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A PROOF OF THEOREM 1

This proof is inspired by the results in Refs.(Chen & Cao, 2009} 2015). From the property (3) in
Proposition 1 and Eq.(19) in the main text, we obtain that
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Here, we have used the triangle inequality of |z + y| < |z| + |y to get the inequality (I). The in-
equality (2)) is followed from the inequality of ®(x) > 0 in Proposition 1 and the triangle inequality,
where || f]| oo is the uniform norm of f on R.

In what follows, we estimate Ay and As. For any « € (0, 1], from Eq. we have
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Here, we have used Eq.(17) and the triangle inequality to get the inequality (). We have used
property (3) in the last step.
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Consider the property (5) in Proposition 1 and the fact that ®(x) is strictly decreasing for any x > T}
given by the property (4) Proposition 1. It follows that
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Since —n < nz < n, |[k| > n+ 1 and |nz — k| > 1, we get that
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where we have used the properties (4) and (5) in Proposition 1 for the inequality (7). From

Eqgs.(6).(8) and (@), we get
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This has completed the proof.
B THE PROOF OF THEOREM 2

The proof is similar to its of Theorem 1. From the property (3) in Proposition 1 and Eq.(20) we have
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where we have used the triangle 1nequality for the inequality (9). The proof is completed.
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