characterizations of Il¢,.,,» and dim such that

—Cas(T, n) and any distribution  over A, we have

(7). For any n > m

e if2 | n, then € Iy, if and only if CW(r) = 0, and
oan fCW(m) #0

“logn

dimg () =4 m!—1 ifACW(m) # 0
m! otherwise (i.e. CW(m) UACW(7r) = 0)

e if24n, then w € ey, n if and only if CW(m) UACW(rr) = 0, and

:Imax _ _ﬁ lfCW(Tl') UACW(TF) 7& @
dime,cy () = { m} 5T otherwise (i.e. CW(m) UACW(m) =10)

Proof. In the proof we assume that n > m*. We first recall the following characterization of H¢,
where part (i)-(iii) are due to [54, Claim 3 in the Appendix] and part (iv) follows after [54, Claim 6
in the Appendix].

Claim 4 (Properties of HC [54]). For any UMG G,
(i) for any integral profile P, Hist(P) € HE if and only if G = UMG(P);
(ii) forany ¥ € R™, & € Hgo if and only if UMG(Z) is a subgraph of G.
(iii) dim(HE ) = m! — Ties(G).

(iv) For any n > m* HE is active at n if (1) n is even, or (2) n is odd and G is a complete
graph.

The 2 | n case. By Claim 4 (iv), when n > m?* and 2 | n, every HC is active. This means that
7 € leyey.n if and only if 7 € HE, for some graph G that does not have a Condorcet winner.
According to Claim 4 (ii), this holds if and only if there exists a supergraph of UMG(7) (which
can be UMG() itself) that not have a Condorcet winner, which is equivalent to UMG(7) does not
have a Condorcet winner, i.e. CW(7w) = 0. It follows that dimZ®* (7) = 2 if and only if

Cnew,n “logn
CW(r) + 0.

To characterize the m! — 1 case and the m! case for dimg, - ,, (), we first prove the following claim
to characterize graphs whose complete supergraphs all have Condorcet winners.

Claim 5. For any unweighted directed graph G over A, the following conditions are equivalent. (1)
Every complete supergraph of G has a Condorcet winner. (2) CW(G) UACW(G) # 0.

Proof. We first prove (1)=-(2) in the following three cases.

e Case 1: [WCW(G)| = 1. In this case we must have CW(G) = WCW(G), otherwise
there exists an alternative b that is different from the weak Condorcet winner, denoted by
a, such that @ and b are tied in G. Notice that b is not a weak Condorcet winner. Therefore,
we can complete G by adding b — a and breaking other ties arbitrarily, and it is not hard
to see that the resulting graph does not have a Condorcet winner, which is a contradiction.

e Case2: [WCW(G)| = 2. Let WCW(G) = {a, b}. We note that a and b are not tied with
any other alternative. Otherwise for the sake of contradiction suppose « is tied with ¢ # b.
Then, we can extend G to a complete graph by assigning ¢ — a and a — b. The resulting
complete graph does not have a Condorcet winner, which is a contradiction. This means
that ¢ and b are the almost Condorcet winners, and hence (2) holds.

e Case 3: |WCW(G)| > 3. In this case, we can assign directions of edges between
WCW(G) to form a cycle, and then assign arbitrary direction to other missing edges in
G to form a complete graph, which does not have a Condorcet winner and is thus a contra-
diction.
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(2)=>(1) is straightforward. If CW(G) # (), then any supergraph of G has the same Condorcet
winner. If ACW(G) = {a,b} # 0, then any complete supergraph of G either has a as the Condorcet
winner or has b as the Condorcet winner. This proves Claim 5. O

The dimy;'?* (7) = m! — 1 case when 2 | n. Suppose ACW(w) = {a,b}. Let G* denote a

Cnew 1

supergraph of UMG() where ties in UMG(7) except {a, b} are broken arbitrarily. By Claim 4 (ii),
7 € HE, and by Claim 4 (iii), HZ; = m! — 1. Recall from Claim 4 (iv) that H" is active at n

because we assumed that n > m*. Therefore, dimg o () > m! — 1. To see that dim¢, () <

m! — 1, we note that for every graph G that does not have a Condorcet winner such that 7 € ’HEO.
By Claim 4 (ii), G is a supergraph of UMG(7). This means that G is not a complete graph, because
by Claim 5, any complete supergraph of UMG(7) must have a Condorcet winner. It follows that
Ties(G) > 1 and by Claim 4 (iii), S, < m! — 1. Therefore, dim{> | (1) = m! — 1.

Cnewsn

The dimg>>  (m) = m! case when 2 | n. Suppose CW(r) U ACW(m) = . By Claim 5 there
exists a complete supergraph G' of UMG () that does not have a Condorcet winner, which means
that H C Cnew C C. We have m € HE) (Claim 4 (ii)), dim(HE)) = m! (Claim 4 (iii)), and HE

is active at n (Claim 4 (iv)). Therefore, dimg> ,, (7) = ml.

The 2 { n case. By Claim 4 (iv), when n > m* and 2 t n, HC is active if and only if G is
a complete graph. It follows from Claim 4 (ii) that 7 € ¢y, if and only if 7 € HE,, where
G is complete supergraph of UMG(7) that does not have a Condorcet winner. By Claim 4 (iii),
dim(HE,) = m!. Therefore, by Claim 5, 7 € Ilgyy.n if and only if CW(7) U ACW () = 0.

+._max _
Moreover, whenever 7 € Ilcy., » We have dimg " |, (7) = m!.

This proves Claim 3. O

Recall that we have assumed the 1 case of the theorem does not hold, that is, =Cas(7, n). The fol-

. . . . max : max 3
lowing claim characterizes Iy n, dimep, (), Tleey, n» and dime (), when =Cas (7, n).

Claim 6 (Characterizations of Ilc y,n, dimgioy  (7), Heey,ny and dimg?™>  (m)). Given
any strictly positive Il and any minimally continuous int-GISR T, for any n > N (see Definition 24)

such that ~Cas(T,n) and any 7 € CH(II),

[ € Ueepyn] € [7 € Closure(Riyy)] < [dimges | (7) =m!], and
[ € Megyn) < [ € Closure(Riy,)] < [dimgr | () = m!]

Proof. We first prove properties of 7% in the following claim, which has three parts. Part (i) states
that H®? characterizes histograms of the profiles whose signature is ¢ and where alternative a is the

Condorcet winner. Part (ii) characterizes the characteristic cone of H®?. Part (iii) characterizes the
dimension of the characteristic cone for some cases.

Claim 7 (Properties of ’H“’E‘). Given H, forany a € Aand anyt € S,
(i) for any integral profile P, Hist(P) € Hat if and only if a is the Condorcet winner under
P and Sign3(P) = t;
(ii) for any ¥ € R™, ¥ € H%g if and only if a is a weak Condorcet winner under ¥ and
t< Sign (&),

(iii) if £ € S% and H" # 0, then dim(HZG) = ml.

AT
Proof. Part (i) follows after the definition. More precisely, ACY=¢ . (Hist(P))' < (—1) if and

- AT
only if a is the Condorcet winner under P, and by Claim 1 (i), A - (Hist(P))T < (bt) if and

only if Sign 5 (Hist(P)) = ¢.
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AT
Part (ii) also follows after the definition. AV=2. (;E')T < <0) if and only if a is a weak Condorcet

—

- T o
winner under P, and by Claim 1 (i), A7 - ()| < (0) if and only if £ < Sign (7).

To prove Part (iii), suppose & € Hat. Because € S%, we have b = —T (Definition 21).
- AT
Therefore, there exists & > 0 such that for all vector # such that | — #|; < 6, A%-(#)' < (0) ,

which means that ¥ € 'H‘ié Therefore, 'Ha’f) contains the § neighborhood of Z, whose dimension

is m/!. This means that dim('l—l%’g) =ml. O

[ € Hegyw,n] < [T € Closgre(’szw)]. Suppose 7 € Closure(R iy ) and let (Z1, Za, . . .)
denote an infinite sequence in Ry that converges to . Because the number of alternatives and the
number of feasible signatures are finite, there exists an infinite subsequence (Z, &%, . . .) such that

(1) there exists a € A such that for all j € N, CW(2;) = {a}, and (2) there exists t' € S such that
a € 7(t) and for all j € N, Sign (@) = t. Because 7 is minimally continuous, by Proposition 4,
there exists a feasible atomic refinement of 7, denoted by £, € S, such that 7(t,) = {a}. Therefore,
to prove that 7 € Il¢,,, n, it suffices to prove that (i) for every n > Ny, Haota is active, and (ii)

™ € HZy", which will be done as follows.

@) Hta s active. By Claim 2, it suffices to prove that Hole 0 R;“é # (. This is proved by
explicitly constructing a vector in Hata 0 RQ% as follows. Because i, is feasible, there exists
#* € R™ such that Sign ;3 (7%) = 7, Recall that 7 is strictly positive and (2, %, . . .) converges to
7, there exists j € N such that &, > 0. For any § > 0, let Z5 = T + 07¢. Welet 0 > 0 denote a

sufficiently small number such that the following two conditions hold.
e 5 > 0. The existence of such § follows after noticing that T > 0.
e CW(Z;) = {a}. The existence of such ¢ is due to the assumption that CW(z;) = {a},

AT
which means that ACW=a . (fj)T < (O) , where ASV=¢ is defined in Definition 21.

AT
Therefore, for any sufficiently small § > 0 we have ACV=4. (7;) " < (O) , which means

that a is the Condorcet winner under Zs.

Because #, is a refinement of ¢, we have Sign ;3 (75) = t.,. Therefore, T € Hate 0 R%. Following
Claim 2 and the definition of N5 (Definition 24), we have that H%%= is active for all n > Ny.

- AT
(i) @ € HZLe. Because forall j € N, ACW=. (:E’;)T < (0) and (7}, %, ...) converge to

NT
7, we have ACW=¢ . (W)T < (O) , which means that a is a weak Condorcet winner under 7.

It is not hard to verify that for every k < K, if t;, = + (respectively, — and 0), then we have
[Sign; (m)]x € {0, +} (respectively, {0, —} and {0}). Therefore, t< Sign (), which means that

t, < Sign () because t, < t. By Claim 7 (ii), we have 7 € ’H“S’é”'.

[ € Heeyw,n] = [ € Closure(Reyyw)]. Suppose m € Ilgqy, n, Which means that there

exists a € Aand ¢ € S such that 7 € HLS, a € 7(t), CW(I) = {a}, and #H* contains a non-
negative integer n-vector, denoted by &’. By Proposition 4, because 7 is minimally continuous, there
exists £, € 87 such that t, <t and 7(t,) = {a}. Let #* € H'= denote an arbitrary vector, which

- AT
is guaranteed to exist because t, € 8;7. Because &’ € H*!, we have ACV=2 . (f’)T < (71)

AT
Therefore, there exists d, such that ASV=a. (# + ($af"‘)T < (O) .Let T = & 4 6,2*. Recall that
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- T
TE 'H%’é, which means that ACW=2 . (7r)T < (0) . Therefore, for all § > 0 we have

N T
A= (4 07) T = A () 4 sAN T (@) < (0)

which means that CW(7 + 6%) = {a}. It is not hard to verify that Sign ; (7 + 6F) = #,, which
means that 7(7 + 0Z) = {a}. Consequently, for every § > 0 we have  + 6F € Ry Notice that
the sequence (m + #, 7 + 17, ...) converges to 7. Therefore, 7 € Closure(Rgyw)-

[w € Closure(Riyww)| = {dimmax’ (m) = m!} . Continuing the proof of the
[ € Heeyw,n] = [ € Closure(R¢ww)] part, because 7 is strictly positive and (7 +Z, 7+ 37, .. .)
converges to 7, there exists j € N such that 7 + %a‘:’ > 0. Recall that CW (7 + ]la‘f) = {a},
Sign (7 + %:E') =t,, and {,, is atomic, we have

CW= 1—»T A" t. 1—»T AT
ACV=a. (4 27 <(0) and AP . (14 -7 <(o)
j j

Therefore, there exists ¢ > 0 such that
T T
1 NT . 1 NT
CW=a 1o < (_ Tu . 1o < (_
A (((w + ]m)> < ( 1) and A (E(W + ]33)) < ( 1) ,

which means that £(7 + ]lf) e Hote 0 R™) £ (). by Claim 7 (iii), we have dimg®*  (7) = m!.

Ceww,n

[dimmax, (m) = m!} = [m € Icgyw,n] follows after the definition of Il¢,, n. More con-

cretely, dimg 5 ,,(7) = m! means that there exists a polyhedron H C Ccww such that the weight

on the edge (7, ) in the activation graph is m/!, which implies that 7 € Tl¢ .y n-

max

The proofs for ¢, ,» and dime o,
For completeness, we include the full proofs below.

() are similar to the proofs for Il¢,, » and dimg?y ,, (7).

[ € Heey,n] < [m € Closure(Riy;)]. Suppose m € Closure(Rey, ) and let (&1, 75, .. .)
denote an infinite sequence in R{y, that converges to 7. Because the number of alternatives and
the number of feasible signatures are finite, there exists an infinite subsequence (&, &5, ...) such

that (1) there exists a € A such that for all j € N, CW(z;) = {a}, and (2) there exists te Sy such
that @ ¢ 7(f) and for all j € N, Sign @) = t. Let b € 7(t) denote an arbitrary winner. Because 7

is minimally continuous, by Proposition 4, there exists a feasible atomic refinement of #, denoted by
tp, such that 7(¢;) = {b}. Therefore, to prove that 7 € Il¢,, n». it suffices to show that (i) for every

a,fb

n>N, ”H“’Fb is active, and (ii) m € H.

1) H is active. We will apply Claim 2 to prove that b s active at every n > N. In fact, it
suffices to prove that Heb N R;’% # (). This will be proved by explicitly constructing a vector in
Heb 0 R;"(’) as follows. Because t;, is feasible, there exists Z° € R™ such that Sign i (@) = .
Recall that 7 is strictly positive and (', 75, . . .) converges to 7, there exists j € N such that 7’} > 0.

For any 0 > 0, let s = &’ + 5%, We let 6 > 0 denote a sufficiently small number such that the
following two conditions hold.

e 75 > 0. The existence of such d follows after noticing that T > 0.
e CW(Z;5) = {a}. The existence of such ¢ is due to the assumption that CW(z;) = {a},

T
which means that ACW=¢ . (fj)T < (O) , where ASV=¢ ig defined in Definition 21.

NT
Therefore, for any sufficiently small § > 0 we have ACV=2. (;)" < (0) , which means

that a is the Condorcet winner under 7.
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Because #;, is a refinement of £, we have Sign 5 (Z5) = ty. Therefore, 75 € Habo R%. Following
Claim 2 and the definition of N7 (Definition 24), we have that ’H‘“Fa is active for all n > Nz.

. AT
(i) € ’H%’f)b. Because for all j € N, ACW=a. (f;)T < (O) and (2,4, ...) converge to T,

NT
we have ACW=a. (77)T < (0) , which means that 7 is a weak Condorcet winner. It is not hard to
verify that for every k < K, if ¢, = + (respectively, — and 0), then we have [Signz (7)]x € {0, +}
(respectively, {0, —} and {0}). Therefore, < Sign (), which means that t, < Sign () because

- N T 7
t, <t It follows that A% - (7) " < (O) . This means that 7 € H%’éb.

[ € Hegy,n] = [ € Closure(’RZWL)]. Suppose 7 € I¢gy, .n, Which means that there exists
a € Aandt € S such that 7 € ’H‘;’é C Ceww, a ¢ 7(t), CW(r) = {a}, and H** contains a
non-negative integer n-vector, denoted by #. Let b € 7(t) denote an arbitrary co-winner. By
Proposition 4, because 7 is minimally continuous, there exists f; € S% such that t_;) < {tand F(ﬁ)) =

{b}. Let&* € HP denote an arbitrary vector whose existence is guaranteed by the assumption that

~ ~ N T

ty € S%. Because ¥ € Ht, we have ACV=0 . (ai"”)—r < (—1) . Therefore, there exists J, such
= T Ind

that ACV=a . (# 4 6,7*) < (0) . Let & = &’ + 0,&". Recall that w € H%, which means that

AT AT
AV=a . ()T < (O) . Therefore, for all § > 0 we have ACV=2 . (1 + §7) < (O) , which

means that CW ( + 0%) = {a}. It is not hard to verify that Sign 5 (7 + 0%) = #;, which means that
7(m + 6Z) = {b}. This means that for every 6 > 0 we have m + 6% € Ry, . Notice that 7 is the
limit of the sequence (7 + &, m + £, .. .). Therefore, 7 € Closure(Ry,y ).

CcwL,m

[ € Closure(Riwy)] = [dimmalx () = m!} . Continuing the proof of the
[ € Heey,n] = [ € Closure(REy, )] part, because 7 is strictly positive and (7 + Z, 7 + 3, .. .)
converges to , there exists j € N such that 7 + %:E' > 0. Recall that CW (7 + %f) = {a},

. ~ T T
Sign (7 + %9?) = {p, and f; is atomic, which means that ACWV=2 . <7r + %:f) < (O) and

T AT
Atv. (71' + %f) < (0) . Therefore, there exists £ > 0 such that

ACW=a. <6(7r + 1.:5))T < (1) anaa®. (é(w + 1.f>>T <(-1) .

J J
which means that (7 + Jla?) € H*b N R} # 0. by Claim 7 (iii), we have dimg>x | (7) = ml.
[dimg;’:v’;n(ﬂ) = m!} = [ € Il¢eyy,n] follows after the definition.
This proves Claim 6. O
We are now ready to verify Table 4 column by column as follows.
e *xYY: dimg3 (7)) = max(dimgly ,(m), dimg (7)), and by Claim 6 we have
dimey, ,(m) = ml. The dimg |, () part also follows after Claim 6.

e *YN: The dim¢',* () part follows after Claim 6. Recall that we have assumed —~Cas (7, n).
This means that there exists an n-profile P such that CW(P) # () and CW(P) < 7(P).
Let {a} = CW(P) and i = Sign(P). It follows that Hist(P) € H%" # () and
H*T C Cewr. Because 7 & Icey,n» according to the definition of the activation graph

(Definition 6), the weight on the edge (w, H%!) is —@, and the weight on any edge

connected to 7 is not positive. Therefore, dimgyT , (7) = — 525
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e NNY: The dim¢'3* () part follows after the definition. The dimgs, , () part follows after
Claim 6.

e YNY: Recall that the “N” means that 7 ¢ Ilc.y,n, Which implies that dimg >~ | (1) <

Ceww,n

0. Therefore, dim¢'3*(7) = max(dimeg., ,(7),dimgSy (7)), which means that

dimeg' () = dimgyy . (7). The dimg |, () part follows after Claim 6.

e YNN: We first prove the dimg'7*(7) part. Because in this case 7 € Il¢y,,» and
7 & Ileegy,n DY the definition of ¢y, n and Heey.n, We have dime | (7) > 0 and

Cnew,n
dimg o (7) < — ;- Therefore, dimg'7* () = dimgy |, (). It suffices to prove that
dimgy . (m) = m!. Recall from Proposition 1 that

m!
Cnew,<o0 U Coww, <o U Cowr,<o = R

Therefore, there exists a polyhedron # in Cncw, Coww, or Cowr, such that m € H<( and
dim(H<p) = m!. We now prove that A is indeed active. Because r is strictly positive
and H < is convex, H<o contains an interior point in R%, denoted by Z. Formally, let
denote an arbitrary interior point of H<q. It is not hard to verify that for some sufficiently

o . . . .
small 6§ > 0,7 = % S R@(’) is an interior point of H<.

R N
Suppose H is characterized by A and b. Then, we have A - (afc’)—r < (0) . Therefore,

NT
there exists £ > 0 such that A - ((Z) ' < (b) , which means that /Z € H NR™} # (). By
Claim 2 and the definition of Ny (Definition 24), H is active at every n > Nr.

Recall that in the YNN case we have 7 ¢ Il n and m & Ile.,, . Therefore, H C Cncw,

which means that dime " |, (7) = m! = dimg"*(7). Following a similar reasoning as in

max (71') __logn

the “xYN” case, we have dim,, = .
CWL,T n

e NNN: This case is impossible because as proved in the “YNN” case, for all n > Nr,
7 & Heepw.n and m & ey, , implies that 7 € ey -

Step 3: Apply Lemma 1. In this step, we apply the inf part of Lemma 1 by combining and
simplifying conditions in Table 4.

e The O case never holds when n > m?, because any complete graph is the UMG of some
n-profile [54, Claim 6 in the Appendix]. In particular, any complete graph where there is
no Condorcet winner is the UMG of an n-profile.

e The 1 case holds if and only if 7 satisfies CC for all n profile P, i.e. Cas(7,n).
e The VU case. According to the inf part of Lemma 1, the VU case holds if and only if

Brn = — logn. Note that we do not need to assume Cas(7,n) in the VU case. According
to Table 4, 3, = —g;z if and only if there exists m € CH(II) such that the “NNY”

column holds. Recall that the “NNN” column is impossible for any n > Nz. Therefore,
the “NNY” column holds for 7 € CH(II) if and only if 7 ¢ Il¢y., » and ™ ¢ Ilciyy no
which is equivalent to the following condition by Claim 6

7 & Meyew.n and 7 ¢ Closure(R{ww) )
Next, we simplify (9) for 2 | n and 2 { n, respectively.

- 2 | n. By the 2 | n part of Claim 3, 7 ¢ Il¢., » if and only if 7 has a Condorcet
winner. We prove that in this case (9) is equivalent to:

CW(m)N(A\T(m)) #0 (10

(9)=>(10). Suppose 7 has a Condorcet winner, denoted by a, and (9) holds. For the
sake of contradiction suppose that (10) does not hold, which means that a € 7(m).
Then, following a similar construction as in the proof of Claim 6, the minimal conti-

nuity of 7 implies that there exist £, € S5 with t, I Signg(m) and 7(¢,) = {a}, and
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# € H' such that for every § > 0 we have 7+ 6% € Riww- Then (m+Z, m+1,...)
converges to 7, which contradicts the assumption that 7 ¢ Closure(Rgww)-
10)=(9). Let a € CW(w) N (A \ 7(n)), which means that {a} = CW(r) and
a ¢ 7(m). Suppose for the sake of contradiction that (9) does not hold. Due to
Claim 3, we have 7 ¢ Il¢.., .n- Therefore, 7 € Closure(Riyyw). This means that
there exists a sequence (&1, T, . ..) in Ry, that converge to . It follows that there
exists j* € N such that for all j > j*, a is the Condorcet winner under Z;, which
means that a € T(Z;) because T; € Riyw. Therefore, by the continuity of 7, we
have a € (), which means that CW(7) N (A \ 7(w)) = (0. This is a contradiction to
(10).

Therefore, when 2 | n, the VU case holds if and only if there exists 7 € CH(II) such
that (10) holds, which is as described in the statement of the theorem, i.e.

Im € CH(II) s.t. Crp (7, )

- 2 {n.Bythe 2 {n part of Claim 3, 7 ¢ Il is equivalent to CW (1) UACW (1) #
(0, i.e. either CW () # ) or ACW(m) # (. When CW(7r) # (), as in the 2 | n case, (9)
becomes (10). When ACW(r) # 0, (9) becomes Cngrs (T, ) = 1. Therefore, when
2 1 n the VU case holds if and only if the condition in the statement of the theorem
holds, i.e.

Ir € CH(II) s.t. Crp(7, 7) or Cngrs (7, )

e The U case. According to the inf part of Lemma 1, the U case holds if and only if 0 <
Brn < ml!. According to Table 4, 0 < (3,, < m/! if and only if

(i) for every m € CH(II) the NNY column of Table 4 does not hold, and

(ii) there exists # € CH(II) such that the YNY column of Table 4 holds and

dime oy, (m) < ml.

max

Part (i) can be simplified as follows. By Claim 3, dimg ,(7) < m! if and only if
2 | n and ACW(r) # (), and in this case dimg™>  (w) = m! — 1. We show that it

Cnew,n
suffices to additionally require that 7 ¢ Tlc., n (€. the “N”), or in other words, given
dime sy, () = m! — 1, 7 ¢ Tleeyy,n implies 7 € T, n (ie. the second “Y”).

Suppose for the sake of contradiction that dimg >y |, (7) = m! — 1, © ¢ Tlceyy n, and

7 ¢ Ilcey,.n- Notice that this corresponds to the “YNN” column in Table 4, which means
that dimg ", ,,(m) = m!, which is a contradiction. By Claim 6, m ¢ Ilc.,, » if and only if

7 ¢ Closure(R{yy ). Therefore, part (ii) is equivalent to
dr € CH(H) s.t. Cnrs (7, 77)

Summing up, the U case holds if and only if the condition in the statement of the theorem
holds, i.e.

2| n, and (1) Vr € CH(II), =Crp (7, 7), and (2) 37 € CH(II) s.t. Cnrs (7, )

e The L case never holds when n > m?*, because according to Table 4, o, =
maX ecu(r) dimegy, ., (7) is either —% or m!, which means that it is never in [0, m!).

e The VL case. According to the inf part of Lemma 1, the VL case holds if and only if the
1 case does not hold and o), = — logn. According to Table 4, this happens in the “xYN”
column or the “YNN” column, which is equivalent to only requiring that the last “N”* holds
(because “NNN” is impossible), i.e. for all 7 € CH(II), 7 ¢ Il¢.,, ». By Claim 6, the VL
case holds if and only if if and only if the condition in the statement of the theorem holds,

i.e.

—Cas (F, TL) and V7 € CH(H)7 Crgs (F, 71')

e The M case corresponds to the remaining cases.
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Proof for general refinement r of . We now turn to the proof of the theorem for an arbitrary
refinement of 7, denoted by r. We first define a slightly different version of CC, denoted by CC*,
which will be used as the lower bound on the (semi-random) satisfaction of the regular CC. For any
GISR 7 and any profile P, we define

CC* (7, P) = { (1) if CW(P) = 0 or CW(P) =T7(P)

otherwise
In words, CC*(7, P) = if and only if (1) the Condorcet winner does not exist, or (2) the Condorcet
winner exists and is the unique winner under P according to 7. Compared to the standard Condorcet
criterion CC, CC* rules out profiles P where a Condorcet winner exists and is not the unique winner.
CC™ and CC coincide with each other when T is a resolute rule. Because for any profile P we have
r(P) C 7(P), for any @ € II" we have

Prp.z(CC*(F,P) = 1) < Prp#(CC(r, P) = 1) < Prp_#(CC(F, P) = 1)

Therefore,

—~ min

CCy (7,n) < CChy " (r,n) < CC (7, n) (11)

—— min
n order to prove the theorem, it suffices to prove that the lower bound in (11), i.e., CC*; (7, n),

—~ min
has the same dichotomous characterization as CC; (7,n). To this end, we first define a union
of polyhedra, denoted by C’, and its almost complement C,, that are similar to Definition 22 as
follows.

Definition 25 (C’ and C(.yy, ). Given an int-GISR characterized by H and g, we define
’r / / _ a,t
C' =Cnew U Copw, where Coyy = UaeA,feSﬁ #@={a} H

a,t

/ —
Cowr = UaeA,FESH F(D)£{a}

Notice that Cycw used in Definition 25 was define in Definition 22. Just like Cowyr is an almost
complement of C, Cfy, is an almost complement of C’. Formally, we first note that C’' N Cfyy = 0,
and for any integer vector &,

o if Z does not have a Condorcet winner then Z € Cncw C C’;

e if # has a Condorcet winner a, which is the unique 7 winner, then ¥ € H%S#"a (%) C
Coww <€ C;

e otherwise Z has a Condorcet winner a, which is either not a 7 co-winner or |[7(Z)| > 2. In
both cases & € H*S1€#(F) C Cly, .

Therefore, Z? C C' U C{y,y.. The proof for CC*; (7, n) is similar to the proof for CCEln (T,n)
presented earlier. The main difference is that C, Ccww, and Cewr, are replaced by C’, Clyw. and
Céwy» respectively. The key part is to prove a counterpart to Table 4, which follows after proving

Clawon = eeww,n and Iley 5 = Tleey, . for every n > Nr, as formally shown in the following
claim.

Claim 8. For any n > N we have 11

cwws T

= Hccww,n and Hcl

o HCCWL;”'

Proof. The main difference between Clywy, (respectively, Clyy) and Coww (respectively, Cowr) is
the memberships of polyhedra HE, where a € 7(t) and 7(£) > 2. Therefore, to prove the claim,
it suffices to show that the membership of HoE does not affect Hey,,n (respectively, e, )
compared to Il¢ . n (respectively, Ilc.,, ).

It suffices to show that for any polyhedron %%, where a € 7(f) and 7(#) > 2, for any 7 € CH(IT)
and any n > Ny, if Ho% is active and 7 € H‘i’g, then there exist ’H,‘i’g”' C Ceww N Clyy and

'H%’é” C Cewr N Clyy, such that (1) 7—[%’8" and ’H,%’S” are active at n, and (2) 7 € ’H%’é"’ N H%’éb.
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In other words, if a distribution 7 € CH(II) is in C{yws Céwr» Cowws or Cowr. due to HE, then it

is also in the same set without considering its edge to H®? in the activation graph. As we will see
soon, (1) follows after the assumption that n > Nz and (2) follows after the minimal continuity of
7. Formally, the proof proceeds in the following three steps.

(i) Define t, and . Let b # a denote a co-winner under 7, i.e., {a,b} C 7(r). Because 7 is
minimally continuous, by Proposition 4, there exists a feasible atomic signature #, € SI‘}I
(respectively, f, € S%) such that £, <{ (respectively, t, <It) and ?({a) = {a} (respectively,

(ii) Prove that ”HZE and ’Ha ot are active at any n > N7 Because fa is feasible, there
exists 7 € R™ such that Slgn 5(@) = t,. Therefore, recall that 7 is strictly positive (by
€), for some sufficiently small § > 0, we have 7+ 6% € R7, CW(r + 07) = {a}, and
Sign;(m + 0%) = f,. This means that 7 + 6 is an interior point of H® Lo (which also
means that dim(H® it @) = ml). Recall that the b part of H® i (Deﬁnltlon 17 and 21)

is non-positive, we have H®*f« C HZS“, which means that dlm(”H’iéa) = m! as well.

Therefore, according to Claim 2 and the definition of N7 (Definition 24), 7—[“’{“ is active at
any n > Ny. Similarly, we have that H%% is active at any n > Nr.

(iii) Prove that 7 € H2 <0“ N ’H‘it” Recall that 7 € ’Ha 4 Therefore, according to Claim 7
(i), we have t < Sign (), which means that t, < SlgnH( ), because t, <\ . By Claim 7

(ii) again, we have 7 € 7—[<O” Similarly, we can prove that 7 € Ha tb

This completes the proof of Claim 8. O
Therefore, (E\C/* o (T,n) has the same characterization as é?:;lm(r, n), which concludes the proof
of Lemma 2 due to (11). O

E.2 Proof of Theorem 1

Theorem 1. (Semi-random CC: Integer Positional Scoring Rules). Ler M = (0, L(A),II) be a
strictly positive and closed single-agent preference model, let Tz be a minimally continuous int-GISR
and let vz be a refinement of Tz. For any n > 8m + 49 with 2 | n, we have

1—exp(=O(n))  ifVr € CH(IT), [WCW(r)| x [F(r) U WCW(r)| < 1

i O(n-05) . (1)Vx € CH(IT), CW(m) N (A\ 7g(r)) = 0 and

CCy (rgn) = " Y\ (2)3r € CHM) s.t. [ACW(r) N (A\ T5(m))| = 2
exp(—0(n)) if 3 € CH(II) s.t. CW(m) N (A\Tg(m)) £ 0

O(1)and1 —©(1) otherwise
For any n > 8m + 49 with 2 { n, we have

- 1 —exp(—©(n))  same as the 2 | n case
CCr™ (ren) = 4 exp(—O(n)) if 3 € CH(TI) st { o E‘Vg%()ﬂr)‘ g‘&ﬁ;“()ﬂﬁ hor
O(1)and1 —©(1) otherwise

Proof. We apply Lemma 2 to prove the theorem. For any integer irresolute positional scoring rule
Tg, we prove the following claim to simplify Closure(R 5w ) and Closure(R 5y, )-

Claim 9. For any m € CH(II),
[ﬂ € Closure(Rz';VW)} & [WCW(m) NTg(m) # 0]

[w € Closure(RE,L)} < [FJa#bs.t. a € WCW(r) and b € Tz(r))
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Proof. The proof is done in the following steps.

{71' € Closure(Rgiyw } = [WCW(m) NTz(m) # 0]. Suppose 7 € Closure(R{y ), which

means that there exists a sequence (Z'1, Zs, . ..) in REWW that converges to 7. It follows that there
exists an alternative a € Aanda subsequence of (#1, %2, . ..), denoted by (Z, &%, . . .) such that for
every j € N, CW(7) = {a} and a € 7z(Z). This means that the following holds.

e ¢ is a weak Condorcet winner under 7. Notice that for any b # a and any j € N, we have
Pairy, ,, - f; < 0, which means that Pair;, , - 7 < 0.

e a € Tz(m). Notice that for any b 7& a and any j € N, the total score of a is higher than
or equal to the total score of b in a: . Therefore, the same holds for 7, which means that

a € Tg(m).

Therefore, a is a weak Condorcet winner as well as a Tz co-winner, which implies WCW(7) N

7s(m) # 0.

[ﬂ‘ € Closure(Ryw ] < [WCW(r) N7z(w) # 0]. Suppose WCW (7) NTz(m) # () and let

a € WCW(7) N7g(m). We will explicitly construct a sequence of vectors in Ry, that converges to
m. Let o denote a cyclic permutation among A \ {a} and let P denote the following (m — 1)-profile

P ={o"(a > others) : 1 <i <m— 1} (12)
It is not hard to verify that CW(P) = Tz(P) = {a}. Therefore, for any § > 0 we have
CW(m + 6 - Hist(P)) = Fz(w + ¢ - Hist(P)) = {a},
which means that 7 + & - Hist(P) € Closure(R {5y )- It follows that (7 + 1Hlst(P) :j€eN)isa

sequence in Closure(R {5,y ) that converges to 7, which means that 7 € Closure(R iy )-

[w € Closure(Rg3y)| = [Ja # bst.a € WCW(w) and b € 7z(m)]. Suppose 7 €

Closure(R {4, ), Which means that there exists a sequence (71, T2,...) in Regy, that converges
to m. It follows that there exists a pair of different alternatives a,b € A and a subsequence of
(Z1, %2, ...), denoted by (], 2%, .. .) such that for every j € N, CW(Z}) = {a} and b € 75(7)).
Following a similar proof as in the R, part, we have that a is a weak Condorcet winner under 7
and b € Fz(m).

[w € Closure(R?;;VL)} < [3a # bst.a € WCW(r) and b € 75(m)]. Leta # b be two

alternatives such that « € WCW(r) and b € Tz(w). We define a profile P where CW(P) = {a}
and 7z(P) = {b}, whose existence is guaranteed by the following claim, which is slightly different
from [18, Theorem 6] for scoring vectors § = (81, ..., Spy) With $1 > 89 > -+ > sp,.

Claim 10. For any m > 3, any positional scoring rule with scoring vector § = (s1, . .., Sy, ) where
$1 > Sm, any n > 8m + 49, and any pair of different alternatives a # b, there exists an n-profile P
such that CW(P) = {a} and T73(P) = {b}.

Proof. We explicitly construct an n-profile P where the Condorcet winner exists and is different
from the unique 7z winner. Then, we apply a permutation over A to P to make a the Condorcet and

b the unique 7z winner. The construction is done in two cases: So = S;,, and sg > Sy,.

e Case 1: s3 = s,,. In this case 7z corresponds to the plurality rule. We let

-1 )
P:Vl2 Jx[2>1>3>others}+{n2J X [3 > 1 > 2 > others]

-1
+(n+1—2{712J> x [1 > 2 > 3 > others]
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It is not hard to verify that the alternative 1 is the Condorcet winner and 2 is the unique
plurality winner.

e Case 2: sp > S,,. Let 2 < k < m — 1 denote the smallest number such that s > Sg1.
Let Ay =[4>--->k+1]and Ay = [k+2 > --- > m)], and let P* denote the following
7-profile.

Pr={3x[1>=2> A1 >=3>A]+2x[2>3>A4; 1> A
+B=1>=A1 =2 A]+ 21> A1 3> As)}

It is not hard to verify that 1 is the Condorcet winner under P*, and the total score of 1
is 3s1 + 2s2 + 25541 < 351 + 3s2 + Sg+1, Which is the total score of 2. Note that the
total score of any alternative in A; is 7sx, which might be larger than the score of 2. If
3s1 + 359 + Sk4+1 > 7Sk, then we let b = 2; otherwise we let b = 4. Let P, denote the
following (m — 1)-profile that will be used as a tie-breaker. Let o denote an arbitrary cyclic
permutation among A \ {b}.

P, = {o"([b = others]) : 1 <i<m —1}
Let

— 1 — 1
P= VLZIJFJ ><P*—|—Pb—|—<n—m+1—7{n1;HJ) x [b > others]

It is not hard to verify that when n > 8m + 49, CW(P) = {1}, 7s(P) = {b}, and b # 1.
This proves Claim 10. O

Let P denote the profile guaranteed by Claim 10. For any § > 0 we have
CW(m + 6 - Hist(P)) = {a} and 7(7 + § - Hist(P)) = {b},

which means that 7 + & - Hist(P) € Closure(R{, ). It follows that (7 + %Hist(P) :j €N

is a sequence in R{3y, that converges to 7, which means that m € Closure(R{, ). This proves
Claim 9. O

Claim 9 implies that for all n > 8m + 49, the 1 case doe not hold, i.e., Cas(Tz,n) = 0. We now
apply Claim 9 to simplify the conditions in Lemma 2.

e Cgrs(Tz, m). By definition, this holds if and only if 7 ¢ Closure(R -y, ), which is equivalent
to fla # bst.a € WCW(rw)and b € Tz(). In other words, either WCW(7) = () or
(WCW(7) =Tz(m) and [WCW(x)| = 1). Notice that Tz(m) # 0. Therefore, Crs (T3, ) is
equivalent to [WCW(7)| x |[Fz(m) UWCW(7)| < 1.

e Cnrs(Tz, 7). By definition, this holds if and only if ACW(xr) # 0 and 7 ¢
Closure(Ryw), Which is equivalent to ACW(7w) # () and WCW(m) N Tg(m) = 0.
The latter is equivalent to WCW(7) N (A \ Tz(w)) = WCW(m). We note that when
ACW(r) # 0, we have WCW (1) = ACW(x). Therefore, Cnrs(Tz, ) is equivalent to

[ACW () N (A\Tz(m))| = 2.
Theorem 1 follows after Lemma 2 with the simplified conditions discussed above. O

E.3 Definitions, Full Statement, and Proof for Theorem 2

Forany O € L(A),any 1 <i < ¢ <m,andany a € A, let O[i] denote the alternative ranked at the
i-th place in O, let O[i, '] denote the set of alternatives ranked from the i-th place to the i’-th place
in O, and let O~![a] denote the rank of a in O. For any A C A and any Z € R that represents the

histogram of a profile, let | 4 € R!4I' denote the histogram of the profile restricted to alternatives
in A.

41



Example 11. Let O = [31> 11> 2].! We have O[2] = 1, 071(2) = 3, and O[2,3] = {1,2}. Let 7
denote the (fractional) profile in Figure 1. We have 7t|p[2.3) = (0.5, 0.5 ).
152 251
Definition 26 (Parallel universes and possible losing rounds under MRSE rules). For any MRSE
rule 7 = (Ta,...,Tm) and any ¥ € R™, the set of parallel universes under 7 at &, denoted by

PUR(Z) C L(A), is the set of all elimination orders under PUT. Formally,
PUx(7) = {0 € L(A) : V1 <i <m — 1,0[i] € argmin, Scorer,, ., _,(Z|o[i,m], @)},
where Scorez,, ., (Z|0[i,m], @) is the total score of a under the positional scoring rule Ty, 1,

where the profile is T|o[i,m)-

For any alternative a, let the possible losing rounds, denoted by LR=(Z,a) C [m — 1], be the set of
all rounds in the parallel universes where a drops out. Formally,

LR=(Z,a) = {07 [a] : O € PU(Z)}
Example 12. In the setting of Example 2, we let T = STV. PUgy(Tyuni) consists of linear orders
that correspond to all paths from the root to leaves in Figure 2. Therefore, PUgr;(Tuni) = L(A).

For every a € A, LRW(W,M,-7 a) corresponds to the rounds where a is in a node of that round in
Figure 2. Therefore, for every a € A, we have LRgr(Tunis a) = {1,2}.

For # in Figure 1, we have: PUsr(7) = {[31> 11> 2],[3 > 2 > 1]}?, LR (7, 1) = LRg(7,2) =
{2}, and LRs(7,3) = {1}

Theorem 2. (Semi-random CC: int-MRSE rules). Ler M = (0, L(A),II) be a strictly positive

and closed single-agent preference model, let T = (Ta,...,Tp,) be an int-MRSE and let r be a
refinement of 7. For any n € N with 2 | n, we have
1 ifv2 <i<m,CL(T;) =1

1 —exp(—6(n)) (2)¥m € CH(II),Ya € WCW(r) and Vi* € LR=(7,a),
we have CL(Tpp41—i+) = 1
O(n-05 | (1)¥m e CH(IL), CW(7) N (A\7(7)) = 0 and
(™) 9 (2) 3r € CH(II) s.t. JACW(m) N (A\F(x))| = 2
exp(—0(n)) if Im € CH(IT) s.t. CW(m) N (A\7(m)) # 0
O(1)and 1 — O(1) otherwise

For any n € N with 2 { n, we have

{ (1) 32 <i<ms.t CL(F;) = 0and
if

—~— min

CCy (r,n) =

1 same as the 2 | n case

- 1 —exp(—O(n))  same asthe 2 | n case
C ,n) = . (1) CW(m) N (A\T(m)) # D or
n () =90 ap(—em) if 3 € CH(TT) s.t. { O e s b

O(1)and1 —©(1) otherwise

Intuitive explanations. The conditions for U, VU, and M cases are the same as their counterparts
in Theorem 1. The most interesting cases are the 1 case and the VL case. The 1 case happens
when all positional scoring rule used in 7 satisfy CONDORCET LOSER. This is true because for
any positional scoring rule that satisfies CONDORCET LOSER, the Condorcet winner, when it exists,
cannot have the lowest score among all alternatives. Therefore, like in Baldwin’s rule, the Condorcet
winner never loses in any round, which means that it must be the unique winner under 7.

The VL case happens when (1) the 1 case does not happen, and (2) for every distribution 7 € CH(II),
every weak Condorcet winner a, and every round ¢* where a is eliminated in a parallel universe, the
positional scoring rule used in round ¢*, i.e. 7,414+ for m + 1 — ¢* alternatives, must satisfy
CONDORCET LOSER. (2) makes sense because it guarantees that when a small permutation is added
to 7, if a weak Condorcet winner a becomes the Condorcet winner, then it will be the unique winner
under 7, because in every round ¢* where a can possibly be eliminated before the perturbation (i.e. ¢*
is a possible losing round), the voting rule used in that round, i.e. 7,,,+1—;+, Will not eliminate a after
a has become a Condorcet winner. The following example shows the VL case under STV.

! Again, we use [> in contrast to > to indicate that O is a parallel universe instead of an agent’s preferences.
2We use [> to indicate the elimination order to avoid confusion with >.
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Example 13 (Applications of Theorem 2 to STV). In the setting of Example 12, let STV denote an
arbitrary refinement of STV = (F5,T3). The 1 case does not hold for sufficiently large n, because T3
(plurality) does not satisfy CONDORCET LOSER.

When I;c = {muu}, Theorem 2 implies that for any sufficiently large n with 2 | n, the ©(1) A
(1 — ©(1)) case holds. The 1 — exp(—O(n)) case does not hold, because its condition (2) fails:
1 € WCW(muni) and round 1 is a possible losing round for alternative 1 (i.e., 1 € LRer(Tuni, 1)),
yet '3 does not satisfy CONDORCET LOSER. The ©(n =) case does not hold, because its condition
(2) fails: ACW (i) = 0. The exp(—0(n)) case does not hold because CW (i) = 0.

Proof. We apply Lemma 2 to prove the theorem. We first prove the following claim, which states
that when n is sufficiently large, Cas(7,n) = 1 if and only if all scoring rules used in T satisfy the
Condorcet loser criterion.

Claim 11. For int-MRSE T, there exists N € n such that for every n > N, Cxs(T,n) holds if and
only if forall 2 < i < m, CL(T;) = 1.

Proof. The <= direction. Suppose for all 2 < i < m, CL(7;) = 1 and for the sake of contradiction,
suppose Cas (7, n) = 0, which means that there exists an n-profile P such that CW(P) = {a} and
a ¢ T(P). This means that LR7(7, a) # 0. Let O € LR#(7, a) denote an arbitrary possible losing
round of a and let i* = O~ [a], which means that a has the lowest total score in the restriction of P
on the remaining alternatives (i.e. O[¢*, m]), when T, 1.1 _;« is used. In other words,

a € argming Scorer, ., . (Plofi*,m],b)

Notice that a is the Condorcet winner under P, which means that a is also the Condorcet winner
under P|o(s m]- We now obtain a profile P« over O[i*, m] from P|p[ ), Which constitutes a
violation of CONDORCET LOSER for 7,4 1—;+. Let n’ = | P|.

P = (0 +1) x L(O[i*,m]) — P

That is, P;- is obtained from (n’ + 1) copies of all linear orders over O[i*, m]) by subtracting linear
orders in P. It is not hard to verify that a is the Condorcet loser as well as an 7,41 _;+ co-winner in
P+, because all alternatives are tied in the WMG of (n’ + 1) x £(O[i*,m]) and are tied w.r.t. their
total 7,414+ scores under (n' 4+ 1)L£(O[i*, m]). This is a contradiction to the assumption that all
7;’s satisfies the Condorcet loser criterion.

The = direction. For the sake of contradiction, suppose CL(7;~) = 1 for some 2 < i* < m, which
means that there exist a profile P, over m+1—14* alternatives {¢*, ..., m}, such that alternative i* is
the Condorcet loser and a co-winner of 7,,, 11~ under P;. We will construct a profile P over A to
show that Cas(7, n) = 0 for every sufficiently large n. We will show that alternatives in O[1,i* — 1]
are eliminated in the first ¢* — 1 round of executing 7 on P. Then ¢* will be eliminated in the next
round.

First, we define a profile P’ over O[i*, m] where i* is the Condorcet winner as well as the unique
Tm+1—q+ loser. Let o denote an arbitrary cyclic permutation among O[i* + 1,m], and let

Py ={o'(a>=O[i*+1,m]): 1 <i<m—i},
where alternatives in O[¢i* + 1, m] are ranked alphabetically. Let n; = |P;| and
P'=m(ny +1) x L(O[i*,m]) —m x P, — P,
It is not hard to verify that P’ is indeed a profile, i.e., the weight on each ranking is a non-negative

integer. ¢* is the Condorcet winner under P’ because ¢* is the Condorcet loser in Py, and | Py| < m.
i* is the unique loser under P’ because for any other alternative a € O[i*, m], we have

Scorer, ., .. (m(n' +1) x L(O[i*,m]),i*) = Score (m(n' +1) x L(O[i*,m]),a),
Py,i*) > Scorer,, Py, a), and

N
11—
P, Z*) > SCOTCF,,'L+17i* (P27 a’)'

m41—i*

SCOI‘CF”HA —i* (

ScoreFmJAﬂ'* (

Next, we let P* denote the profile obtained from P’ by appending O[1] > O[2] = - -+ = O[i* — 1]
in the bottom. More precisely, we let

P*={R>O0O[1]*>0[2]»---=O[i*—1]: Re P'}
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Finally, we are ready to define P. Let o1 denote an arbitrary cyclic permutation among alternatives
in O[1,i* — 1]. Letn’ = |P'| and P = P! U P? U P3, defined as follows.

e P! consists of n’ copies of {4 (P*) : 1 < i < *—1}. This part has (n/)?(i* — 1) rankings
and is mainly used to guarantee that O[1,¢* — 1] are removed in the first i* — 1 rounds.

e P2 consists of {%J copies of P*. This part guarantees that ¢* is the Condorcet

winner. We require n to be sufficiently large so that L%MJ >n/.

e P2 consists of n—| P |—| P copies of [O[m] = O[m—1] = --- = O[1]], which guarantees
that | P| = n. Note that the number of rankings in this part is no more than n’.

Let N = (n’)2. For any n > N, notice that the second part has at least n’ copies of P*, where i*
is the Condorcet winner. Therefore, 7* is the Condorcet winner under P. It is not hard to verify that
O[1,i* — 1] are removed in the first i* — 1 rounds under 7, and in the ¢*-th round alternative ¢* is
unique 7, +1—;+ loser, which means that i* ¢ 7(P). This concludes the proof of Claim 11. O

We prove the following claim to simplify Closure(R ¢y ) and Closure(R ey )-

Claim 12. For any int-MRSE T and any © € CH(II),
[7 € Closure(Riyy)| < [WCW(r) N7 (x) # 0]
[7 € Closure(R{y,)| < [3a € WCW(r) and i* € LR=(w,a) s.t. CL(T41—+) = 0]

Proof. The proof for the Ry part is similar to the proof of Claim 9. We present the formal proof
below for completeness.

[m € Closure(Riyww)| = [WCW(w) NT(w) # 0]. Suppose © € Closure(RZyy), Which
means that exists a sequence (1, 2, . ..) in Ry, that converges to 7. It follows that there exists
an alternative a € A and a subsequence of (Z1, T, ...), denoted by (#7,z5,...), and O € L(A)
where O[m] = a, such that for every j € N, CW(2;) = {a} and O € PUx(7";). This means that the
following holds.

e a is a weak Condorcet winner under 7.

e a € 7(m). More precisely, O € PUx(r). To see this, recall that O € PUx(&";) is equivalent
to
V2 <i < m, O[i] € argminy, Scorer, (2| o[i,mj, b)

Therefore, the same relationship holds for 7, namely
V2 <i <'m,O[i] € arg miny Scorer, (7|o[i,m], ),
which means that O € PUz(7).

Therefore, a is a weak Condorcet winner as well as a 7 co-winner, which implies that WCW () N

7(m) % 0.

[ € Closure(Riyww)| < [WCW(m) N7(xw) # 0. Suppose WCW () N7(m) # () and let
a € WCW(m) N7(r). We will explicitly construct a sequence of vectors in Ry, that converges
to m. Because a € 7(w), there exists a parallel universe O € PUx(7) such that O[m] = a. Let
Z = —Hist({O}), i.e. we will use “negative” O to break ties, so that for every 1 < ¢ < m — 1,
O] is eliminated in round 7. For any § > 0, it is not hard to verify that O € PUz(7 + 6Z). In fact,
PU=(m + 6%) = {O}, i.e.

V2 <i <m,{O[i]} = argminy Scores, ((7 + 0Z)|0[i,m], ),

which means that {a} = 7(w 4 0Z). Notice that a is the Condorcet winner under 7 + 6% for any
sufficiently small § > 0. Therefore, for any sufficiently small 6 > 0 we have 7 + 0% € Riyww-

= 1= T [
Because the sequence (7 + Z, 7 + 57, . ..) in Ry converges to 7, we have m € Closure(R¢yw)-

44



[m € Closure(R7y;)] = [Ja € WCW(r) and i* € LR#(m, a) s.t. CL(Tpq1—4+) = 0].
Suppose m € Closure(R ¢y ), which means that there exists a sequence (Z1, Z, . ..) in Ry, that
converges to 7. It follows that there exists a € A, O € L(A) with O[m] # a, and a subsequence of
(Z1, %2, . ..), denoted by (&, ¥, . . .) such that for every j € N, CW(7%) = {a} and O € PU=(7}).
Let i* = O~ ![a], i.e. i* is the round where a loses in the parallel universe O, which means that for
every j € N,

a € argminy Scorer, ., . (Z5|ofi m], b)-

Notice that a is the Condorcet winner among O[:*, m]. This means that 7,,, 1 —;+ does not satisfy the
Condorcet loser criterion, because for any sufficiently large ) > 0, a is the Condorcet loser as well
as a co-winner in ¢ - Hist(O[i*, m]) — & o[s= m)- Because (¥, 75, . . .) converges to T, it is not hard
to verify that « € WCW(7) and O € PUx(r). Therefore, we have a € WCW(7), i* € LR(7, a),
and CL(fm_;'_l_i*) =0.

[w € Closure(R7y;)] < [Ja € WCW(r) and i* € LR#(m, a) s.t. CL(Tpq1—4+) = 0].
Let a € WCW(7) and i* € LR#(7, a) such that CL(7) = 0. Furthermore, we let O* € PUz(r) de-
note the parallel universe such that O[i*] = a. Because 7, 1—;+ does not satisfy the Condorcet loser
criterion, there exists profile P, over O[i*, m] where a is the Condorcet loser but a € T, 41—+ (Py)-
In fact, there exists a profile P* where a is the Condorcet loser but {a} = Tp1-i« (P*), ie. a
is the unique winner under P;. To see this, let o denote an arbitrary cyclic permutation among
O[i* + 1, m], and let

P={c'(a>O[i*+1,m]):1<i<m—i*}

It is not hard to verify that the score of a is strictly larger than the score of any other alternative
under P. Therefore, when 6 > 0 is sufficiently small, a is the Condorcet loser as well as the unique
winner under P* = P, + ¢ - P. Now, we define a profile P’ over A by stacking O[1,4* — 1] on top
of each (fractional) ranking in P;. In other words, a ranking [O[1] > - -+ > O[i* —1] > R*]isin P’
if and only if R* € P, and the two rankings have the same weights (in P’ and P}, respectively).

Let £ = —Hist(P’). It is not hard to verify that for any § > 0, a is the Condorcet winner under
7w + 62 and in the first ¢* rounds of the execution of 7, O[1],0[2],...,O[i*] are eliminated in
order. In particular, O[i*] = a is eliminated in the 7*-th round, which means that a ¢ 7(7 + 0Z).
Consequently, 7 + 0% € Ry, Notice that (7 + %f : j € N) is a sequence in Ry, that converges

to 7, which means that = € Closure(R ¢y, ). This proves Claim 12. O
We now apply Claim 12 to simplify the conditions in Lemma 2.

e Cgs(7, 7). By definition, this holds if and only if 7 ¢ Closure(R¢y; ), which is equivalent
to fa € WCW(7) and i* € LR#(7, a) s.t. CL(F,,41_4+) = 0. In other words, for all a €
WCW (7) and all i* € LR#(7, a), Tyn41—i+ satisfies CONDORCET LOSER, or equivalently,
VYa € WCW(7) and Vi* € LR#(m,a), CL(Tp41—4) = 1.

e Cngrs(7, ). By definition, this holds if and only if ACW () # () and 7 ¢ Closure(Rww)s
which is equivalent to ACW(7) # 0 and WCW(w) N7(w) = (). The latter is equivalent
to WCW(7) N (A \ 7(r)) = WCW(7r). We note that when ACW(m) # 0, we have
WCW(7) = ACW(7). Therefore, Cnrs (7, 7) is equivalent to |[ACW (1) N (A\7(7))| = 2.

Theorem 2 follows after Lemma 2 with the simplified conditions discussed above. O

F Materials for Section 3: Semi-random PARTICIPATION

F.1 Lemma 3 and Its Proof

We first introduce some notation to present the theorem.

Definition 27 (§ operator). For any pair of signatures t1,t, € Sk, we define 1, & 1y to be the
following signature:

Vk < K, [0 & b = { gl]k delifv; b
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For example, when K = 3,1, = (4, —,0), and 5 = (+,0,0), we have t; ® #, = (+,0,0). By
definition, we have t_i < fl ® t_; and t_'g < fl ® t_;
Definition 28 (Vioy, . (n) and £,,). For any GSR r and any n € N, we define

Viopar(n) = {Signﬁ(P) ® Signg (P\{R}): Pc LIA)",Re L(A),r(P\{R}) -r T(P)}
lp =m! — maXFGVt'n{,'AR(n):HﬂGCH(H), s.t. T<ISign 5 () dlm(HtSO)

In words, VioPAR( ) consists of all signatures tthat is obtained by combining two feasible signatures,

i.e., Sign; (P) and Sign (P \ {R} by the @ operator, where P and R constitutes an violation of

PAR. Notlce that r(P \? R}) =g r(P) implicitly assumes that P contains an R vote. Then, ¢, is

defined to be m! minus the maximum dimension of polyhedron HE, among all £ in Viop,, (n) that

refines Sign 5 (7) for some 7 € CH(II).

Lemma 3 (Semi-random PAR: Int-GSR). Let M = (O, L(A),II) be a strictly positive and closed

single-agent preference model, let v be an int-GSR. For any n € N,

. 1 lfVl‘OgAR(n) =0

PAR?H(T, n)=1{ 1—exp(—O(n)) otherwise if Vr € CH(IL) and t € Viop,,(n),t ¢ Sign ()
1—0O(n=/2)  otherwise, i.e. 3r € CH(IL) and t € Viop,,(n) s.t. t < Sign ()

Applying Lemma 3 to a voting rule  often involves the following steps. First, we choose an GSR
representation of r by specifying the H and g, though according to Lemma 3 the asymptotic bound
does not depend on such choice. Second, we characterize Viop,, (n) and verify whether it is empty.
If Viop,,(n) is empty then the 1 case holds. Third, if Viop,,(n) is non-empty but none of ¢ €
Viop, (n) refines Sign () for any m € CH(II), then the VL case holds. Finally, if neither 1 nor
VL case holds, then the L case holds, where the degree of polynomial depends on ¢,,. Characterizing
Viop, (n) and ¢,, can be highly challenging, as it aims at summarizing all violations of PAR for n-

profiles (using signatures under H).

Proof. The high-level idea of the proof is similar to the proof of Lemma 2. In light of Lemma 1,
the proof proceeds in the following three steps. Step 1. Define C that characterizes the satisfaction
of PARTICIPATION of r, and an almost complement C* of C. Step 2. Characterize possible values
of o and their conditions, and then notice that ¢}, is at most m! — 1, which means that only the 1,
VL, or L case in Lemma 1 hold. This means that the value of /3,, does not matter. Step 3. Apply
Lemma 1.

Step 1. Given two feasible signatures f1,t € S ;7 and a ranking R € L(A), we first formally

define a polyhedron HIRE (o characterize the profiles whose signature is £; and after removing a
voter whose preferences are R, the signature of the new profile becomes to.

Definition 29 (H?Rt2), Given H = (h, ..., hx) € (Z™)E, 11,5 € Sz, and R € L(A), we

—Hist(R) o T
let AfLRE — Al ,Btl,R,tz — [_17 B’tl ’Btg +Hist(R) « [ Atz ]and
Afz ~
for At1

Sfor Af2
. . e T
Htl,R,tz _ {fe Rm! : Atl,R,tz . (E)T < (btl,R,tg) }
Notice that Hist(R) € {0,1}™ is the vector whose R-component is 1 and all other components
- - LoNT
are 0’s. The A% part in Definition 29 is equivalent to A% - (# — Hist(R))' < (th) . We prove
properties of HORE i the following claim.

Claim 13 (Properties of H:R-%2), Given integer H. For any 1, % € S5, any R € L(A),

(i) for any integral profile P, Hist(P) € bR E2 ifand only if Sign 3 (P) = t and Sign gz (P\
{R}) = to
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(ii) forany T € Rg%, Ze ’Ht;(’)R’;? if and only if t) @ty < Sign g (),
(iii) If there exists ¥ € 7-[261%’{2 such that [Z]g > 0, then dim(Ht;léR’{z) = dim(?—[égat?).

Moreover, if ty # to and HgéR’tz # (), then dim(HtSl(’)R’tz) <m!-1

Proof. Part (i) follows after the definition. Part (ii) also follows after the definition. Recall that
Lo . AT . AT

# € H2/"" if and only if A" - @' < (O) JAR ()T < (0) , and the R component of & is

non-negative, which is automatically satisfied for every & € R’Z”(') The first sets of inequalities holds

. e A LLOE T_ (R
if and only if A"®%2 . (7)) < (O)

To prove the first part of Part (iii), let A} and A denote the essential equalities of A2 and
Al©t respectively. We show that AT and AJ contains the same set of row vectors (while some
rows may appear different number of times in A and AJ). As noted in the proof of Part (ii), the
set of row vectors in Af1R:%2 is the same as the set of row vectors in AT1®%2 except that the former

contains —Hist(R). Recall that we have assumed that there exists Z € HtééR’tz such that [Z]r > 0,

which means that —Hist(R) - ()" does not hold for every vector in HgéR’{z. Therefore, —Hist(R)

is not a row in A}, which means that AT and A contains the same set of row vectors. Then, we
have

dlm(’]—[iléR,{z) =m! — Rank(Af) =m! — Rank(A;) — dlm(?—[];lgaf_é)

The second part of Part (iii) is proved by noticing that when #] # s, t; @ f, contains at least one 0.

Suppose [t_'l &) fg}k = (. This means that for all £ € ’Ht;(’)R’FQ, we have i_ik - Z = 0, which means that

dim(HZ2) < ml - 1. O

We now use H{ 7% to define C and C*.

Definition 30 (C and C* for PARTICIPATION). Given an int-GSR r characterized by H and g, we
define

C = U t1,R,to
i ,ngSH,REﬁ(A):r(fl)th({g)

C* — U {LR;{Z
{1,FzESH,RGE(A):T‘({l){RT({g)

In words, C consists of polyhedra #HP-RoE2 that characterize the histograms of profiles such that
after any R-vote is removed, the winner under r is not improved w.r.t. R. C* consists of polyhedra
Htr 1otz that characterize the histograms of profiles such that after removing an R-vote, the winner
under 7 is strictly improved w.r.t. R. It is not hard to see that C* is an almost complement of C.

It follows from Claim 13 (i) that for any n-profile P, PAR is satisfied (respectively, dissatisfied) at
P if and only if Hist(P) € C (respectively, Hist(P) € C*).

Step 2: Characterize . In this step we discuss the values and conditions for a;, (for C*) in the
following three cases.

a* = —oo. This case holds if and only if PAR holds for all n-profiles, which is equivalent to

Viohyg (n) = 0.

ay = —ﬁ. This case holds if and only if (1) PAR is not satisfied at all n-profiles, which
is equivalent to Viop,,(n) # 0, and (2) the activation graph Gy ¢+ ,, does not contain any non-
negative edges, which is equivalent to Vr € CH(II) and VH* -2 C C* that is active at n, we have

T ¢ 'Hg(’)R’té. We will prove that part (2) is equivalent to the following:

(2) <= [Vr € CH(II) and £ € Viop,,(n),t ¢ Signj ()] (13)
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We first prove the “=" direction of (13). Suppose for the sake of contradiction that this is not
true. That is, Gy ¢+, does not contain any non-negative edges and there exist 7 € CH(II) and

t € Viop,g(n) such that £ # Sign (). Let P denote the n-profile such that Sign;(P) = #,
Sign; (P\{R}) = t2,7(P\{R}) =g r(P),and { = #; ®1,. By Claim 13 (i), Hist(P) € H1-Tt2,
which means that 717" is active at n. By Claim 13 (ii), Hist(P) € ’Htl o2 These imply that

i

the weight on the edge (m, H/-R2) in G ¢+ » is non-negative (whose weight is dun(?-[t1 B t2))

which contradicts the assumption that (2) holds.

Next, we prove the “<” direction of (13). Suppose for the sake of contradiction that (2) does not
hold, which means that there exists an edge (, HOR. tZ) in G, ¢c+.» Whose weight is non-negative.
Equivalently, /% is active at n and 7 € Htl o8 By Claim 13 (ii), {1 @1 € Viop,, (n). Recall

that 7 is strictly positive, and then by Claim 13 (i1), we have t; @ iy < Sign H‘(?T) However, this
contradict the assumption.

These prove (13).
a; > 0. For this case, we prove

o, = MAXFevior , (n):Ir€CH(IT), s.t. £<ISign 5 () dim(Htgo)» (14)

We first prove the “<” direction in (14). For any edge (7, 7-{,;1’&52) in Gr1,¢+,» Wwhose weight is non-
negative, H'1-!2 is active at n. Therefore, there exists an n-profile P such that Hist(P) € H: 12,
Let t =t @ t2. We have £ € Viop,,(n). By Claim 13 (ii), we have ¢ < Sign (7). By Claim 13
(iii), we have dlm(’Htl’R tz) = dim(?—léo). Therefore, the “<” direction in (14) holds.

Next, we prove the > direction of (14). For any ¢ € Viop,,(n) and 7 € CH(II) such that <
Sign (), let P denote an n-profile and let R denote a ranking that justify t*'s membership in
Viop,(n), and let #; = Sign;(P) and t5 = Sign; (P \ {R}), which means that f = t; & 5. By
Claim 13 (i), Hist(P) € H-Rf2 C C*, which means that %7172 is active at n. By Claim 13 (ii),
T E Htl ol . By Claim 13 (iii), dlrn(’}-[t1 oI tz) = dim(?—[io). This means that the weight on the
edge (7r, HIREY in Gy ee , is dim(#L,), which implies the “>" direction in (14) holds.

Therefore, (14) holds. Notice that by Claim 13 (iii), o} < m! — 1.

Step 3: Applying Lemma 1. Lemma 3 follows after a straightforward application of Lemma 1
and Step 2. Notice that II¢ ,, and 3, are irrelevant in this proof because only the 1, 1 — exp(n), and
1 — H(n) cases will happen. This completes the proof of Lemma 3. O

F.2 Proof of Theorem 3

Recall from Definition 9 that an EO-based rule is determined by the total preorder over edges in
WMG w.r.t. their weights. Theorem 3 characterizes semi-random PAR for any EO-based int-GSR
refinements of maximin, Ranked Pairs, and Schulze.

Theorem 3 (Semi-random PAR: maximin, Ranked Pairs, Schulze). For any m > 4, any EO-based
int-GSR r that is a refinement of maximin, STV, Schulze, or ranked Pairs, and any strictly positive
and closed I over L(A) with m,,; € CH(IL), there exists N € N such that for everyn > N,

—— min 1

PARH (T, n) =1- 6(%)

Proof. Because r is EO-based, w.l.o.g., we assume that its int-GSR representation uses ﬁEO (Defi-
nition 11).

Overview. The proof is done by applying Lemma 3 to show that for any sufficiently large n,

the 1 case and the VL case do not happen, and ¢,, = 1 in the L case. This is done by explicitly
constructing an n-profile P, under which PAR is violated when an R-vote is removed (which means
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that £ = Sign i, (P) @ Signg (P\{R}) € Viop,,(n) and therefore the 1 case does not hold), then
show that £ <1 Tuni» OF more generally, any signature refines Sign Ao (7runi) (Which means that the VL

case does not hold), and finally prove that dim(?—[%o) = m! — 1, which means that ¢,, =

Maximin: r refines MM. We first prove the proposition for 2 t n, then show how to modify the
proof for 2 | n. As mentioned in the overview, the proof proceeds in the following steps.

Constructing Py and Rypy that violates PAR.  Let Gy denote the following weighted di-
rected graph with weights wyp, where the weights on all edges are odd and different, except on
4—1and 3 — 2.

L] wMM(4, 1) = WM (3 2) =5, wMM(l,Q) =1, wMM(1,3) =9, ’LUMM(2,4) = 13, and
wMM(3,4) = 7

o forevery 5 < i < m,wmm(1,%) > 21, wmm(2,7) > 21, wmm(3,4) > 21, and wym (4, ¢) >
21;

e the weights on other edges are assigned arbitrarily. Moreover, the difference between any
pair of edges is at least 4, except that the weights on 4 — 1 and 3 — 2 are the same.

See the middle graph in Figure 6 for an example of m = 5.

B, Ay 2R
NE N N

if "(Gym)={1}, then if "(Gym)={2}, then
-[3>2>1> 4> others] -Rev(3 > 2> 1> 4 > others)

Figure 6: WMGs for minimax. MM (co)-winners are circled.

It follows from McGarvey’s theorem [36] that for any n > m? and 2 { n, there exists an n-profile
Py whose WMG is Gyv. Therefore, for any n > m*+2and 2 1 n, there exists an n-profile Pym
whose WMG is Gy, and Py includes the following two rankings:

[3 2> 1> 4> others],Rev (3 > 2 > 1 > 4 > others),

where for any ranking R, Rev (R) denotes its reverse ranking. We now show that PAR(r, Py ) = 0,
which implies that the 1 case does not happen. Notice that the min-score of alternatives 1 and 2 are
the highest, which means that »( Py ) C {1, 2}.

o If r(Pyum) = {1}, then we let Ry = [3 = 2 = 1 > 4 > others|. It follows that in
Pyvim — Ry, the min-score of 2 is strictly higher than the min-score of any other alternative,
which means that (Pym \ {Rmm}) = {2}. Notice that 2 >g,,, 1, which means that
PAR(r, Pym) = 0. See the left graph in Figure 6 for an illustration.

o If r(Pym) = {2}, then we let Ry = Rev (3 > 2 > 1 > 4 > others). It follows that in
Pyim — Ry, the min-score of 1 is strictly higher than any the min-score of other alterna-
tives, which mean that r(Py \ {Rmm }) = {1}. Notice that 1 g, 2, which again means
that PAR (7, Pym) = 0. See the right graph in Figure 6 for an illustration.

Let f1 = Signg (Pum), R = Ruu and Ty = Signg (Pum \ {Rwm}) . We have £ @ £ €

Viop,r(n) # (), which means that the 1 case of Lemma 3 does not hold. The VL case of Lemma 3
does not hold because 1 & i, < Sign feo (7uni) and myy; € CH(I).
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Prove dim(?—L{MM) =m!—1. Lete; = (4,1) and ex = (3,2). Notice [t1] (e, cr) = [F1](en.er) =
0, where [tl](elm) is the (eq, e2) component of #1, and all other components of #] are non-zero.
Also notice that t2 is a refinement of #;. This means that ¢; @ ¢, = #;. Notice that Hist(Pym) is an
inner point of H<O, such that all inequalities are strict except the two inequalities about e; and es.

This means that the essential equalities of AD®E gre equivalent to

—

(Pairg ; — Pairz 5) - £ =0

Therefore, dim(?—léé%) =m!—1.

The maximin part of the proposition when 2 { n then follows after Lemma 3. When 2 | n, we only
need to modify Gy in Figure 6 by increasing all positive weights by 1.

Ranked Pairs: r refines RP. The proof is similar to the proof of the maximin part, except that a
different graph Grp (with weight wgp) is used, as shown in the middle graph in Figure 7. Formally,
when 2 t n, let Grp denote the following weighted directed graph, where the weights on all edges
are odd and different, except on 4 — 1 and 3 — 4.

° ’pr(4, 1) = pr(3,4) = 9, ’LURP(LQ) = 5, ’LURp(l,g) = 13, pr(2,4) = 17, and
’U}RP(Q,?)) = 21;

e for any 5 S ) S m, ’LURP(].,Z') 2 25, pr(2, Z) Z 25, pr(37i) Z 25, and pr(47i) Z 25,

o the weights on other edges are assigned arbitrarily. Moreover, the difference between any
pair of edges is at least 4, except that the weights on 4 — 1 and 3 — 4 are the same.

See the middle graph in Figure 7 for an example of m = 5.

6

Y% \\// %

if r(Ggp)={1}, then if r(Ggp)={2}, then
-[2>3>1> 4> others] -Rev(2 >3 > 1 >4 > others)

Figure 7: WMGs for ranked pairs. RP (co)-winners are circled.

Again, according to McGarvey’s theorem [36] that for any n > m* and 2 { n, there exists an n-
profile Prp whose WMG is Grp. Therefore, for any n > m* 4+ 2 and 2 1 n, there exists an n-profile
Prp whose WMG is Ggp, and Pgp includes the following two rankings:

[2 - 3> 13 4> others],Rev (3 > 2 > 1 = 4 > others)

We now show that PAR(r, Prp) = 0, which implies that the 1 case does not happen. Notice that

depending on how the tie between 3 — 4 and 4 — 1 are broken, the RP winner can be 1 or 2, which
means that RP(Pgp) = {1, 2}.

o If r(Prp) = {1}, then we let Rgp = [2 = 3 = 1 > 4 > others]. It follows that in
WMG(FPrp — Rrp), 4 — 1 has higher weight than 3 — 4, which means that 4 — 1 is fixed
before 3 — 4, and therefore r(Prp \ {Rrp}) = {2}. Notice that 2 > g, 1, which means
that PAR(r, Prp) = 0. See the left graph in Figure 7 for an illustration.

o If r(Prp) = {2}, then we let Rgp = Rev (2 = 3 > 1 = 4 > others). It follows that in
WMG(Prp \ {Rrp}), 3 — 4 has higher weight than 4 — 1, which means r(Prp — Rrp) =
{1}. Notice that 1 =g, 2, which means that PAR(r, Prp) = 0. See the right graph in
Figure 7 for an illustration.
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The proof for £,, = 1 is similar to the proof for the maximin part. The only difference is that now
letey = (4,1), e = (3,4), {1 = Signz (Prp), and &5 = Signz (Prp \ {Rrp}). When 2 | n, we
only need to modify G in Figure 6 (b) such that all positive weights are increased by 1.

Schulze: r refines Sch. The proof is similar to the proof of the maximin part, except that a different
graph G, is used, as shown in the middle graph in Figure 8. Formally, when 2 t n, let G's.,, denote
the following weighted directed graph, where the weights on all edges are odd and different, except
on4 —1and2 — 3.

e for any 5 < ) <m, ’wsch(l, Z) > 21, ’wsch(2,i) > 21, wSCh(S,i) > 21, and ’wsch(4,i) > 21;

e the weights on other edges are assigned arbitrarily. Moreover, the difference between any
pair of edges is at least 4, except that the weights on 4 — 1 and 3 — 4 are the same.

See the middle graph in Figure 8 for an example of m = 5.

—M 12

A A SN
NN RN

if "(Ggn)={1}, then G if 7(Ggen)={3}, then
-[2>3>1> 4> others] Sch -Rev(2 >3 > 1 >4 > others)

Figure 8: WMGs for Schulze. Sch (co)-winners are circled.

Again, according to McGarvey’s theorem [36] that for any n > m* and 2  n, there exists an n-
profile Psc, whose WMG is G's.p,. Therefore, for any n > m* 42 and 2 { n, there exists an n-profile
Psc, whose WMG is Gse, and Psgp, includes the following two rankings:

[2 >3 > 1> 4> others],Rev (3 > 2 > 1 > 4 > others)

We now show that PAR(7, Pscp) = 0, which implies that the 1 case does not happen. Notice that
s[1,3] = s[3,1] = 9, and for any alternative a € A\ {1, 3} we have s[1,a] > s[a, 1]. Therefore,
SCh(PSch) = {1, 3}

o If r(Psecn) = {1}, then we let Rscy = [2 > 3 > 1 = 4 > others]. It follows that in
Psch — Rscn we have s[1,3] = 8 < 10 = (3, 1], which means that r( Pscy \ { Rsen }) = {3}.
Notice that 3 =g, 1, which means that PAR(r, Pscp) = 0. See the left graph in Figure 8
for an illustration.

o If r(Psecn) = {3}, then we let Rscn = Rev (2 > 3 >~ 1 = 4 > others). It follows that in
Pscn \ { Rsch }» we have s[1, 3] = 10 > 9 = s[3, 1], which means that r( Psc, — Rscn) = {1}.
Notice that 1 > g, 3, which means that PAR(r, Psch) = 0. See the right graph in Figure 8
for an illustration.

The proof for £,, = 1is similar to the proof for the maximin part. The only difference is that now
lete; = (4,1),e0 = (2,3), 1 = = Signg (Psch), and ty = Signg  (Pscn \ {Rsch}). When 2 | n, we
only need to modlfy Gscn in Figure 8 such that all positive weights are increased by 1.

This completes the proof of Theorem 3. O
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F.3 Proof of Theorem 4

A voting rule r is said to be UMG-based, if the winner only depends on UMG of the profile. For-
mally, r is UMG-based if for all pairs of profiles P; and P, such that UMG(P;) = UMG(P,), we
have r(Py) = r(P).

Theorem 4 (Semi-random PAR: Copeland,). For any m > 4, any UMG-based int-GSR refine-
ment of Cd,, denoted by Cd,,, and any strictly positive and closed I1 over L(A) with 7,,; € CH(II),
there exists N € N such that for everyn > N,

ARG (Gl ) =1 - ©(12)

Proof. Because Cd,, is UMG-based, we can represent Cd,, as a GSR with the ﬁCda defined in Defi-
nition 13, which consists of (g") hyperplanes that represents the UMG of the profile. The high-level
idea behind the proof is similar to the proof of Theorem 3: we first explicitly construct a violation
of PAR under Cd,, then show that the dimension of the characteristic cone of the corresponding
polyhedron is m! — 1.

Let G* denote the complete unweighted directed graph over A that consists of the following edges.

122331
e Foranyi € {4,...,m}, there are three edges 1 — 4,2 — i, 3 — 1.

e The edges among alternatives in i € {4, ..., m} are assigned arbitrarily.
For example, Figure 9 (a) illustrates G* for m = 4. Let P denote any profile whose UMG is G*. It

1 2

fe— 3

Figure 9: G* for Copeland with m = 4.
is not hard to verify that Cd,, (P) = {1,2,3}. W.lo.g.let Cd,(P) = {1}.
2 { n case. The proof is done for the following two sub-cases: « > 0 and o = 0.

2tmnand o > 0. Let Geq, (With weights wcq, ) denote the following weighted directed graph
over A whose UMG is G*, the weight on 2 — 3 is 1, and the weights on other edges are 3 or —3.

® Wcd, (2,3) = 1land Wcd,, (3, 1) = dea(l, 2) =3.
e Forany 4 < i <m, wcq, (1,%) = wea, (2,7) = weq, (3,7) = 3.

e The weights on other edges are 3 or —3.

See Figure 10 (a) for an example of G¢q,. According to McGarvey’s theorem [36] that for any
n > m?* and 2 { n, there exists an n-profile Pcq, whose WMG is Gcq,. Therefore, for any
n>m*+2and?2 1 n, there exists an n-profile Pcg, whose WMG is Geq,,, and Prq,, includes the
following two rankings.

[4 > 2> 3> 13> others],Rev (4 > 2 > 3 = 1 > others)

We now show that PAR(r, Pcg, ) = 0, which implies that the 1 case Lemma 3 does not hold. Let
Rca, = [4 > 2 = 3 > 1 > others]. Notice that in the profile Pcq, — Rcq,,, the Copeland,, score of
alternative 3 is m — 2 + «, which is strictly higher than the Copeland,, score of alternative 1, which

52



| ———2 ]l —2
3 -[4>2>3>1>others] 2
3 ! > 4
3 4
4 > 3 4 4 3
(a) Gca, = WMG(Pey,,).- (b) WMG(Peq,, \ {Rca, })-

Figure 10: Gcq, and WMG(Pcq, \ {Pecd, }) for 24 n and o > 0.

is m — 2. Therefore, Cd, (Pcq,, \ {Rca,}) = {3}. See Figure 10 (b) for WMG(Pcq,, \ {Rca, })-
Notice that 3 g, 1, which means that the PAR(r, Pcq, ) = 0

Therefore, the 1 case of Lemma 3 does not hold. Let #; = Sign Feg (Pcq,,) and fg =
Sign (Pca, \{Rcaq, })- The VL case of Lemma 3 does not hold because 1 @ty < Sign Hey (Tuni)
and 7y, € CH(II).

Next, we prove that dim(’Hégﬁ}) = m! — 1. Notice that [t_ﬂ(273) = + and [1?2](2)3) = 0, and all
other components of {1 and t5 are the same and are non-zero. Therefore, #; is a refinement of 5,
which means that t_i ) fz = fg Notice that Hist(Pcq, ) is an inner point of ’Htjo, in the sense that
all inequalities are strict except the inequalities about (2, 3). This means that the essential equalities
of AT1®%2 are equivalent to Pairy 5 - & = 0. Therefore, dim(H%2,) = dim(#2") = m! — 1. This
proves the proposition when 2 t n, o > 0, and Cd,,(P) = {1}.

If Cd,, (P) = {2} (respectively, Cd,(P) = {3}), then we simply switch the weights on 2 — 3 and

3 — 1 (respectively, 2 — 3 and 1 — 2) in Figure 9 (b), and the rest of the proof is similar to the
Cd, (P) = {1} case. This proves Theorem 4 for 2t n and a > 0.

2{nand a = 0. Let Geq, (With weights wcq, ) denote the following weighted directed graph
over A whose UMG is G* as illustrated in Figure 9 (a).

® Wcd, (2,3) = Wcd,, (37 ].) = dea(]., 2) =3.

e Forany 4 < i <m,wca,(1,7) = wea, (2,7) = weq, (3,7) = 3, except weq,, (4,1) = 1.

e The weights on edge between {4, ..., m} are 3 or —3.
1—3>2 1—4,2

-[3>2>1>4>o0thers] 2

E— 4

2

4 3
(@) Gcg, = WMG(Pey,, ). (b) WMG( Py, \ {Rca, })-

Figure 11: Gcg, and WMG(Pcq,, \ {Pca, }) for 24 n and o = 0.

See Figure 11 (a) for an example of G¢q,. According to McGarvey’s theorem [36] that for any
n > m* and 2 1 n, there exists an n-profile Prq, whose WMG is Gcq,. Therefore, for any
n > m? + 2 and 2 { n, there exists an n-profile Pcq, whose WMG is Gcg,, and Pcq, includes the
following two rankings.

[3 2> 1> 4> others],Rev (3 > 2 > 1 > 4 > others)

We now show that PAR(Cd,, Pca,) = 0, which implies that the 1 case Lemma 3 does not hold.
Let Rcq, = [3 = 2 = 1 > 4 > others]. Notice that in the profile Pcq_ \ {Rcq, }. the Copeland,,

53



score of alternative 1 is m — 3 + o = m — 3, which is strictly higher than the Copeland,, score
of alternative 2 and 3, which means that Cd, (Pca, — Rca,) € {2,3}. See Figure 11 (b) for an
example of WMG(Pcq, \ {Rcq, }). Notice that 2 ~pg., 1 and 3 >~g.,_ 1, which means that
PAR(CdO” PCda) =0.

The proofs for £, = 1, the Cd,(P) = {2} case, and the Cd, (P) = {3} case are similar to their
counterparts for the “2 { n and oo = 0” case above.

2 | n. The proof for the 2 | n case is similar to the proof of the 2 { n case with the following
modifications. The n-profile Prq, where PAR is violated is obtained from the profile in the 2  n
plus Rev (Rcq, ). Below we present the full proof for the case of 2 | n and « > 0 for example. The
other cases can be proved similarly.

2 | nand a > 0. W.lo.g. suppose Cd,(G*) = {1}. Let Gcq, (with weights wcq,) denote
the weighted directed graph in Figure 10 (a). According to McGarvey’s theorem [36] that for any
n > m* and 2 | n, there exists an (n — 1)-profile P}, whose WMG is Gy, . Let

Peq, = Pty +Rev (4> 2> 3 =1 > others)

It is not hard to verify that in Prq_, the Copeland,, score of alternative 3 is m —2+-c, which is strictly
higher than the Copeland,, score of alternative 1, which is m — 2. Therefore, Cd,(Pcq,) = {3}.
Let Rcq, = Rev (4 > 2 = 3 > 1 > others). Notice that Cd, (Pcq, \ {Rcd, }) = Cdo(G*) = {1}
and 1 >R, 3, which means that PAR(Cd,, Pcqa, ) = 0. Therefore, the 1 case in Lemma 3 does not

hold. Let f; = Sign fio, (Pea,) and ty = Sign o, (Ped, \ {ERcq,}). Like in other cases, the VL

case of Lemma 3 does not holds because t1 & t, < Sign e (Tuni)-

Next, we prove that dim(?—lt;lgaé) = m! — 1. Notice that [t1](23) = 0 and [£5](23) = +, and all
other components of fl and _t_é are the same and are non-zero. Therefore, 1?1 is a refinement of fg,
which means that fl @i, = 1;. Notice that Hist(Pcq, ) is an inner point of ’Ht;lo, in the sense that all
inequalities are strict except the inequalities about (2, 3). This means that the essential equalities of
AB®% gre equivalent to

Pairy 3 - & = Oand — Pairy 3 - & = 0

Therefore, dim(’}—[ég%) = m! — 1, which means that £,, = —(m! — (m! — 1)) = 1. The 2 | n and
a > 0 case follows after Lemma 3.

The proof for other subcases of 2 | n are similar to the proof of 2 | n and o > 0 case above. This
completes the proof of Theorem 4. O

F.4 Proof of Theorem 5

Theorem 5 (Semi-random PAR: int-MRSE). Given m > 4, any int-MRSE 7, any int-GSR r
that is a refinement of ¥ = (Ta,...,Tm), and any strictly positive and closed 11 over L(A) with
Tuni € CH(II), there exists N € N such that for every n > N,

——min 1

PARy (r,n)=1-— @<ﬁ

Proof. The intuition behind the proof is similar to the proof of Theorem 3. Indeed, Lemma 3 can
be applied to r, but it is unclear how to characterize ¢,,. Therefore, in this proof we do not directly
characterize dim(H ) as in the proof of Theorem 3, but will instead define another polyhedron H"
to characterize a set of sufficient conditions for PAR to be violated—and the dimension of the new
polyhedron is easy to analyze. Let us start with defining sufficient conditions on a profile P for PAR
to be violated under any refinement of 7.

Condition 1 (Sufficient conditions: violation of PAR under an MRSE rule). Given an MRSE T,
a profile P satisfies the following conditions during the execution of T.

)

(1) Forevery 1l <1i < m — 4, in the i-th round, alternative i + 4 drops out.
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(2) In round m — 3, 1 has the highest score, 2 has the second highest score, and 3 and 4 are
tied for the last place.

(3) If 3 is eliminated in round m — 3, then 2 and 4 are eliminated in round m — 2 and m — 1,
respectively, which means that the winner is 1.

(4) If 4 is eliminated in round m — 3, then 1 and 3 are eliminated in round m — 2 and m — 1,
respectively, which means that the winner is 2.

(5) P contains at least one vote [4 = 2 = 1 = 3 > others| and at least one vote [3 = 1 = 2 >~
4 > others), where “others” represents 5 = -+ = m.

(6) All losers described above, except in (2), are “robust” , in the sense that after removing
any vote from P, they are still the unique losers.

Let us verify that for any profile P that satisfies Condition 1, PAR(r, P) = 0. It is not hard to see
that 7(P) = {1,2}. If r(P) = {1}, thenlet R, = [4 = 2 > 1 > 3 > others]. This means
that when any voter whose preferences are R, abstain from voting, alternative 4 drops out in round
m — 3 of (P \ {R,}), and consequently 2 becomes the winner. Notice that 2 >, 1, which means
that PAR(r, P) = 0. Similarly, if r(P) = {2}, thenlet R, = [3 = 1 = 2 = 4 > others], which
means that 3 drops out in round m — 3 of (P \ {R,}), and 1 becomes the winner. Notice that
1 >R, 2. Again, we have PAR(r, P) = 0. The procedures of executing 7 under P and (P \ {R,})
are represented in Figure 12.

i i i i
1 H ' ' ! ! !

Profile ! Round1 | =+« i Round m-4 i Round m-2 | Round m-2 | Round m-1}  Winner
1 ' 1 Il 1

PA4>2>1>3 >0thers}§ {5}*5:‘)”!_1?{’”}% {4}_4%){1}1_%‘){3}3_%) {2}

it rP=(1 }ﬁ o |

’ {5}%%{,”}&_,{3’4} ; 3 3
if r(P)={2} %{2} 2—%{4}% {1}

AN

PG> 152> 4 othersy | {5} =+ 2 {m} " {3} {2} 2{4)45 {1}
Figure 12: Executing 7 for a profile that satisfies Condition 1.

The rest of the proof proceeds as follows. In Step 1 below, We will prove by construction that for
every sufficiently large n, there exists an n-profile P, that satisfies Condition 1. Then in Step 2, we
formally define H" to represent profiles that satisfy Condition 1. Finally, in Step 3, we show that
dim(HZ,) = m! — 1 because there is essentially only one equality (in Condition 1 (2)). Theorem 5
then follows after 1 minus the polynomial case of the inf part of [55, Theorem 2].

Step 1: define P,.. Before defining P,, we first define a profile P* that consists of a constant and
odd number of votes in Steps 1.1-1.3. We then prove that PAR is violated at P* in Step 1.4 and
1.5, where in Step 1.4 we show that 7(P) = {1,2} and in Step 1.5 we point out a violation of
PAR depending on r(P*). Then in Step 1.6, we show how to expand P* to an n-profile P, for any
sufficiently large n.

Let P* = P| + P, + P35, where P; consists of even number of votes and is designed to guarantee
Condition 1 (1), i.e., 5, ..., m are eliminated in the first m — 4 rounds, respectively. This means that
in the beginning of round m — 3, the remaining alternatives are {1,2,3,4}. P» consists of an odd
number of votes and is designed to guarantee Condition | (2), i.e., in round m — 3, 74 outputs the
weak order [1 > 2 > 3 = 4]. P consists of an even number of votes and is designed to guarantee
Condition 1 (3) and (4), i.e., if 3 (respectively, 4) is eliminated then 1 (respectively, 2) wins.

55



Step 1.1: define P;. Let P! denote the following profile of (24m(m —4)!+ %2(7”74) (m—1)"
votes.

Pll = mx{[Rl = Ry : VR € [:({1,2,3,4}),R2 S ﬁ({5, .. ,m})}UU ’LX{[Z - RQ] :VRy € C(A\{Z})}
i=5

For every 2 < i < m, let the scoring vector of 7'; be (s}, .., s!). For example, the scoring vector of

T4 is (s, 55,53, 57). Welet P; = (s§ — s+ 1)|Ps| x P, where | P,| is the number of votes in P,

which is a constant and will become clear after Step 1.2.

Step 1.2: define P,. The main challenge in this step is to use an odd number of votes to define P
such that in round m — 3, the score of 1 is strictly higher than the score of 2, which is strictly higher
than the score of 3 and 4. We first define the following 8-profile, denoted by Pj.
P} = {[1 = others = 3 = 4 = 2], [1 = others = 4 = 3 > 2],
3 x [1 > others > 2 > 4 > 3],3 x [2 > others > 1 > 3 > 4]}

The numbers of times alternatives {1,2, 3,4} are ranked in each position in P} |{1,2, 3,4} are indicated
in Table 5.

Alternative | 1st | 2nd | 3rd | 4th
1 5 3 0 0
2 3 3 0 2
3 0 1 4 3
4 0 1 4 3

Table 5: Number of times each alternative is ranked in each position in Py l{1,2,3,4}-

Next, we define a profile P that consists of an odd number of votes where the scores of 3 and 4 are

equal. Let d; = s} — s3 and dy = s5 — s4. The construction is done in the following three cases.

e If d; = 0, then we let PJ consist of a single vote [3 = 4 = 1 = 2 = others].
e If d; # 0 and dy = 0, then we let P$ consist of a single vote [1 = 3 = 4 = 2 > others].

e If d; # 0 and dy # 0, then we let d} = dy/ ged(dy,dz) and di, = do/ ged(dy, da), where
ged(dy, ds) is the greatest common divisor of d; and ds. It follows that at least one of d
and d}, is an odd number.

— If d] is odd, then we let
P} = (d} +dy) x [1 =3 =42~ others] +dj x [4 = 1 = 3 = 2 = others]
— Otherwise, we must have d is even and d), is odd. Then, we let

P} = (d}+dy) x [3>=4>=1=2 > others] +dj x [4 = 1= 3 = 2 = others]

It is not hard to verify that in either case P22 consists of an odd number of votes, and the score of 3
and 4 are equal under P;. To guarantee that 3 and 4 have the lowest 74 scores in P2|{1’2’3,4}, we
include sufficiently many copies of Pj in P». Formally, let

Py = (|P}|+ 1) x P} + P}

Step 1.3: define Ps. We let P3 = ((s1 — s3)|P2| + 1) x P§, where P} = P! + P;? is the 36-
profile defined as follows. P;! consists of 12 votes, where each alternative in {1,2, 3,4} is ranked
in the top in three votes, followed by the remaining three alternatives in a cyclic order.

P;' = {[1 =23 >4 > others],[1 = 3= 4 = 2 > others], [l = 4 = 2 = 3 > others],
[2>- 13> 43> 3> others|,[2 = 4 >~ 3 = 1 > others], [2 = 3 = 1 > 4 > others],
[3>1>4>2> others|, [3 >4 > 2> 1> others], [3 > 2 > 1 > 4 > others]
[4>1>2>3> others|, [4 > 2 > 3 > 1 > others], [4 > 3 > 1 > 2 > others]

}
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P;? consists of 24 votes that are defined in the following three steps. First, we start with
L({1,2,3,4}), which consists of 24 votes. Second, we replace [3 = 2 > 4 > 1] and [4 >~ 1 >
3>=2]by[3>1>4> 2] and [4 > 2 > 3 > 1], respectively. That is, the locations of 1 and 2
are exchanged in the two votes. This is designed to guarantee that the 74 scores of all alternative are
the same in P3*2\{172,3’4}, and after 3 is removed, 1’s 73 score is higher than 2’s 73 score; and after
4 is removed, 2’s T3 score is higher than 1’s 73score. Third, we append the lexicographic order of
{5,...,m} to the end of each of the 24 rankings. Formally, we define

P2 ={Ry;=5=--->=m: Ry L({1,2,3,4})} — [3 =2 =4 > 1 = others]
—[4>1>3> 2> others] + [3 > 1> 4 > 2 > others] + [4 = 2 > 3 > 1 > others]

Step 1.4: Prove 7(P*) = {1,2}. Recall that P* = P; + P, + P3. Notice that the P; part
guarantees that {5, . .., m} are dropped out in the first 7 —4 rounds, and the scores of all alternatives
in {1,2,3,4} are the same under P, no matter what alternatives are dropped out. Therefore, it
suffices to calculate the results of the last three rounds based on P, + P3, which is done as follows.

In round m — 3, it is not hard to check that every alternative in {1, 2, 3,4} gets the same total score
under P5, where each of them is ranked at each position for 9 times. Therefore, due to P, alternative
3 and 4 are tied for the last place in round m — 3.

If 3 is eliminated in round m — 3, then Pj | 241 = Pi'((1 2.4} + P3?|{1,2,4) becomes the
following.
Pilgogy ={2x[1=4=2],1>2+4,2x[2~1>4],2>4> 1],
1>=4-2],[4>=2>1,2>1>4],2x[4>=1>2],[4>2>1]}
PPliioay =4x L({1,2,4}) = 24> 1] - 4= 12/ +[1 =4 2] +[4> 2> 1]

It is not hard to verify that the numbers of times alternatives {1, 2, 4} are ranked in each position in
Pj|{1,2,4y are as indicated in Table 6 (a).

Alternative | 1st | 2nd | 3rd Alternative | 1st | 2nd | 3rd
1 13 12 11 1 11 12 13
2 11 12 13 2 13 12 11
4 12 12 12 3 12 | 12 12
(a) 3 is removed. (b) 4 is removed.

Table 6: Number of times each alternative is ranked in each position in round m — 2.

This means that the score of alternative 2 is strictly lower than the score of 1 or 3, because si‘ — 5§ >
1, where the score vector for 73 is (s}, s3, s3). Recall that P; consists of sufficiently large number of
copies of P3. Therefore, even considering the score difference between alternatives in P», the score
of 2 is still the strictly lowest among {1,2,4} in P* in round m — 2. This means that alternative 2
drops in round m — 2, and it is easy to check that 1 >~ 4 in 20 votes in P35, which is strictly more
than half (= 16). This means that 1 is the  winner if 3 is eliminated in round m — 3.

If 4 is eliminated in round m — 3, then Pj |1 231 = Pi' (123 + P3?[1,2,31 becomes the
following.

Pi'lgosy ={2x[1=2=3],[1>3=2},2x[2=3>1],[2> 1> 3],
2xB3=2>=1,[3>=1>2],[1>=2=3],]2>3>1],[3>1> 2]}
Pi?losy =4x L({1,2,3}) —[3=2-1]—[1=3=2]+ 3= 12|+ [2-3>1]

The numbers of times alternatives {1,2, 3} are ranked in each position in P3|, 5 3y are as indicated
in Table 6 (b). Again, it is not hard to verify that alternative 1 drops in round m — 2, and 2 beats 3
in the last round to become the r winner in this case.

Step 1.5: Prove that PAR is violated at P*. At a high-level the proof is similar to Step 1.4, and
the absent vote is effectively used as a tie breaker between alternatives 3 and 4. Recall that r is a
refinement of 7 and it was shown in Step 1.4 that 7(P*) = {1, 2}. Therefore, either r(P*) = {1}
or r(P*) = {2}. The proof is done in the follow two cases.
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o If r(P*) = {1}, then we let
R, =1[4> 2> 1% 3> others],

which is a vote in P. Then in (P* \ {R,}), alternative 4 is eliminated in round m — 3,
and following a similar reasoning as in Step 1.4, we have r(P*\ {R,.}) = {2}. Notice that
2 >p, 1, which means that PAR is violated at P*.

o If r(P*) = {2}, then we let
R, =1[3>1% 2> 4 > others],

which is a vote in PZ. Then in (P* \ {R,}), alternative 3 is eliminated in round m — 3,
and following a similar reasoning as in Step 1.4, we have (P*\ {R,.}) = {1}. Notice that
1 =g, 2, which means that PAR is violated at P*.

Step 1.6: Construct an n-profile P,.. The intuition behind the construction is the following. P,
consists of three parts: P}, P2, and P?. P! consists of multiple copies of P* defined in Steps 1.1-
1.3 above, which is used to guarantee that PAR is violated at P, and the score difference between
any pair of alternatives is sufficiently large so that votes in P2 does not affect the execution of r. P?
consists of multiple copies of £(.A). P2 consists of no more than m! — 1 votes, and | P3| is an even
number.

Define P}. To guarantee that | P3| is even, the definition of P! depends on the parity of n. Recall
that P* consists of an odd number of votes. When 2 | n, we let

P! =ml (s} —s3) x P*
When 2 t n, we let
P! = (m!(s{—s3)+1) x P*

T

Define P?. Letn; = |P!|. P? consists of as many copies of £(.A) as possible, i.e.

P2 = V“”IJ x L(A)

m!
Define Pf. P3 consists of multiple copies of pairs of rankings defined as follows.

3 n—n — |P?|
P’ = — x {[1 >=2> 3> 4% others|,[2 > 1 > 4 = 3 > others]}
It is not hard to verify that P, = P! + P2 + P32 share the same properties as P*: 7(P,) = {1,2}; if
[4 -2 1> 3 > others] is removed, then 2 is the unique winner; and if [3 = 1 > 2 > 4 >~ others]
is removed, then 1 is the unique winner. This means that PAR is violated at P,.

Step 2: define a polyhedron 7" to represent profiles that satisfy Condition 1. To define H",
we recall from Definition 14 that for any a,b, any B C A\ {a, b}, and any profile P, Scoregmb :
Hist(P) is the difference between the 7,,, || score of a and the 7,,,_|| score of b in P| 4, 5. We
are now ready to define 7" whose A matrix has five parts that correspond to Condition 1 (1)-(5).
Condition 1 (6) will be incorporated in the b vector of H.

A

A2
Definition 31 (H7). GivenT = (To,...,Tp), welet AT = | AG) | where

A

AG)

e AW: for every 1 < i < m — 4 and every j € A\ {i + 4}, AW has a row

A
Score{5 ..... i+3},i+4,5°
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o A@ A®) and AW are defined as follows.

A
Score 5,...,m},2,1

A A
@ Score . - Score 3,5,...,m},4,1 @ Score 4,5,...,m},3,2
2 5,...,m},3,2 3) e
AV = Score : ,AY = | Score 3,5,...,m},2,4 ,AYY = | Score 4,5,...m}1,3
5,y m},4,3 . .
Score(s 5.5,....m},4,1 Scoreqy 45, my.3.2

o A®) consists of two rows defined as follows.

AG) —Hist(4 = 2 > 1 > 3 = others)
~ | —Hist(3 > 1> 2> 4 > others)
Lt b =[bM) (sh—st—1,st—5st—1,00),(s3 -5 —1,88 —s7— 1,52 — 57— 1),
for A(D for A2 for A®
(53— 53— 1,85 —s% — 1,82 — 52 —1),(—1,-1)],
———

for A(4) for A(5)
where for every 1 < i < m—4and every j € A\ {i+4}, b contains a row sml Tl
Let

HT:{feRW;AfwaT<(BjT}.

Step 3: Apply Lemma 3 and [55, Theorem 2]. We first prove the following properties of H.
Claim 14 (Properties of H"). Given any integer MRSE rule T,

(i) for any integral profile P, if Hist(P) € H' then PAR(r, P) = 0;
(ii) Tuni € M

(iit) dim(HZ,) =m! — 1.

Proof. Part (i) follows after a similar reasoning as in Step 1 of the proof of Theorem 5. To prove
Part (ii), notice that for any B C A and a,b € (A\ B), we have Scoreﬁ’a’b -1 = 0. Also notice that

. _NT AT
forany R € £(A) we have —Hist(R) - 1 = —1 < 0. Therefore, A" - (1) < (O) , which means

—

that Ty € HZ,. To prove Part (iii), notice that A" - (f)T < (O) contains one equality in A®)
ie.

Scorefs  nyaa (@' =0 (15)
This means that dim(HZ,) < m! — 1. Recall that P, is the n-profile defined in Step 1 that satisfies
Condition 1. Notice that Hist(P,) is an inner point of #Z, in the sense that all inequalities in

_ N T _
A" . (f)T < (O) except Equation (15) are strict, which means that dim( ;0) > m! — 1. This
proves Claim 14. O

Because of the existence of P, defined in Step 1, and Claim 14 (i) and (ii), the 1 case and the VL
case of Lemma 3 do not hold for any sufficiently large n. Therefore, it follows from the L case

of Lemma 3 that I;/\\T{Em(r, n) is at least 1 — O(n~%?), because £, > 1. It remains to show that

ﬁzgm(r, n) is upper-bounded by 1 — Q(n~%?). We have the following calculations.
1-— ﬁi;‘i“(r, n) = su&) Prp.z(PAR(r, P) = 0)
Felln
> sur[I) Prpz(Hist(P) € H") Claim 14 (i)
Feln
=0(n"%9) Claim 14 (ii), (iii), and [55, Theorem 2]
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The last equation follows after applying the sup part of [55, Theorem 2] to H". More concretely,
recall that in Step 1 above we have constructed an n-profile P, for any sufficiently large n and it
is not hard to verify that Hist(P,) € H", which means that H" is active at any sufficiently large n.
Claim 14 (ii) implies that the polynomial case of [55, Theorem 2] holds, and Claim 14 (iii) implies
that a;, = m! — 1 for H".

This proves Theorem 5. O

F.5 Proof of Theorem 6

Theorem 6 (Semi-random PAR: Condorcetified Integer Positional Scoring Rules). Given m >
4, an integer positional irresolute scoring rule Ty, any Condocetified positional scoring rule Condz
that is a refinement of Conds, and any strictly positive and closed I1 over L(A) with 7,,; € CH(IT),
there exists N € N such that for everyn > N,

——min 1
PAR (Condz,n) =1— @(ﬁ)

Proof. The proof follows the same logic in the proof of Theorem 5. We first prove the theorem for
even n then show how to extend the proof to odd n’s.

Intuition for 2 | n. Let 5= (s1,...,s;,). We first identify a set of sufficient conditions for PAR
to be violated.

Condition 2 (Sufficient conditions for the violation of PAR). Given a Condorcetified irresolute
integer positional scoring rule Condz, P satisfies the following conditions.

(1) Condz(P) = {2}, and the score of 2 is higher than the score of any other alternative by at
least s1 — S, + 1.

(2) Alternative 1 is a weak Condorcet winner, wp(1,3) = 0, and for every i € A\ {1, 3},
wp(1,i) > 2.

(3) P contains at least one vote of [3 = 1 > 2 = others].

Recall that Condy is a refinement of Condz and due to Condition 2 (2), P does not contain a Con-
dorcet winner. Therefore, according to Condition 2 (1), we have Condz = {2}. Any voter whose
preferences are [3 = 1 > 2 > others] has incentive to abstain from voting, because the voter prefers
1to 2, and {1} is the Condorcet winner in P — [3 > 1 > 2 > others], which means that

Condg(P — [3 >~ 1 = 2 > others]) = {1}

This means that PAR(Condgz, P) = 0 for any profile P that satisfies Condition 2. The rest of the
proof proceeds as follows. In Step 1, for any n that is sufficiently large, we construct an n-profile Py

that satisfies Condition 2. Then in Step 2, we formally define H“°" to represent profile that satisfy

Condition 2. Finally, in Step 3 we formally prove properties about H°"s and apply Lemma 3
and [55, Theorem 2] to prove Theorem 5.

Step 1 for 2 | n: define Ps. The construction is similar to the construction in the proof of
Claim 10, which is done for the following two cases: Tz is the plurality rule and 7z is not the
plurality rule.

e When 73 is the plurality rule, i.e. s; = s,,,, we let

P = (2—6) x[2+ 1> 3 others| + 4 x [2 = 3 = 1 > others]

+(g—6)><[3>1>2>others]+6><[1>2>3>0thers]

It is not hard to verify that Py satisfies Condition 2 for any even number n > 28.
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e When 7z is not the plurality rule, i.e., so > s,,, like Step 1 in the proof of Theorem 5,
we first construct a profile P* that consists of a constant number of votes and satisfies
Condition 2, then extend it to arbitrary odd number n. Let 2 < &k < m — 1 denote the
smallest number such that s > si11. Let Ay = [4 > .- = k+ 1] and As = [k + 2 >

- = m], and let P* = Py + Pj, where P; is the following 10-profile that is used to
guarantee Condition 2 (2) and (3).

Pf={4x[1=2= A1 =3 As] +3x[2= 3= A1 = 1 = Ay
+2x[3-1% A1 =2 A]+ 21 Ay = 3> A}

And let P; denote the following 36(m — 3)!-profile, which is used to guarantee that 2 is
the unique winner under P*, i.e., Condition 2 (1).

PQ* =6 X {[Rl - RQ} (VR € £({1,2,3}),R2 S ﬁ({4, ce ,m}),}
It is not hard to verify that the following observations hold for P;".

— 1 is the Condorcet winner, wp=(1,3) = 0, and for any i € A\ {1,3}, we have
wpr (1,7) > 2.

— The total score of 1 under P;" is 4s1 + 3s2 + 35k11, the total score of 2 under Py is
4s1 + 459 + 25,41, and the total score of 3 under Py is 251 4 352 + 5si41. Recall
that we have assumed that s; > sg1. Therefore,

4s1 4+ 4so + 25541 > 451 + 352 + 3Sk4+1 > 281 + 352 + HSky1,
which means that the score of 2 is strictly higher than the scores of 1 and 3 in P}".

Given these observations, it is not hard to verify that P* = P; + P53 satisfies Condition 2.
Let Pz denote as many copies of P* as possible, plus pairs of rankings {[2 > 1 > 3 >
others], [2 > 3 > 1 > others]}. More precisely, let

n L (1P L
P = P x P*+ — x{[2 > 1> 3 > others], [2 > 3 > 1 > others]|}

It is not hard to verify that Py satisfies Condition 2, which concludes Step 1 for the 2 | n case.

Step 2 for 2 | n: define a polyhedron #£“°"!s to represent profiles that satisfy Condition 2.

Definition 32 (H°"9%). Given an irresolute integer positional scoring rule Tz = (81,...,8m), we
A

let AS=| A®@ |, where
ABG)

o AW: foreveryi € A\ {2}, AW contains a row Score; 5.

o A® contains two rows Pairy 3 and Pairs 1, and for every i € A\ {1,3}, AW contains a
row Pair; 1.

o A® consists of a single row —Hist(3 = 1 = 2 > others).

Let b= |(spm—s1—1)-1,(0,0,—2,...,-2), —1

for A1) for A(2) for A(3)

and M = {fe R™:A¥. (1) < (B‘?)T}.
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Step 3 for 2 | n: Apply Lemma 3 and [55, Theorem 2]. We first prove the following properties
of HConds,

Claim 15 (Properties of HCondz) Given any integer positional scoring rule 3,
(i) for any integral profile P, if Hist(P) € H" then PAR(Conds, P) = 0;
(ii) Tuni € HEPT;
(iii) dim(HEG™) = m) - 1.

Proof. The proof for Part (i) and (ii) are similar to the proof of Claim 14. To prove Part (iii), notice

B NT
that AS - (:E’)—r < (O) contains one equality in A(?), i.e.

Pair; 3 - () = (0)" (16)
This means that dim(?—lggd's) < m!—1. Notice that Hist(P5) is an inner point of Hgﬂqdf’* in the sense
that all other inequalities except Equation (16) are strict, which means that dim(’l—lg‘g‘dg )>ml—1.
This proves Claim 15. a O

Therefore, we have the following bound.

1- ISTATQEHH(Condg, n)
= sup Prp.z(PAR(Condg, P) = 0)

T_I:GH"

> sup Prp.z(Hist(P) € H) Claim 15 (i)
ﬁ:enn

=0(n"09) Claim 15 (ii), (iii), and [55, Theorem 2]

Consequently, %Em(condg, n) =1—Q(n"%5). Notice that the 1 case and VL case Lemma 3 do
not hold because of the existence of Pz and Claim 15 (ii). Therefore, Theorem 6 for the 2 | n case
follows after the 1 — O(n~%%) upper bound proved in Lemma 3.

Proof for the 2 { n case. When 2 { n, we modify the proof as follows.

e First, Condition 2 (2) is replaced by the following condition:
(2/): Alternative 1 is the Condorcet winner under P, wp(1,3) = 1, and for every i €
AN\ A1, 3}, wp(1,4) > 3.

e Second, in Step 1, Pz has an additional vote [2 = 1 > 3 > others].

e Third, in Step 2 Definition 32, the b¥ components corresponding to A? is
(1,-1,-3,...,-3).

A similar claim as Claim 15 can be proved for the 2 { n case. This proves Theorem 6. O

G Experimental Results

We report satisfaction of CC and PAR using simulated data and Preflib linear-order data [35] under
four classes of commonly-used voting rules studied in this paper, namely positional scoring rules
(plurality, Borda, and veto), voting rules that satisfy CONDORCET CRITERION (maximin, ranked
pairs, Schulze, and Copelandy 5), MRSE (STV), and Condorcetified positional scoring rule (Black’s
rule). All experiments were implemented in Python 3 and were run on a MacOS laptop with 3.1
GHz Intel Core i7 CPU and 16 GB memory.
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Figure 13: Satisfaction of CC and PAR under IC for m = 4, n = 40 to 800, 200000 trials.

Synthetic data. We generate profiles of m = 4 alternatives under IC.? The number of alternatives
n ranges from 40 to 800. In each setting we generate 200000 profiles. The satisfaction of CC
under plurality, Borda, veto, and STV are presented in Figure 13 (a), and the satisfaction of PAR
under STV, maximin, ranked pairs, Schulze, Black, and Copelandy 5 are presented in Figure 13 (b).
Notice that voting rules not in Figure 13 (a) always satisfy CC and voting rules not in Figure 13 (b)
always satisfy PAR.

The results provide a sanity check for the theoretical results proved in this paper. In particular,
Figure 13 (a) confirms that the satisfaction of CC is ©(1) and 1 — ©(1) under positional scoring
rules (Theorem 1) and STV (Corollary 1) w.r.t. IC. Figure 13 (b) confirms that the satisfaction of
PARis 1 — @(n*O'E’) under maximin, ranked pairs, Schulze (Theorem 3), Copeland,, (Theorem 4),
STV (Theorem 5), and Black (Theorem 6). Figure 14 in Appendix G summarizes results with large
n (1000 to 10000) that further confirm the asymptotic observations described above.
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Figure 14: Satisfaction of CC and PAR under IC for m = 4, n = 1000 to 10000, 200000 trials.

Preflib data. We also calculate the satisfaction of CC and PAR under all voting rules studied in this
paper with lexicographic tie-breaking for all 315 Strict Order-Complete Lists (SOC) under election
data category from Preflib [35]. The results are summarized in Table 7, which is the bottom part of
Table 2.

Table 7 delivers the following message, that PAR is less of a concern than CC in Preflib data—all
voting rules have close to 100% satisfaction of PAR, while the satisfaction of CC is much lower
for plurality, Borda, and Veto. The most interesting observations are: first, maximin, Schulze, and
ranked pairs achieve 100% satisfaction of CC and PAR in Preflib data, which is consistent with the
belief that Schulze and ranked pairs are superior in satisfying voting axioms, and maximin is doing
well in PAR (and indeed, maximin satisfies PAR when m = 3). Second, STV does well in CC

3See [10] for theoretical results and extensive simulation studies of PAR under the IAC model.
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Table 7: Satisfaction of CC and PAR in 315 Preflib SOC profiles. Some statistics of the data are shown in
Figure 15.

Plurality | Borda Veto STV Black | Maximin | Schulze | Ranked pairs | Copelandg.s
CC | 96.8% | 92.4% | 742% | 99.7% | 100% 100% 100% 100% 100%
PAR | 100% 100% | 100% | 99.7% | 99.4% | 100% 100% 100% 99.7%
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Figure 15: Histograms of number of candidates and number of voters in the 315 Preflib SOC data studied in
this paper.

and PAR, though it does not satisfy either in the worst case. Third, veto has poor satisfaction of
CC (74.2%), which is mainly due to the profiles where the number of alternatives is more than the
number of voters, so that a Condorcet winner exists and is also a veto co-winner, but loses due to
the tie-breaking mechanism.

64



