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Abstract
The Supplementary Material for the paper titled
“PRISIM: Privacy Preserving Synthetic Data Simu-
lator ” accepted in NeurIPS-23 Workshop (on Syn-
thetic Data for Empowering ML Research) con-
tains,

• Generative Model Details
• Dataset Details
• Runtime Details
• Additional Results
• Implementation Details
• Privacy vs Utility Regression Analysis

1 Generative Model Details
In this section first we give a brief overview of the generative
models followed by their detailed architecture and hyperpa-
rameter set-up (whenever applicable).

1.1 CTGAN
Conditional Table GAN or CTGAN [Xu et al., 2019] is a
Generative Adversarial Network (GAN) based approach for
generating multivariate tabular data. CTGAN conditions the
generation of the continuous columns based on the discrete to
retain the bi-variate correlations of the original dataset. CT-
GAN when trained well provides high fidelity synthetic sam-
ples, however training can be tricky and slow.

For the experiments in the main paper, we have utilized
the following architecture and hyperparameter set-up for CT-
GAN,

• Embedding dimensions: Size of the random sample
passed to the Generator. Defaults to 128.

• Generator dimensions: Size of the output samples for
each one of the Residuals. A Residual Layer will be
created for each one of the values provided. Defaults to
(256, 256).

• discriminator dimensions: Size of the output samples
for each one of the Discriminator Layers. A Linear
Layer will be created for each one of the values pro-
vided. Defaults to (256, 256).
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• Generator learning rate: Learning rate for the genera-
tor. Defaults to 2e-4.

• Generator decay :Generator weight decay for the Adam
Optimizer. Defaults to 1e-6.

• Discriminator learning rate: Learning rate for the dis-
criminator. Defaults to 2e-4.

• Discriminator decay: Discriminator weight decay for
the Adam Optimizer. Defaults to 1e-6.

• Batch size: Number of data samples to process in each
step. Defaults to 128.

• Discriminator steps:Number of discriminator updates
to do for each generator update. Default is 5.

• Log frequency: Whether to use log frequency of cat-
egorical levels in conditional sampling. Defaults to
‘True’.

• Epochs: Number of training epochs. Defaults to 300.
• pac : Number of samples to group together when apply-

ing the discriminator. Defaults to 10.

1.2 TVAE
Tabular VAE or TVAE [Xu et al., 2019] is a variational auto-
encoder based approach for generating mixed type, multi-
variate tabular data. TVAE also provides good quality. While
faster than CTGAN it still is slower than the statistical Copula
based models.

For the experiments in the main paper, we have utilized the
following architecture and hyperparameter set-up for TVAE,

• Embedding dimensions: Size of the random sample
passed to the encoder. Defaults to 128.

• Compress dimensions: Size of the encoded output sam-
ples for each one of the Residuals. A Residual Layer will
be created for each one of the values provided. Defaults
to (128,128).

• Decompress dimensions: Size of the output samples for
each one of the decoding Layers. A Linear Layer will be
created for each one of the values provided. Defaults to
(128, 128).

• Batch size: Number of data samples to process in each
step. Defaults to 128.

• Epochs: Number of training epochs. Defaults to 300.



• Learning rate: Learning rate defaults 2e-4.

1.3 GC

Gaussian Copula or GC is a statistical method of generating
multivariate tabular data where the copula takes care of the
correlation between the features. This method is fast, quite
scalable, provides decent fidelity, and also does not require
any hyper-parameter tuning. This should be the preferred ap-
proach for a quick analysis or if fidelity of the synthetic sam-
ples is not a concern.

2 Dataset Details
In this section we provide more details on the datasets utilized
in this article.

• HR This open source data1 contains records for the em-
ployees of an imaginary organization. Often used for
attrition prediction we picked it from Kaggle for its pop-
ularity. The machine learning task we used however in
this study was income prediction.

• MIMIC-III This Electronics Health Care data is quite
popular in the medical AI community and contains Elec-
tronics Health Records for patients admitted to ICU. For
more details please refer to [Johnson et al., 2016]. We
utilized the demography and medical history informa-
tion (as they are tabular) in this article. BMI is used
as the target variable for a regression task to compute
MLU.

• AIRLINE This tabular data2 is picked from Kaggle
again for its popularity. It contains a survey related to the
satisfaction of airline passengers. This is also a mixed
type data and we predict the satisfaction level (classifi-
cation) as the ML task.

• HEART This tabular data is also from Kaggle3 and it
contains information about patients with heart diseases.
For MLU we predict the death event.

• ADULT This dataset4 is picked from the UCI machine
learing repository and also quite popular among re-
searchers. Contains census data. We used this data be-
cause we wanted to compare proposed DbP model with
state-of-the-art DP-GAN models on their metric values
(as reported in the paper [Tantipongpipat et al., 2021]).
We compared aggregated JSD value (categorical only)
and MLU (on salary prediction) as utility metrics for
this dataset against SOTA models as in [Tantipongpipat
et al., 2021].

In most cases we utilized the recommended feature selection
from Kaggle and did not use all the columns. Please find the
summary of the same in table 1.

1https://tinyurl.com/bdkpjyvv
2https://tinyurl.com/8rc5xw2r
3https://tinyurl.com/2p9furuf
4https://tinyurl.com/ytvsee64

3 Run-time Analysis
. In this section we provide a detailed run-time analysis.
We sort the datasets by their sample size first and track the
run-time for all the three generators with prescribed hyper-
paramter as provided in table 2.

The results are provided in the following table,

Runtime in Minutes

Dataset Size CTGAN TVAE GC

HEART 300 6 1 0.2

HR 1500 14 3 0.5

AIRLINE 26000 76 29 2

ADULT 50000 145 62 5

Table 2: Runtime analysis

We observe that CTGAN takes significantly longer time
to train than TVAE. Whereas GC is extremely fast therefore
always advisable for a quick analysis. The generation quality
and fidelity of course takes a hit with GC and same can be
observed from the qualitative analysis. So in terms of quality
in general we observed that CTGAN > TVAE > GC whereas
in terms of speed GC > TVAE > CTGAN. This is further
summarized in the figure 1.

4 Additional Results
we have performed multiple qualitative studies to further
demonstrate the utility of DbP private data (the quantitative
privacy attack results are already demonstrated in the main
paper). We adopt mainly three types of analysis as listed be-
low .

• Univariate Histogram/KDE Comparison we pick the
features and compare their univariate distribution (KDE
for continuous, histogram for categorical) between the
real and private data (DbP) for qualitative analysis on
the utility. However, in this document we have shared
the figure for one randomly picked feature only.

• Bi-variate Correlation-Heatmap The lower triangular
matrix of the pairwise cross-correlation matrix is pre-
sented in the form of a heatmap where higher correla-
tion corresponds to a brighter color. Two heatmaps are
presented here, the left one is with the original data and
right one with DbP private data (integer encoding is done
for the purpose of computing correlations).

• tSNE Visualization With tSNE plot we project the
multi-dimensional data into a 2-D feature space for vi-
sualization. A significant overlap between the real and
the private (DbP) data indicates good retention of utility.

These analysis are done for each of the generative model on
each of the dataset.

4.1 Results with CTGAN
In the first set of experiments, CTGAN is utilize as the gen-
erator. Results are provided for the same.



Dataset No. of samples No. of features Mixed-type? No. of continuous features No. of discrete features
HR ∼1.5k 10 Yes 5 5

MIMIC-3 ∼2k 14 Yes 8 6

AIRLINE ∼26k 23 Yes 4 19

HEART ∼0.3k 13 Yes 7 6

ADULT ∼50k 15 Yes 5 10

Table 1: Dataset Details

Figure 1: Runtime Analysis for the generative models

Results on HR dataset The qualitative results are pre-
sented for HR dataset with the CTGAN + DbP generated pri-
vate with the following plots in figure 2, 3 and 4.

Results on MIMIC-3 dataset The qualitative results are
presented for MIMIC-3 dataset with the CTGAN + DbP gen-
erated private with the following plots in figure 5, 6 and 7.

Results on AIRLINE dataset The qualitative results are
presented for AIRLINE dataset with the CTGAN + DbP gen-
erated private with the following plots in figure 8, 9 and 10.

Results on HEART dataset The qualitative results are
presented for HEART dataset with the CTGAN + DbP gen-
erated private with the following plots in figure 11, 12 and
13.

Results on ADULT dataset The qualitative results are pre-
sented for ADULT dataset with the CTGAN + DbP generated
private with the following plots in figure 14, 15 and 16.

4.2 Results with TVAE
In the second set of experiments, TVAE is utilize as the gen-
erator. Results are provided for the same.

Results on HR dataset The qualitative results are pre-
sented for HR dataset with the TVAE + DbP generated private
with the following plots in figure 17, 18 and 19.

Results on MIMIC-3 dataset The qualitative results are
presented for MIMIC-3 dataset with the TVAE + DbP gen-
erated private with the following plots in figure 20, 21 and

22.
Results on AIRLINE dataset The qualitative results are

presented for AIRLINE dataset with the TVAE + DbP gen-
erated private with the following plots in figure 23, 24 and
25.

Results on HEART dataset The qualitative results are
presented for HEART dataset with the TVAE + DbP gener-
ated private with the following plots in figure 26, 27 and 28.

Results on ADULT dataset The qualitative results are pre-
sented for ADULT dataset with the TVAE + DbP generated
private with the following plots in figure 29, 30 and 31.

4.3 Results with GC
In the third set of experiments, GC is utilize as the generator.
Results are provided for the same.

Results on HR dataset The qualitative results are pre-
sented for HR dataset with the GC + DbP generated private
with the following plots in figure 32, 33 and 34.

Results on MIMIC-3 dataset The qualitative results are
presented for MIMIC-3 dataset with the GC + DbP generated
private with the following plots in figure 35, 36 and 37.

Results on AIRLINE dataset The qualitative results are
presented for AIRLINE dataset with the GC + DbP generated
private with the following plots in figure 38, 39 and 40.

Results on HEART dataset The qualitative results are
presented for HEART dataset with the GC + DbP generated



Figure 2: Correlation heatmap comparison for HR dataset with CTGAN + DbP

Figure 3: Univariate comparison for a randomly picked feature for
HR dataset with CTGAN + DbP Figure 4: tSNE comparison for HR dataset with CTGAN +DbP



Figure 5: Correlation heatmap comparison for MIMIC-3 dataset with CTGAN + DbP

Figure 6: Univariate comparison for a randomly picked feature for
MIMIC-3 dataset with CTGAN + DbP

Figure 7: tSNE comparison for MIMIC-3 dataset with CTGAN
+DbP



Figure 8: Correlation heatmap comparison for AIRLINE dataset with CTGAN + DbP. Note: For AIRLINE dataset, we have shown the
heatmap for a subset of the features as the whole image could not fit in the diagram. Doing so would make the diagram illegible.

Figure 9: Univariate comparison for a randomly picked feature for
AIRLINE dataset with CTGAN + DbP

Figure 10: tSNE comparison for AIRLINE dataset with CTGAN
+DbP



Figure 11: Correlation heatmap comparison for HEART dataset with CTGAN + DbP

Figure 12: Univariate comparison for a randomly picked feature for
HEART dataset with CTGAN + DbP

Figure 13: tSNE comparison for HEART dataset with CTGAN
+DbP



Figure 14: Correlation heatmap comparison for ADULT dataset with CTGAN + DbP

Figure 15: Univariate comparison for a randomly picked feature for
ADULT dataset with CTGAN + DbP

Figure 16: tSNE comparison for ADULT dataset with CTGAN
+DbP



Figure 17: Correlation heatmap comparison for HR dataset with TVAE + DbP

Figure 18: Univariate comparison for a randomly picked feature for
HR dataset with TVAE + DbP Figure 19: tSNE comparison for HR dataset with TVAE +DbP



Figure 20: Correlation heatmap comparison for MIMIC-3 dataset with TVAE + DbP

Figure 21: Univariate comparison for a randomly picked feature for
MIMIC-3 dataset with TVAE + DbP Figure 22: tSNE comparison for MIMIC-3 dataset with TVAE +DbP



Figure 23: Correlation heatmap comparison for AIRLINE dataset with TVAE + DbP. Note: For AIRLINE dataset, we have shown the
heatmap for a subset of the features as the whole image could not fit in the diagram. Doing so would make the diagram illegible.

Figure 24: Univariate comparison for a randomly picked feature for
AIRLINE dataset with TVAE + DbP

Figure 25: tSNE comparison for AIRLINE dataset with TVAE
+DbP



Figure 26: Correlation heatmap comparison for HEART dataset with TVAE + DbP

Figure 27: Univariate comparison for a randomly picked feature for
HEART dataset with TVAE + DbP Figure 28: tSNE comparison for HEART dataset with TVAE +DbP



Figure 29: Correlation heatmap comparison for ADULT dataset with TVAE + DbP

Figure 30: Univariate comparison for a randomly picked feature for
ADULT dataset with TVAE + DbP Figure 31: tSNE comparison for ADULT dataset with TVAE +DbP



Figure 32: Correlation heatmap comparison for HR dataset with GC + DbP

Figure 33: Univariate comparison for a randomly picked feature for
HR dataset with GC + DbP Figure 34: tSNE comparison for HR dataset with GC +DbP



Figure 35: Correlation heatmap comparison for MIMIC-3 dataset with GC + DbP

Figure 36: Univariate comparison for a randomly picked feature for
MIMIC-3 dataset with GC + DbP Figure 37: tSNE comparison for MIMIC-3 dataset with GC +DbP



Figure 38: Correlation heatmap comparison for AIRLINE dataset with GC + DbP. Note: For AIRLINE dataset, we have shown the heatmap
for a subset of the features as the whole image could not fit in the diagram. Doing so would make the diagram illegible.

Figure 39: Univariate comparison for a randomly picked feature for
AIRLINE dataset with GC + DbP Figure 40: tSNE comparison for AIRLINE dataset with GC +DbP



private with the following plots in figure 41, 42 and 43.
Results on ADULT dataset The qualitative results are pre-

sented for ADULT dataset with the GC + DbP generated pri-
vate with the following plots in figure 44, 45 and 46.

4.4 Sensitivity Analysis on Privacy Threshold
With the proposed privacy mechanism we utilize a cut-off
value θ on the minimum HMJD to determine which are the
‘risky’ samples. The choice of this cut-off is pertinent as it
decides the samples to discard in-order to improve privacy.
As discussed we utilized a chi-saured distribution and utilized
the cardinality (i.e. number of features) as the degrees of free-
dom to obtain the threshold. Additionally, we also performed
a sensitivity analysis to explore the threshold vs privacy and
utility trade-off.

With high value of threshold we tend to identify more sam-
ples as ‘risky’ and discard them to improve privacy. On the
flip side, this ends up diluting the utility. For the results re-
ported in this study (main paper table 1 and 2) we utilize sig-
nificance level of 99% for the chi-squared distribution as a
solid balance between privacy and utility. More results with
different significance levels are provided here for the HR
dataset (cardinality is 10, sample size n 1500). Please note
that we start with generating 5 times more synthetic samples
than what we want our private dataset to have (for experi-
ments we kept the same number of private samples as original
therefore we started with 5n synthetic samples where n is the
number of samples in original dataset).

Significance Level (α) Cut-off RIA (%) ML Utility
0.995 2.16 92 0.81
0.99* 2.56* 95 0.78
0.95 3.94 96 0.74
0.90 4.87 98 0.69
0.80 6.18 100 0.52

Table 3: Sensitivity analysis on Privacy cut-off for DbP. In the main
paper results are provided for the second selection (cut-off value of
2.56.

We observe that with lower significance level (i.e. proba-
bility of exceeding the critical value) the threshold value gets
higher and we lose more samples leading to higher privacy
estimation but lower utility.

4.5 Hyper-parameter Selection
The primary CTGAN hyper-parameters that are tuned during
data synthesis, are generator and discriminator learning rates
2e−4, batch size between [32, 128] and epoch size between
[300, 3000]. The only other hyper-parameter in the DbP set-
up is the privacy threshold value θ. In our experiments θ is
derived from the chi-squared table with a significance level
of 0.99. Next, details are provided on the attacks. In attribute
inference attack (AIA), regression and classification tasks are
utilized and the accuracy (A) is estimated with the adjusted
R-squared/ F1-score. For the re-identification attack (RIA)
technically any distance metric can be used. In this paper the
HMJD is used for the same. Similarly, β value also can be
chosen empirically, however we used a significance level of

95% to get the cut-off β = χ2(0.95, p) from the chi-squared
table, with p as the number of features. Finally, for the mem-
bership inference attack (MIA), the R1 and R2 split is done
randomly in a 80:20 proportion. More details can be found in
the supplementary materials.

4.6 Privacy vs Utility Regression Analysis:
In the final section of the main manuscript we present a re-
gression analysis. Here we fit the privacy values (average
privacy against three types of attacks) as the predictor (i.e.
X) and the ML utility values as the target (y). We have 4
data-points for the first 4 datasets as shown in table 1 (main
paper). Next, we fit a simple regression line between these
points first for DP-CTGAN and then for DbP-CTGAN. The
resultsa re provided in figure 47.

The plot (and all the results in main paper) are based on 5
independent runs and the privacy/ utility values reported are
all average of these 5 runs. From the figure we see negative
slopes for both regression lines (DP and DbP). This indicates
the decreasing utility with increasing privacy. Finally, we also
observe that the slope (absolute value of the co-efficient) for
the DP regression line is much higher than DbP. This further
indicates to a more drastic dilution of utility with privacy for
DP mechanism.

5 Implementation Details
Few other details that could not be provided in the main
manuscript for the constraint of space are listed here,

• Start with more synthetic samples than required: As
we iteratively discard risky samples with DbP therefore
we should start with more synthetic samples. Please
note, generating synthetic samples is a very low expense
process for all of the aforementioned generators (once
they are trained). After a thorough experiments we have
concluded that, if we need to generate n number of ‘pri-
vate’ samples, we should start with at least 5 ∗n number
of synthetic samples to be on the safer side. If we end
up with more than n records after the DbP process, we
can always sample the required number of records from
that.

• Choice of Distance Metric: We have utilized the HMJD
in the main manuscript as the datasets are often mixed
type. However, one can stick to a Minkowski or Ma-
hanalobish distance if they had only numerical columns
in the dataset. We even observed decent results with
Minkowski distance (after integer encoding the categor-
ical columns)

• The privacy threshold : θ is chosen from a chi-squared
table in the main manuscript. However, the same can
be done by an expert user as well depending on the re-
quirement for privacy. A higher threshold value genrally
results in removal of more samples therefore more pri-
vacy but lower utility.

• Re-identification Inference Attack : The main idea be-
hind RIA is as follows: if an adversary has access to
the the synthetic data-set (publicly open), can they re-
identify an original record using distance based similar-
ity? To simulate this attack, each of the synthetic record



Figure 41: Correlation heatmap comparison for HEART dataset with GC + DbP

Figure 42: Univariate comparison for a randomly picked feature for
HEART dataset with GC + DbP Figure 43: tSNE comparison for HEART dataset with GC +DbP



Figure 44: Correlation heatmap comparison for ADULT dataset with GC + DbP

Figure 45: Univariate comparison for a randomly picked feature for
ADULT dataset with GC + DbP Figure 46: tSNE comparison for ADULT dataset with GC +DbP



Figure 47: Privacy vs Utility Analysis (Regression Lines)

is picked and its closest match in the original record is
found, using a distance based mechanism (any type of
suitable distance metric can be utilized here [Yoon et
al., 2020]). If the corresponding distance is found to
be lower than the specified cut-off then it is concluded
that the adversary has successfully re-identified the real
record. The privacy against RIA i.e. PR is quantified
using the proportion of the data-set for which the attack
is not successful i.e. proportion of ‘non-risky’ samples
in the data-set,

PR = (1− |{yj ∈ S|Dj ≤ β}|
|S|

) ∗ 100% (1)

where |.| denotes the number of samples, Dj is the dis-
tance between jth synthetic sample and its closest origi-
nal match, and β is the cut-off that determines the power
of the attack.
Example: A PR value of 90% means, 90% of the sam-
ples are not vulnerable to RIA. A high PR is desired.
In RIA we measure a how easy it is for the adversary to
re-identify an original sample from a private synthetic
sample using distance based matching. The attack is
simulated by comparing the minimum HMJD for each
private sample to find the closest original match. If the
match is found to be smaller than a certain threshold β
we conclude that the adversary has been successful in his
RIA. We perform this for all the synthetic samples and
find out the proportion of samples in the private dataset
that was re-identified. This proportion is reported as the

measurement of privacy against RIA. The β value is cho-
sen from a chi-squared table with a significance level of
95%. This basically means, that if we have 95% confi-
dence in the RIA-privacy estimation.

• Attribute Inference Attack : Here, an adversary tries to
reveal a particular sensitive field for a real record [Kunar
et al., 2021],[Mendelevitch and Lesh, 2021]. This attack
is modified based on the hypothesis of differential pri-
vacy. According to DP, the inclusion of a single record
to the synthetic data-pool should not change the over-
all attack accuracy significantly. To simulate this attack,
random original samples are attached with the synthetic
data one at a time, to track the average change e in AIA
accuracy. The privacy against AIA is denoted with PA,

PA = (1− e)∗100% = (1−|AS − ĀSR|)∗100% (2)

where AS is the accuracy of the attribute attack when the
adversary has access to only the synthetic data S. ĀSR

on the other hand, denotes the average attack accuracy
when each of the real sample is added to S one by one
e.g. ĀSR =

∑
(ASr)
|R| for each r ∈ R.

Example: A PA value of 90% means, while revealing an
attribute the probability of making error by the adversary
is 90% (accuracy is 10%). A high PA is desired.
The AIA attack is further summarized with the help of
schematic diagram in figure 48. The diagram shows
how to compute the difference in the AIA attack accu-
racy i.e. e for a synthetic and a private (DbP) dataset.
The privacy metric is computed in a percentage from i.e.



PA = (1 − e) ∗ 100%. From the diagram we observe
that with private data the e value is much lower than the
synthetic data as expected.

• Membership Inference Attack : T With MIA, an
adversary tries to infer if a synthetic sample can be
matched to an original sample that belongs to the train-
ing data-set that was used to create the synthetic data-set
in the first place [Mendelevitch and Lesh, 2021] i.e. if
its membership can be inferred. This can have signifi-
cant impact. For example: If an adversary is aware that
the synthetic data-set S is cancer related and is also able
to find out that a synthetic sample can be matched to the
training set R1, then they can confidently infer that the
victim has cancer.
To simulate this attack, first the real data R is divided
into two parts randomly, R1: which is used to create the
synthetic data and R2 which is kept aside. Next, each
synthetic record is tested against all of the records to find
‘risky’ samples (very similar to the original) in R. Four
cases arise,

– True Positive (TP): When adversary finds a
‘risky’ sample that is part of R1.

– False Positive (FP): When adversary finds a ‘risky’
sample that is part of R2.

– True Negative (TN): When adversary finds a ’non-
risky’ sample that is part of R2.

– False Negative (FN): When adversary finds a ‘non-
risky’ sample that is part of R1.

Using the information above a confusion matrix can be
built. The F1-score (Harmonic mean of Precision and
Recall) is used to measure the attack accuracy of the ad-
versary. Privacy against membership attack i.e. PM is,

PM = (1−F1)∗100% = (1− TP

TP + 0.5(FP + FN
)∗100%

(3)
Example: A PM value of 90% means, while trying to
infer the membership the adversary is only 10% accurate
(i.e. 90% error probability). A high PM is desired.
he MIA attack is also summarized with the help of the
schematic diagram in figure 49 (taken from [Mendele-
vitch and Lesh, 2021]). The diagram here demonstrates
how to compute the membership of a synthetic sample
and the privacy is computed in percentage with PM =
(1 − F1 − score) ∗ 100%. Please note we can divide
R into R1 and R2 in any proportion we many want. We
did a 80:20 random split in order to make the split im-
balanced so that the attack simulation is more powerful.

• Privacy Budget for DP-CTGAN : In general, DP based
methods in literature rely on the privacy budgets for the
guarantee of privacy. A low value of ϵ indicates to a
stricter privacy guarantee and vice versa. In our exper-
iment, when we built our own DP-CTGAN we utilized
a ϵ = 0.35 for a very strong guarantee of privacy. The
same is reflected in table 1 of main manuscript as we
see it consistently outperforming the DbP in terms of

the privacy attacks. However, at the same time, DbP
showed much better utility. We have experimented with
different privacy budgets (i.e. 0.35, 0.5, 1) however for
each of those cases DP-CTGAN showed sub-par privacy
against the attack simulations (although utility is better
retained than ϵ = 0.35). Therefore for our experiments
we stuck to ϵ = 0.35 for a fair comparison on privacy.

• Noise-Level (pseudo) Approximation in DbP: In DP
we have a privacy budget (ϵ) that we can use to control
the amount of noise injected into the system. Gener-
ally lower ϵ corresponds to more noise and therefore a
stricter guarantee of privacy. In DbP however, we do
not add any noise so we do not have a privacy budget.
Therefore, for a meaningful comparison with the SOTA
(in table 2) we required an analogous of this privacy bud-
get for the proposed mechanism.
To achieve this, first we project the datasets (original
and DbP) into a continuous only feature space (as the
raw data is mixed-type, it is harder to estimate noise,
henceforth we do this projection). We have used a Eigen
value decomposition based PCA approach to achieve
this transformation. Next, we look at the distribution dif-
ference in an univariate level between the original and
DbP first. The difference in standard-deviation can be
utilized to estimate the scale of the noise (assuming Nor-
mal as used in DP-auto-GAN) e.g.
var[PFi

] = var[OFi
] + var[NFi

]− 2cov[OFi
, NFi

]

var[PFi
] = var[OFi

] + var[NFi
]

σ[PFi
] =

√
var[OFi

] + var[NFi
]

where, σ[PFi
], σ[OFi

], σ[NFi
] represents the standard-

deviation of the private and original feature i and noise
on that feature. The covariance between the original and
the noise is 0 as they are independent. Given, standard-
deviation of a Normal noise is σ we can compute the
scale parameter. Finally, privacy budget ϵi can be ap-
proximated by ∆Fi/σ where ∆Fi is the L1-sensitivity
of the feature (estimated with the ratio of the variance
between the private and original feature). A median
value is taken for all the ϵi over all the features to ob-
tain the final proxy value of the privacy budget ϵ in our
DbP mechanism.

• Benchmarking : In table 2 (in main paper) we bench-
mark DbP’s utility against different SOTA models for
three different privacy budgets on the ADULT dataset.
The results are quoted from literature. Generally we
see that the highest privacy for the SOTA models occur
with the low privacy budget of 0.36 and for that we see
the utility to be lowest (high JSD). To report the utility
scores (JSD/ MLU) for DbP and make a fair compari-
son, first we have approximated a proxy-ϵ based on the
assumption of pseudo-noise to match the ϵ values in lit-
erature. We observe that DbP retains better utility (low
JSD and high MLU) for each ϵ values.

6 Conclusions
In this supplementary document first we detailed the gener-
ative models, their architecture and hyperparameter set-ups.



Figure 48: Schematic diagram for AIA

Next, we went over the datasets and their characteristics and
sources. We also performed a detailed run-time analysis to
showcase the speeds of the various generative models. Fi-
nally, we provided all the qualitative analysis to showcase
the utility retained with the proposed DbP mechanism with
different generators on different dataset. We added some im-
plementation details as well. This supporting document is
produced to provide empirical evidence in support of two
statements we make in the main paper, (1). that the proposed
mechanism is agnostic of the generative model and (2). that
DbP can retain higher utility whilst providing strong privacy
as DP.
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Figure 49: Schematic diagram for MIA
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