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A PROOF OF THEOREM 1

This proof is inspired by the results in Refs.(Chen & Cao, 2009; 2015). From the property (3) in
Proposition 1 and Eq.(19) in the main text, we obtain that
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Here, we have used the triangle inequality of |x + y| ≤ |x| + |y| to get the inequality (1). The in-
equality (2) is followed from the inequality of Φ(x) > 0 in Proposition 1 and the triangle inequality,
where ‖f‖∞ is the uniform norm of f on R.

In what follows, we estimate41 and42. For any α ∈ (0, 1], from Eq.(3) we have
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Here, we have used Eq.(17) and the triangle inequality to get the inequality (4). We have used
property (3) in the last step.
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Consider the property (5) in Proposition 1 and the fact that Φ(x) is strictly decreasing for any x > T0
given by the property (4) Proposition 1. It follows that∑
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Since −n ≤ nx ≤ n, |k| ≥ n+ 1 and |nx− k| ≥ 1, we get that
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where we have used the properties (4) and (5) in Proposition 1 for the inequality (7). From
Eqs.(6),(8) and (3), we get
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This has completed the proof.

B THE PROOF OF THEOREM 2

The proof is similar to its of Theorem 1. From the property (3) in Proposition 1 and Eq.(20) we have∣∣f(x)−G(f, x)
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where we have used the triangle inequality for the inequality (9). The proof is completed.
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