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ABSTRACT

In many reinforcement learning (RL) applications one cannot easily let the agent
act in the world; this is true for autonomous vehicles, healthcare applications, and
even some recommender systems, to name a few examples. Offline RL provides
a way to train agents without exploration, but is often faced with biases due
to data distribution shifts, limited exploration, and incomplete representation of
the environment. To address these issues, practical applications have tried to
combine simulators with grounded offline data, using so-called hybrid methods.
However, constructing a reliable simulator is in itself often challenging due to
intricate system complexities as well as missing or incomplete information. In
this work, we outline four principal challenges for combining offline data with
imperfect simulators in RL: simulator modeling error, partial observability, state
and action discrepancies, and hidden confounding. To help drive the RL community
to pursue these problems, we construct “Benchmarks for Mechanistic Offline
Reinforcement Learning" (B4MRL), which provide dataset-simulator benchmarks
for the aforementioned challenges. Finally, we propose a new approach to combine
an imperfect simulator with biased data and demonstrate its efficiency. Our results
suggest the key necessity of such benchmarks for future research.

1 INTRODUCTION

Reinforcement learning (RL) is a learning paradigm in which an agent explores an environment in
order to maximize a reward Sutton and Barto (2018). However, in many applications exploration can
be costly, risky, slow, or impossible due to legal or ethical constraints. These challenges are evident
in fields such as healthcare, autonomous driving, and recommender systems.

To overcome these obstacles, two principal methodologies have emerged: using offline data, and
incorporating simulators of real-world dynamics. Both approaches have distinct advantages and
drawbacks. While offline data is sampled from real-world dynamics and often represents expert
policies and preferences, it is limited by exploration and finite data Levine et al. (2020); Fu et al.
(2020); Jin et al. (2021). Furthermore, offline data often suffers from confounding bias, which occurs
when the agent whose actions are reflected in the offline dataset acted based on information not fully
present in the available data: For example, a human driver acting based on eye-contact with another
driver, or a clinician acting based on an unrecorded visual inspection of the patient. Confounding can
severely mislead the learning agent Zhang and Bareinboim (2016); Gottesman et al. (2019); De Haan
et al. (2019); Wang et al. (2021), as we demonstrate in our paper. We refer to these sources of error
as offline2real.

In contrast to learning from offline data, simulators allow nearly unlimited exploration, and have been
the bedrock of several recent triumphs of RL (Mnih et al., 2013; Vinyals et al., 2019; Wang et al.,
2023). However, utilizing simulators brings its own set of challenges, most notably – modeling error.
This error often arises due to the complexity of real-world dynamics and the inevitability of missing or
incomplete information. Although simplified simulators are widely used, any discrepancies between
their dynamics and real-world dynamics can lead to unreliable predictions. These so-called sim2real
gaps may range from misspecifications in the transition and action models to biases in the observation
functions (Abbeel et al., 2006; Serban et al., 2020; Kaspar et al., 2020; Ramakrishnan et al., 2020;
Arndt et al., 2020).
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Figure 1: An illustration of the discrepancies and biases arising when training RL agents. Modeling error refers
to the discrepancy between the real world dynamics and the simulator, e.g. transition error. Confounding error
refers to bias due to the dataset not including factors affecting the behavioral policy. Other challenges include
limited exploration, partial observability and state and action discrepancies, as detailed in Section 2

In recent years, there has been a growing recognition of the complementary strengths and limitations
of offline data and simulation-based approaches in RL (Nair et al., 2020; Song et al., 2022; Niu
et al., 2022; 2023). Recent work has merged these two approaches to leverage their respective
advantages and mitigate their drawbacks; namely, offline data, which provides real-world expertise
and preferences, with simulators which offer extensive exploration capabilities. These hybrid methods
hold promise for addressing the challenges posed by costly or limited exploration in various domains.

In this work, we present and study four key challenges for merging simulation and offline data in
RL: modeling error, partial observability, state and action discrepancies, and confounding error. We
propose the first set of benchmarks to systematically explore hybrid RL approaches, which we term
“Benchmarks for Mechanistic Offline Reinforcement Learning” (B4MRL). Each benchmark is driven
by differences in the properties of simulation and offline data. We demonstrate how contemporary
offline RL approaches can fail on these benchmarks, as well as failure modes for hybrid approaches,
suggesting the key necessity of such benchmarks for future research. We further propose a baseline
of our own, which learns and corrects for discrepancies between offline data and simulation, showing
significant performance increase on some of our benchmarks. We hope the benchmarks will drive
the RL community towards a better understanding of the challenges of using both offline data and
imperfect simulators, helping the community build better, safer and more reliable models.

2 CHALLENGES OF COMBINING OFFLINE DATA WITH SIMULATORS

In this section, we outline some key challenges in merging simulation and offline data, which we
partition into four somewhat overlapping categories: modeling error, partial observability and state
discrepancies, action discrepancies, and confounding bias. Each of these challenges stems from
differences and gaps between the true dynamics and either the simulator or the available offline
data. Modeling error is due to the impossibility of exactly modeling real-world dynamics. Partial
observability and state discrepancy deal with both the limitation of the simulator in encapsulating the
entire observation space, and the limitations of recording information in real-world systems. Action
discrepancy results from different levels of abstracting actions in simulators versus real-world data.
Lastly, confounding bias, which is a special and important case of partial observability in offline data,
addresses the specific problem of hidden factors influencing both the observed decisions and outcomes
in the process that generated the offline data. Understanding and addressing these challenges is
crucial for designing robust RL agents capable of transferring their learning from simulations to
the real world (Sim2Real) and from offline data to the real world (Offline2Real). Finally, we note
that offline data is inherently prone to errors due to limited exploration; as this has been shown by
previous work (Levine et al., 2020; Fu et al., 2020; Jin et al., 2021), we do not focus on it in our
analysis of benchmark results below. A general illustration of these challenges is depicted in Figure 1.
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2.1 MODELING ERROR (SIM2REAL)

Simulators, as computational representations of real-world systems, inherently contain modeling
errors. These errors arise from simplifications and assumptions made during the simulator’s design
and construction to render the simulation manageable and computationally tractable, a process which
often introduces systemic differences or biases between the simulator’s dynamics and the real-world
system. For example, a weather simulation may be biased due to an imperfect understanding of
atmospheric dynamics, and a diabetes simulation might not accurately simulate the complexities of the
body’s reaction to exercise. Consequently, these biases can influence the decisions and actions taken
by a reinforcement learning agent trained on such simulators, leading to suboptimal performance
when transferred to the real world.

2.2 PARTIAL OBSERVABILITY AND STATE DISCREPANCY (SIM2REAL, OFFLINE2REAL)

Simulators are often designed to abstract and simplify real-world complexities, selectively modeling
aspects of a problem that are most relevant to the intended application. This selective modeling
inadvertently creates blind spots, as parts of the real-world observation space are omitted or over-
simplified. For example, consider an autonomous driving simulator. It might accurately model the
dynamics of vehicles and pedestrian movement, crucial aspects for safe navigation. However, to keep
the simulator manageable and tractable, it may exclude details such as subtleties of human behavior,
including facial expressions or gestures that could signal an intent to cross the road. Despite these
omissions, the simulator remains a valuable tool for training autonomous driving systems. However,
its partial state description can lead to biases in the learned policy, which might be suboptimal or
even erroneous in the real world.

State discrepancy is not limited to partial observability, and could also take place when the states are
represented in a different way between the simulator and the real world. For example, the autonomous
vehicle simulator’s state holds the angle and velocity of the vehicle, but the real world environment
states are the output of the vehicle’s sensors, like a video camera, a LiDAR sensor etc.

Similarly, in Offline2Real scenarios, the data collected from real-world environments might suffer
from partial observability. This could be due to constraints in the data collection process or limitations
in sensor technology. For instance, in healthcare settings, electronic health records might not
capture all relevant information about a patient’s lifestyle, mental state, or genetic factors, which can
significantly influence health outcomes. Partial observability in offline data may or may not lead to
confounding bias, as we discuss later in Section 2.4.

2.3 ACTION DISCREPANCY (SIM2REAL)

One of the substantial challenges in merging simulation and offline data lies in inconsistencies
between action definitions in simulation environments and offline data. Every action taken by an
agent in the real environment can be nuanced and multifaceted. Simulators, on the other hand, have
to abstract these complexities into a more manageable and computationally feasible representation.
As a result, there can be a disconnect in how actions are represented in these two different systems.

For example, in an autonomous driving system, the action might be discrete and only choose between
moving a lane to the left, a lane to the right or stay at the current lane. However, in real-world data,
the actions might also include more specific information like the exact amount of torque change, and
the steering angle.

Furthermore, real-world time delays in action execution might not be mirrored in simulators, adding
another layer of complexity. For instance, in a real-world driving scenario, there is a brief delay
between when a driver decides to apply the brakes and when the car actually begins to slow down
due to the physical process involved. However, a simulator might implement the braking action
instantaneously, leading to discrepancies when combining simulation and offline data.

2.4 CONFOUNDING BIAS (OFFLINE2REAL)

The presence of unobserved (hidden) confounding variables poses a significant challenge when
using observational data for decision-making. Hidden confounding occurs when in the process that
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Figure 2: Both figures represent the causal graph of a POMDP. While in both cases the state s is not observed,
only in figure (a) s acts as confounder, as actions in the data were taken w.r.t. the unobserved s.

generated the offline data, unobserved factors exerted influence on both the outcome and the decisions
made by the agent. This can lead to unbounded bias, a result which is well known from the causal
inference literature Pearl (2009); Zhang and Bareinboim (2016); Tennenholtz et al. (2020; 2022);
Uehara et al. (2022); Hong et al. (2023). This issue becomes particularly pertinent in sequential
decision-making scenarios and can substantially impact the performance of learned policies. Hidden
confounding is prevalent in diverse real-world applications, including autonomous driving, where
unobserved factors like road conditions affect the behavior of the human driver, and healthcare, where
for example unrecorded patient information or patient preferences may influence the decisions made
by physicians as well as patient outcome. A plot depicting hidden confounders in POMDPs is shown
in Figure 2.

Effectively addressing hidden confounding in offline RL is paramount to ensure the reliability and
effectiveness of learned policies. Research has attempted to develop methodologies to account for
confounding bias, including: the identification of hidden confounders (Angrist et al., 1996; Jaber
et al., 2018; Lee and Bareinboim, 2021; von Kügelgen et al., 2023), using interventions or additional
data sources (Kallus et al., 2018; Zhang and Bareinboim, 2019; Tennenholtz et al., 2021; Lee et al.,
2020), and the quantification and integration of uncertainty arising from confounding into the learning
process (Pace et al., 2023). There is a crucial need for benchmarks and datasets specifically designed
to address this issue, enabling researchers to compare and evaluate different methods for handling
confounding bias in offline RL. We emphasize that hidden confounding and partial observability are
distinct concepts. While they intersect in some cases, it is crucial to recognize their differences to
effectively address their challenges, as we demonstrate in the following example.

To demonstrate the impact of hidden confounding bias in offline RL, consider the following single-
state decision problem with two actions {a0, a1}. We let z ∈ {0, 1} such that P (z = 0) = 1

3 , and
P (z = 1) = 2

3 . Additionally, let the reward r ∈ {0, 1}, such that P (r = 1|z = 1, a = a1) =
1
2 ,

P (r = 1|z = 1, a = a0) =
1
3 , P (r = 1|z = 0, a = a1) =

1
4 and P (r = 1|z = 1, a = a0) =

1
6 .

Note that action a1 dominates, and with or without access to z at decision time the optimal action is
given by a∗ = a1 = argmaxa Ez∼P (z)P (r = 1|z, a).

Next, let πb(a|z) be some behavioral policy (with access to z), which deterministically se-
lects action a1 when z = 0 or selects action a0 when z = 1. We ask, can data
generated by πb be used to learn a good policy if z is not provided in the data? That
is, can we learn a policy which maximizes Ez∼P (z)[P (r = 1|a, z)]? Unfortunately, z acts
as a hidden confounder, which significantly biases our results, even in the limit of in-
finite data. Indeed, our data is sampled from Pπb(r, a) = Ez∼P (z)[P (r|a, z)πb(a|z)],
and thus Pπb(r = 1|a = a0) =

Ez∼P (z)[P (r=1|a0,z)πb(a0|z)]
Ez∼P (z)[πb(a0|z)] = P (r = 1|a0, z = 1) = 1

3 . Similarly,

Pπb(r = 1|a = a1) = P (r = 1|a1, z = 0) = 1
4 . Therefore, even in the limit of infinite data, the

standard empirical estimator π̂ ∈ argmaxa P
πb(r = 1|a) would yield a suboptimal result of se-

lecting action a0. Notice that this error is due to the dependence of both a and r on the hidden
confounder z, and not only by the fact that it is unobserved. Moreover, this bias cannot be mitigated
with increasing the number of samples, unlike the statistical uncertainty induced by finite data.
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In the next section, we shift our focus to developing benchmarks that serve as a rigorous testing ground
for RL algorithms. These benchmarks were designed to illuminate the aforementioned challenges,
helping researchers devise strategies to mitigate them, thereby promoting the advancement of robust,
reliable, and high-performing RL systems that effectively utilize both offline data and simulations.

3 BENCHMARKS FOR MECHANISTIC OFFLINE REINFORCEMENT LEARNING
(B4MRL)

In this section, we outline the “Benchmarks for Mechanistic Offline Reinforcement Learning”
(B4MRL), designed for evaluation of RL methods using both offline data and simulators, which we re-
fer to as hybrid algorithms. The proposed datasets and simulators encompass a range of discrepancies
between the true dynamics, the simulator, and the observed data.

Given the four principal challenges delineated in Section 2 – namely, modeling error, partial observ-
ability, discrepancies in states and actions, and confounding bias – we created a benchmark rooted
in the MuJoCo robotic environment (Todorov et al., 2012), and the Highway environment (Leurent,
2018). The MuJoCo tasks are popular benchmarks used to compare both offline RL and online RL
algorithms, including multiple environments: HalfCheetah, Hopper, Humanoid, Walker2D. These
environments provide the agent observations of various variables of the controlled robot, such as the
angle and angular-velocity of the robot joints, and the position and velocity of the different robotic
parts (e.g., an observation in HalfCheetah consists of 17 variables). The acting agent can perform
actions at a given time by applying different torques to each joint (e.g. in HalfCheetah there are 6
joints, hence an action consists of 6 continuous variables). The reward function differs between the
different tasks, and relies mainly on the speed and balance of the robot. The Highway environment
simulates the behavior of a vehicle that aims to maintain high speed while avoiding collisions. This
environment provides the agent observations that include the current position and velocity of the
controlled vehicle and the other vehicles on the road, and lets the agent control the throttle and
steering angle of the controlled vehicle.

In recent years several MuJoCO-based offline-RL benchmarks and datasets emerged, offering different
characteristics and challenges. The most common one, and the one we build upon in this paper,
is the Datasets for Deep Data-Driven Reinforcement Learning benchmark, or D4RL (Fu et al.,
2020). These datasets are categorized by scores achieved by an underlying data-generating-agent,
ranging from completely random agents, to “medium” level agents, through expert agents, and
further provide datasets with heterogeneous policy mixtures (e.g., medium-expert). We note that
by construction, these datasets do not suffer from hidden confounding. Our work builds upon and
expands these datasets by implementing imperfect simulators and the other challenges outlined in
Section 2. While the aim of this paper is to provide benchmarks for hybrid-RL algorithms, we stress
that the benchmarks we provide in some of the challenges could also be used to test offline-RL and
online-RL algorithms. We constructed these benchmarks such that researchers can easily create new
benchmarks for evaluating the various challenges. We refer the reader to Appendix A for exhaustive
details.

Challenge 1: Modeling Error. We induce modeling error by introducing changes in simulator dy-
namics which directly influence the transition function over time. Small errors in transition dynamics
could aggregate to produce completely wrong state predictions over long horizons. Specifically, in
this benchmark we propose changing one of the environment parameters that has an effect on the
simulator’s dynamics. For example, in the HalfCheetah environment, we propose two benchmarks:
changing the gravitation parameter to gsim = 19.6 instead of 9.81, and changing the friction parameter
by multiplying it by a factor of 0.3.

Challenge 2: Partial Observability and State Discrepancy. We induce this challenge in two
ways: (1) some of the variables in the full state are hidden from the online algorithm, and (2) the
observations available to the online algorithm are a noisy version of the true environment states, being
observed with added Gaussian noise. For (1) we provide two benchmarks for removing a variable
from the observations, with two levels of effect on the simulator: low effect (named hlow), and high
effect (named hhigh). We chose two specific features after benchmarking the Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) algorithm against all features (i.e., removing each possible single feature).
We demonstrate the different effect of removing variables from the observation of the simulator
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on HalfCheetah in Figure 4. For (2), we used two noise levels: noise with low variance σlow and
noise with high variance σhigh. Combining these options with available offline datasets yields 16
benchmarks: four simulator discrepancy times four D4RL datasets (random, medium, medium-replay,
and medium-expert).

In addition to benchmarks with partial observability in the simulator, we add a complementary
benchmark with partial observability in the dataset. This is achieved by creating a new dataset with a
data generating agent that trains and collects data on partially observed states of the environment.
To form this benchmark we created two new datasets, with a different missing variable in each.
Specifically, we removed the same variables hlow and hhigh, as described above. For the hybrid-RL
algorithms we combine the new datasets with a simulator that suffers from transition error, resulting
in a total of two benchmarks. Importantly, while these datasets suffer from partial observability, they
do not suffer from hidden confounding, as the data-generating agent decides on its next action based
on the same observation that is registered in the data; see Figure 2b.

Challenge 3: Action Discrepancy. The third challenge centers around the issue of discrepancies
between actions. To allow evaluation of the impact of action errors we altered how actions taken by
the agent in the simulator state dictate the transition to the next state. To that end, we suggest two
different scenarios: noisy actions, and delayed actions.

For noisy actions, we integrate Gaussian noise into the action implemented by the agent to the
simulator’s present state, whereas the dataset’s actions remain without noise, creating a discrepancy
between the simulator and the data in the effect of actions on the state. We benchmark the models on
two noise levels: noise with low variance σlow, and noise with high variance σhigh. As before, the
choice of values was done based on the results of the SAC algorithm on the noisy simulator. The
benchmark includes the combination of the 4 D4RL datasets and a simulator with action discrepancy
(low noise, high noise) resulting in 8 different datasets.

For delayed actions, we add a delay between the time an action occured, and when it affects the
state of the environment. To model action delay, we add a queue to the environment, and at each
step, a new action is inserted to the queue. Each action has a random timer of when it can be taken,
and for each benchmark we set the random timer to have a different mean µ. We propose three
benchmarks with different levels of delay: µ = 1, 2 and 3. The variance of the action is set to 1, and
the sampled delay is rounded to the closest integer (we do not let the action’s timer drop below zero).
The simulator in this case has no knowledge of the inherent delay, and always simulates the action
delay as zero. Note that unlike the other benchmarks, here the ground-truth environment that is used
for evaluation is the environment with action delay.

Challenge 4: Confounding Bias. For this challenge, we assume we do not have complete access
to the state that the data generating agent utilized when determining its actions. This is a special and
important case of partial observability which occurs in offline data and can induce bias due to the
behavior policy’s dependence on the unobserved factors, see Section 2.4.

For this benchmark we build on the D4RL datasets as follows: We either add Gaussian noise to the
observations in the data, or we omit a dimension recorded in the dataset observations. This is similar
to the partial observability challenge described above, but here information used by the agent during
the data generation process was removed from the dataset, and not from the simulator. Thus, the data
generating agent decided on action ai based on the full system state si, but we have access only to
a noisy or projected observation oi; see Figure 2a. This creates a dataset with hidden confounding,
where we do not have full information on why a specific action was chosen. Recall that, as mentioned
in Section 2.4, learning from data with such hidden confounders might in general incur arbitrary
levels of bias (Pearl, 2009; Zhang and Bareinboim, 2016; Tennenholtz et al., 2020; 2022; Uehara
et al., 2022; Hong et al., 2023). We used the same settings as the the observation-error benchmark:
low and high Gaussian noise on the observations in the data (σlow and σhigh), and missing dimensions
(hlow and hhigh) from the observations in the data, resulting in 16 benchmarks.

Finally, we provide an additional benchmark for confounded datasets by creating a new dataset
where the data-generating-agent observes and selects actions based on a history of three observations,
instead of the last one. This scenario is similar to the dataset proposed in the partial observability
challenge, but here the data-generating agent has taken its decisions based on a history of observations,
and not the last observation alone. Hiding the fact that the dataset actions were history-aware can
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induce hidden confounding. For this benchmark we create the history-aware dataset with hidden
variables (hlow and hhigh), and use a simulator with transition error.

As explained above, the proposed set of benchmarks can be used to evaluate offline-RL algorithms
as well as hybrid-RL algorithms, as it poses the problem of confounded datasets that do not have a
standardized benchmark. For hybrid-RL algorithms, we use an imperfect simulator with transition
error (as described in challenge 1), along with the dataset benchmarks described in this challenge.

4 EXPERIMENTS

In this section we present empirical evaluations following the procedues described in Section 3 above.
We used online, offline, and hybrid RL methods to showcase challenges and limitations in current
RL approaches for hybrid tasks. Our chosen array of methods represents a cross-section of current
state-of-the-art RL approaches in both model-based and model-free paradigms, providing a broad
look at how diverse techniques perform in the face of our hybrid RL benchmarks.

4.1 BASELINES

To test online-RL algorithms on the proposed simulators we used TD3 (Fujimoto et al., 2018) and
SAC (Haarnoja et al., 2018). To test offline-RL algorithms, we used the model-based (MOPO (Yu
et al., 2020)), as well as a state of the art model-free approaches (TD3-BC (Fujimoto and Gu, 2021)
and IQL(Kostrikov et al., 2021)). Finally, to test hybrid-RL algorithms, we used two algorithms that
can leverage both a simulator and offline data: the H2O (Niu et al., 2022) algorithm and a novel
approach we term HyCORL. H2O adaptively pushes down or pulls up Q-values on simulated data
according to the dynamics gap evaluated against real data. In what follows, we breifly describe
HyCORL. We refer the reader to Appendix B for full details and implementation.

HyCORL. The Hybrid Correction for Offline Reinforcement Learning is model-based, dynamics-
aware, policy optimization algorithm. In this approach, we first train a correction function f that
learns to fix the discrepancy between observed data and the simulator’s outputs. This is achieved
by running each observation-action tuple (oi, ai) through the simulator, and collecting its out-
puts (i.e., the simulator’s computed next observations o′i,sim). Then, the correction function’s goal
is to learn an additive function that fixes the gap between the simulator’s next observation and
the next observation registered in the dataset. This is done by minimizing the following loss:
L(f) = 1

N

∑
i ∥o′i − (o′i,sim + f(oi, ai))∥, where N is the number of observations in the dataset. We

note that in the worst case, when the simulator is completely incorrect, the correcting function should
learn to output o′i,sim − o′, which would typically be as difficult as learning the transition function
directly from data (i.e., learning a model that outputs the next state given the current state and action)
as seen in other offline-RL algorithms such as MOPO.

To train the agent, we first initialize the state by randomly selecting one from the given dataset.
Then the transition function, which consists of a simulator and a correction function, is used to
determine the next observations up to a predetermined horizon. Finally, the reward is penalized by the
amount of uncertainty in the transition model evaluations. These last steps are similar to the MOPO
algorithm, with the difference that HyCORL can combine the given dataset with a given simulator.
See Appendix B for more details.

4.2 RESULTS

We demonstrate the performance of the different RL approaches on the challenges described in
Section 3. We benchmarked the challenges detailed above on the MuJoCo-HalfCheetah environment,
and present here the main highlights and insights that stem from these experiments. In the main
text we present results for challenges 1, 2 and 4. Full details and more results, including results for
challenge 3 and results on other environments, can be found in Appendix C. We report results as
mean and standard deviation of the normalized rewards (normalization scales the raw rewards to a
scale of 0 (random) to 100 (expert) as suggested in D4RL) accross three random seeds.

In Figure 3 we show how different RL approaches perform on the modeling error challenge. Both
Hybrid-RL algorithms, HyCORL and H2O demonstrate an interesting phenomenon. First, as expected,
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Figure 3: Results on HalfCheetah environment for modeling error and partial observability. In both figures,
the algorithms have access to the standard D4RL datasets, but use different types of imperfect simulators. For
modeling error (a) we introduced an error in the transition function by setting the gravitational parameter to
g = 19.6 instead of 9.81, and for partial observations (b) we added Gaussian noise (σ = 0.05) to the full state.

on the medium and medium-replay datasets both methods score better than SAC (online-RL), which
uses only the simulator, and TD3-BC (offline-RL) which uses only the datasets. However, when
using the simulator with observation error and the random dataset, we observed both hybrid-RL
algorithms scored worse than only using SAC on the simulator – unexpectedly, using the offline
dataset negatively impacted the hybrid approaches. We observed the same phenomenon in other cases
as well. For example, in the medium-expert dataset with a partially observable simulator, HyCORL
scored less than TD3-BC trained on the data alone, and H2O scored even worse, being inferior to
both SAC on the simulator alone and TD3-BC on the dataset alone.

In Figure 4, we demonstrate the effect of hidden confounders in the dataset. We compare two
different types of algorithms: an online-RL algorithm (SAC) on a partially observable simulator, and
an offline-RL algorithm (TD3-BC) on the medium-expert dataset with hidden confounders. In the
online case, the algorithm has access to the full state excluding a single dimension, and in the offline
case, we remove the exact same variable from the dataset, despite the fact that it was used by the agent
generating the dataset. Note that algorithms that do not use offline data cannot suffer from hidden
confounding, though they might suffer from partial observability. We trained both algorithms across
all possible variables, and compared the results. While one might expect the importance of a variable
v for performance in the online algorithm to be similar to its importance for the offline learning, we
demonstrate that some variables are more important in the offline case. For example, pos-root-z
(the z coordinate of the front tip), has significant effect in offline TD3-BC, whereas v-root-x (the
x coordinate velocity of the front tip) significantly affected online SAC. This suggests that variable
pos-root-z induces strong hidden confounding, significantly affecting the reward as well as the
choice of actions by the data-generating-agent.

In Table 1 we show performance of all methods on HalfCheetah with hidden confounding error. For
the offline datasets we used D4RL and applied confounding error. To achieve this we removed two
variables from the dataset, even though the data-generating policy was dependent on them. For low
confounding, hlow corresponds to a variable of low confounding error (ω-front-foot) and hhigh
corresponds to high confounding error (v-root-z).

For the online simulator we used a simulator with transition error in the gravitational parameter
(g = 19.6 instead of 9.81). Under low confounding, HyCORL scored best across all options except
the random dataset, where the simulator alone performed slightly better. Under high-confounding,
both hybrid models and MOPO suffered severely. Interestingly, on the medium-expert dataset, which
is twice as big as the medium dataset and has access to optimal trajectories, these algorithms’ scores
diminish, emphasizing the negative effects of hidden confounders in the data even on hybrid methods.

Overall, while the expectation is for hybrid reinforcement learning (RL) algorithms to perform at
least as well as the best between online and offline approaches, our results reveal that in several cases
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Figure 4: Results of offline (TD3-BC) and online (SAC) algorithms on the HalfCheetah environment with a
single missing variable. TD3-BC runs on the medium-expert dataset. For each label on the x-axis, SAC trained
on partially observed simulator that lacks that variable, and TD3-BC trained on a dataset that did not have any
information about that variable, despite it being used by the agent which generated the dataset.

Table 1: Normalized reward on HalfCheetah environment, on four types of datasets, all with confounding errors.
Online and Hybrid models also have access to a simulator with transition error in the gravitational parameter.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Conf. TD3 SAC MOPO TD3-BC IQL H2O HyCORL

Random hlow 35.3 ± 1.9 35.1 ± 2.4 37.4 ± 1.0 11.7 ± 0.6 12.4 ± 3.0 34.2 ± 1.1 31.5 ± 3.3
hhigh 26.2 ± 3.3 9.0 ± 0.9 6.6 ± 3.0 31.0 ± 2.1 30.1 ± 0.4

Medium hlow 35.3 ± 1.9 35.1 ± 2.4 60.6 ± 7.1 48.2 ± 0.2 48.4 ± 0.2 54.3 ± 2.5 75.2 ± 2.6
hhigh 29.4 ± 4.1 46.1 ± 0.5 46.5 ± 0.1 34.5 ± 3.4 35.2 ± 1.7

Medium replay hlow 35.3 ± 1.9 35.1 ± 2.4 58.7 ± 8.0 44.6 ± 0.3 43.8 ± 1.1 49.9 ± 4.9 66.5 ± 0.8
hhigh 32.9 ± 1.1 41.6 ± 1.9 42.5 ± 0.0 22.7 ± 7.5 37.1 ± 1.4

Medium expert hlow 35.3 ± 1.9 35.1 ± 2.4 52.7 ± 4.4 91.4 ± 2.0 90.7 ± 3.0 34.3 ± 7.7 99.3 ± 0.8
hhigh 2.9 ± 0.8 74.3 ± 4.1 64.0 ± 3.4 18.7 ± 4.7 27.0 ± 2.0

this is far from reality. Moreover, we identify hidden confounding as a significant issue, markedly
influencing performance of offline methods.

5 CONCLUSIONS AND FUTURE WORK

In this paper we provide some insights into the challenges encountered when combining offline data
with imperfect simulators in RL. Our newly introduced B4MRL benchmarks facilitate the evaluation
and understanding of such complexities, highlighting four main challenges: simulator modeling error,
partial observability, state and action discrepancies, and confounding bias.

Our introduced hybrid algorithm, HyCORL, has proven beneficial. However, our results reveal that
current hybrid methods combining simulators and offline datasets do not always lead to superior
performance, pointing to an important future research direction. In addition, hidden confounders
in the dataset can significantly affect the performance of all tested methods, including hybrid ones.
In light of these results, we suggest future work to focus on developing more robust hybrid RL
algorithms that can better handle modeling errors and hidden confounders, and that perform as
least as well as either simulator based methods or offline learning. We believe the benchmarks and
challenges proposed in the paper can help the community make strides towards more reliable and
efficient RL models.
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A BENCHMARK IMPLEMENTATION DETAILS

In this section we provide further details regarding our benchmarks, and discuss how different
benchmarks could be customized using B4MRL. Each of our hybrid RL benchmarks consists of
two components: (1) an imperfect simulator with sim2real error, and (2) an offline dataset with a
offline2real error. Motivation, explanation and examples for these errors are discussed thoroughly in
Section 3.

We now provide a list of possible sim2real errors that can be used in any MuJoCo environment, a
list of offline2real that can be introduced to the D4RL MuJoCo datasets, and a list of new datasets
that have offline2real errors. For the offline2real errors, we chose the same parameters we used for
sim2real, in order to be able to compare. In addition we provide information regarding the Highway
environment, where the agent’s goal is to drive fast enough and avoid collisions on a multi-lane road.

Sim2Real. We chose the specific parameters for each type of error according to how well did SAC
perform on that simulation, aiming to provide two levels of errors per category. A list and details of
all sim2real errors (summarised in Table 2):

• Transition error (challenge 1 – modelling error): For MuJoCo environments, we create a
simulator with transition error by modifying the environment’s XML file provided by the
gym package. Additional simulators can be easily created by adding new modified XML
files to the relevant directory. For the Highway environment, the modelling error is the
difference between the amount of vehicles on the road during train and during test. This
difference could make the agent learn a more cautious policy in order to avoid collisions,
but when the road is free it might not achieve optimal reward.

• Observation noise (challenge 2 – partial observability): The environment’s dynamics
are unchanged, but we add Gaussian noise to the observation, and return only the noisy
observation to the user. We denote the two noise levels by their standard deviation σlow for
low added noise, and σhigh for high added noise.

• Hidden variables (challenge 2 – partial observability): The environment’s dynamics are
unchanged, but we fix a specific observation dimension to zero before returning it to the user.
The reason we zero the dimension and not remove it entirely is that we do not want to change
the observation-space definition of the environment. This should make implementing hybrid
algorithms easier, since using two sources of data (simulator and dataset) with different
dimensionality of variables might result in two different observation-spaces. We denote the
two choices of hidden dimension by hlow for low effect and hhigh for high effect.

• Action noise (challenge 3 – action discrepancy): When a user selects a specific action
and sends it to the simulator (e.g., via the step method), we modify the action by adding
Gaussian noise.

• Action delay (challenge 3 – action discrepancy): Similar to action noise, when a user
acts in the environment we modify the time an action can affect the environment. This
is implemented by a queue of actions. When a new action enters the queue, we sample a
timer of when it can affect the environment, with three mean options µ = 1, 2 and 3, and a
variance of 1. For each time step, we decrease the timer of each action in the queue by 1.
Note that actions can not overtake each other (e.g., when the first action has a high timer,
and the second action has a lower timer), and can only affect the environment by the order
they arrive.

Offline2Real. For each type of error, we used the same parameters as in the sim2real errors (as
summarised in Table 2). A list and details of all offline2real errors:

• Observation noise (challenge 4 – hidden confounders): We go over all the observations
in the D4RL dataset, and add Gaussian noise to each observation, and for each observation
dimension. That means that a value sampled from a zero mean unit variance Gaussian
distribution is added independently to each entry in the observation matrix. Note that we
sample the noise matrix once per dataset, and run all experiments on the same noisy dataset
(e.g., a different noise matrix is used for HalfCheetah-medium, for HalfCheetah-medium-
expert, and for every other dataset). To obtain different noise levels, we multiply the sampled
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Table 2: Sim2real errors on online simulatros. g is the gravitational parameter, f is the friction parameter, ‘leg’
is the leg length, vx, vy are the velocities, y is the position in the y axis. ‘cars’ signify the amount of cars on
the road for the highway environment, where in test time there were only only 3 cars on the road. The partial
observability row refers to variables that were hidden from the agent by the simulator.

Error type Amount HalfCheetah Hopper Walker2D Highway

Transition error - gsim = 2g gsim = 2g gsim = 2g #carssim = 15
fsim = 0.3f legsim = 0.8 fsim = 0.3f

Observation
noise

σlow 0.01 0.001 0.01 0.5
σhigh 0.05 0.02 0.03 1.0

Partial
observability

hlow #16 #9 #16 (vx, vy)
hhigh #9 #10 #9 (y, vx, vy)

Action noise σlow 0.2 0.5 0.2 0.5
σhigh 0.5 1.0 0.5 1.0

Table 3: SAC results on the different environments with the parameters described in Table 2. Results on
MuJoCo environemnts are normalized as in D4RL. Results on the Highway enviroment are not normalized
(range of the reward is approximately between 0 and 22).

Error type HalfCheetah Hopper Walker2D Highway

Transition error 65.9± 11.7 67.3± 35.1 50.6± 5.5
12.5± 5.7

35.1± 2.4 32.3± 11.5 70.6± 17.5

Observation
noise

80.0± 1.4 81.3± 23.2 81.8± 7.5 19.4± 4.5
45.7± 1.8 59.7± 24.7 46.6± 9.4 18.4± 6.3

Partial
observability

83.3± 3.3 77.5± 13.7 83.5± 5.2 18.6± 4.9
64.0± 1.1 55.1± 33.8 51.1± 29.4 10.5± 7.9

Action noise 82.4± 4.2 82.3± 19.5 91.2± 2.2 17.9± 2.8
62.7± 0.5 44.9± 22.4 63.9± 29.2 9.7± 1.9

noise by a magnitude scalar σlow or σhigh, using the same values as in the sim2real. We
provide the noise matrices and code for generating the noise, so that users can experiment
with more settings as well.

• Hidden variables (challenge 4 – hidden confounders): We go over all the observations in
a given dataset, and zero the chosen dimensions dimension. A user can select any dimension
they wish to zero (or a list of them), and any dataset. We chose for our benchmark the same
dimensions used in the sim2real hidden-variable benchmark. Note that in this case, the agent
that generated the data saw the hidden variable when making its decisions.

In addition to the modified D4RL datasets, we also provide new complementary datasets, that were
generated by an agent trained on a noisy environment. The agent was trained using the SAC algorithm
provided by the stable-baselines package on the simulators listed below. Here too we used
the same parameters as sim2real (as shown in Table 2). We provide the datasets, the agent that made
the datasets, and code to recreate the agent, so that users can follow the same process and create new
agents on different noisy environments.

• Hidden variables Similarly, to the sim2real hidden-variables error, the agent was trained on
a simulator with a zeroed variable. To generate the data, we used the agent that scored as
close as possible to the medium dataset in D4RL. For example, in HalfCheetah we selected
the agent that scored as close to a normalized score of 40 as possible.

• Action delay The agent was trained on the action-delay environment described in sim2real,
and was used to collect a dataset of trajectories. Note that in this case, unlike the dataset
mentioned above and the D4RL datasets, we collected a dataset of full trajectories, and not
tuples of a single step in time.
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Combining sim2real and offline2real for Hybrid-RL algorithms. The above sim2real and
offline2real environments can be easily combined to form any hybrid-RL benchmark desired. We
propose a representative set of benchmarks that cover most aspects discussed throughout the paper.
For results we refer the readers to Appendix C.

B BASELINE IMPLEMENTATION DETAILS

In this section we provide further details on the baselines used for the experiments in Section 4,
including more information for HyCORL.

In the paper we implement, or use prior implementations of two online-RL algorithms: TD31, and
SAC2, three offline-RL algorithms: TD3-BC3, MOPO4 and IQL5, and two hybrid-RL algorithms:
H2O6 and HyCORL. For each algorithm we used the hyperparameters used in the respective paper.
We argue that the errors discussed in this paper are not known in advance to the algorithm, therefore,
searching for the hyperparameters that obtain the best reward on the real world environment is not
reasonable. For HyCORL, we used the same hyperparameters as in MOPO, with λ = 0.0, and h = 5
on HalfCheetah.

In Algorithm 1, we provide full algorithmic description of HyCORL. Parts of our algorithm are
similar to MBPO (Janner et al., 2019) and MOPO, with the modifications needed for becoming a
hybrid-RL algorithm that can use a simulator as well as a given dataset.

Algorithm 1 HyCORL algorithm for hybrid-RL

Input: offline dataset D, simulator Tsim, an ensemble of N learnable correction functions {f i
θ}Ni=1,

reward penalty coefficient λ, rollout horizon h, rollout batch size b.
Init: random weights θ for each in fθ from 1...N .
Evaluate o′sim = Tsim(o, a), for each tuple in D and add to D
for each correction function f i

θ in i = 1...N do
Train a probabilistic correction function on D batches:
f i
θ(o, a, o

′
sim) = o′sim +N (µi(o, a),Σi(o, a))

end for
Initialize policy π and empty replay buffer Dmodel.
for epoch 1,2,... do

Sample initial rollout state o1 from D
for j=1,2,...,h do

Sample an action aj ∼ π(oj)
Evaluate o′sim = Tsim(oj , aj)
Randomly select f i

θ and sample an observation correction and reward (∆o′, rj) ∼ f i
θ(oj , aj)

Evaluate next state oj+1 = o′sim +∆o′

Evaluate penalized reward r̃j = rj − λmaxNi=1 ∥Σi(oj , aj)∥F
Add tuple (oj , aj , r̃j , oj+1) to Dmodel

end for
Draw samples from D ∪Dmodel to update π using SAC

end for

1Code available at https://github.com/sfujim/TD3
2Stable-baselines implementation https://stable-baselines3.readthedocs.io/
3Code available at https://github.com/sfujim/TD3_BC
4Code for the original paper avialable at https://github.com/tianheyu927/mopo. However,

we used a different implementation that is simpler to use and achieves the same results, found at https:
//github.com/junming-yang/mopo

5Code for the original paper available at https://github.com/ikostrikov/implicit_q_
learning/. We used the pytorch version which achieves the same results at https://https://github.
com/Manchery/iql-pytorch/

6Code available at https://github.com/t6-thu/H2O
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C EXPERIMENTS

In this section we provide full experimental results on all baselines and benchmarks for the
MuJoCo-HalfCheetah environment, complementing the results displayed in Section 4. Al-
though we display results only on HalfCheetah, our benchmarks can immediately be applied to the
other MuJoCo environments as well. Results on other environments are forthcoming, and would be
avaialbe soon. We divide the results by the four challenges described in Section 3, on the benchmarks
described in Appendix A.

Modelling error. In Table 4 we provide results on the HalfCheetah environment, for the modelling-
error challenge (challenge 1), which is modeled by changing one of the simulator’s parameters in
charge of the dynamics. In this experiment we observe that the friction discrepancy had a smaller
effect on the ability of the online-RL algorithms to achieve higher rewards, when compared to the
gravity modeling error. We also observe that HyCORL achieves higher rewards when compared to
all other baselines, except when using random dataset with friction discrepancy, suggesting that in
this setting HyCORL is able to effectively use the information from both online and offline sources.

Partial observability. In Table 5 we provide results on the HalfCheetah environment for the
partial-observability challenge (challenge 2), which is modeled by either removing a variable from
the simulator’s observation, or by adding Gaussian noise to the simulator’s observations. Similarly to
the modelling-error experiment, HyCORL obtains better results than other baselines in most cases.
However, as also discussed in Section 4, we see that in some cases it is better to use a single source
of information than both. For instance, on the medium dataset, with hlow discrepancy, SAC achieves
mean reward of 83.3± 3.3 on the imperfect simulator, and MOPO achieves reward of 66.1± 0.3 on
the medium offline dataset. Notably, both hybrid-RL algorithms are inferior to both MOPO and SAC,
suggesting that combining sources of information does not guarantee results that are better than both.

In Table 6 we provide additional results on datasets we created that were generated by an agent
that only has access to partial observations, which is modeled by removing variables from the
observations. For the simulator, we used a simulator with gravity transition error. These results
suggest that removing variables from the dataset has a stronger effect on performance compared to
removing those same variables from the simulators.

Action error In Table 7 we provide results on the HalfCheetah environment for the action challenge
(challenge 3), which is modeled by adding Gaussian noise to the actions inserted to the simulator (i.e.,
via the step method). In this experiment, we see that higher action noise disrupts HyCORL’s ability
to achieve high reward more than the H2O counterpart. With lower noise we see that HyCORL is still
better than others. Note that the actions domain in HalfCheetah environment is in the range between
[−1, 1], so adding a Gaussian noise with σhigh = 0.5 might have a very strong effect on the outcome.

Confounding error In Table 8 we provide results on HalfCheetah for the confounding error
challenge (challenge 4), which is modeled similarly to the partial observability challenge, by either
removing observations from the dataset or by adding Gaussian noise the the entire dataset observations.
creating a discrepancy between what the agent generating the dataset used and what the offline
method can use. For the simulator, we used a simulator with gravity transition error. Continuing the
discussion from Section 4, and addressing the added experiments we provide here, we observe the
same phenomenon, where hidden confounding can have a very strong negative impact on the results.
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Table 4: Results on HalfCheetah with modeling error (challenge 1).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O HyCORL

Random Friction 45.0 ± 9.5 65.9 ± 11.7 36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2 30.4 ± 12.2 40.0 ± 2.0
Gravity 35.3 ± 1.9 35.1 ± 2.4 36.7 ± 2.4 36.1 ± 2.5

Medium Friction 45.0 ± 9.5 65.9 ± 11.7 66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4 55.7 ± 5.9 73.9 ± 0.4
Gravity 35.3 ± 1.9 35.1 ± 2.4 51.0 ± 10.4 72.9 ± 0.8

Medium replay Friction 45.0 ± 9.5 65.9 ± 11.7 67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1 49.8 ± 3.6 68.6 ± 1.4
Gravity 35.3 ± 1.9 35.1 ± 2.4 54.8 ± 3.3 66.5 ± 0.6

Medium expert Friction 45.0 ± 9.5 65.9 ± 11.7 49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3 18.9 ± 1.8 99.2 ± 5.1
Gravity 35.3 ± 1.9 35.1 ± 2.4 41.2 ± 2.9 95.1 ± 2.0

Table 5: Results on HalfCheetah with partial observations (challenge 2).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O HyCORL

Random

σlow 75.1 ± 12.4 80.0 ± 1.4

36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2

44.4 ± 12.2 37.8 ± 2.8
σhigh 49.0 ± 1.9 45.7 ± 1.8 33.0 ± 5.3 33.2 ± 3.1
hlow 47.8 ± 6.5 83.3 ± 3.3 25.2 ± 2.4 35.7 ± 1.0
hhigh 62.8 ± 2.5 64.0 ± 1.1 21.9 ± 1.2 39.6 ± 0.2

Medium

σlow 75.1 ± 12.4 80.0 ± 1.4

66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4

60.1 ± 1.4 76.8 ± 0.6
σhigh 49.0 ± 1.9 45.7 ± 1.8 54.0 ± 0.2 55.9 ± 1.0
hlow 47.8 ± 6.5 83.3 ± 3.3 58.9 ± 1.5 76.1 ± 2.0
hhigh 62.8 ± 2.5 64.0 ± 1.1 44.0 ± 2.0 52.5 ± 6.7

Medium replay

σlow 75.1 ± 12.4 80.0 ± 1.4

67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1

53.8 ± 2.8 73.8 ± 2.2
σhigh 49.0 ± 1.9 45.7 ± 1.8 50.1 ± 0.4 54.8 ± 0.4
hlow 47.8 ± 6.5 83.3 ± 3.3 53.6 ± 0.8 66.0 ± 3.8
hhigh 62.8 ± 2.5 64.0 ± 1.1 46.2 ± 0.8 65.4 ± 4.3

Medium expert

σlow 75.1 ± 12.4 80.0 ± 1.4

49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3

44.8 ± 9.5 101.6 ± 0.3
σhigh 49.0 ± 1.9 45.7 ± 1.8 33.9 ± 0.3 56.2 ± 0.7
hlow 47.8 ± 6.5 83.3 ± 3.3 47.8 ± 4.5 101.6 ± 1.0
hhigh 62.8 ± 2.5 64.0 ± 1.1 33.8 ± 5.6 79.9 ± 7.0

Table 6: Results on HalfCheetah on datasets with partial observations, but without confounding (challenge 2).
Online and hybrid RL models have access to a simulator with modeling error as well.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset TD3 SAC MOPO TD3-BC IQL H2O HyCORL

hlow

35.3 ± 1.9 35.1 ± 2.4

55.1 ± 0.4 45.9 ± 0.1 47.5 ± 0.1 45.8 ± 5.1 72.4 ± 1.5
hlow-history 56.5 ± 0.8 51.7 ± 0.3 52.1 ± 0.2 52.5 ± 0.8 71.2 ± 1.3

hhigh 0.7 ± 0.4 50.4 ± 0.5 48.1 ± 0.1 14.1 ± 11.2 37.1 ± 1.4
hhigh-history 3.0 ± 1.1 49.8 ± 0.3 48.1 ± 0.2 48.5 ± 1.8 32.0 ± 1.5

Table 7: Results on HalfCheetah with action error (challenge 3).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O HyCORL

Random σlow 78.7 ± 9.1 82.4 ± 4.2 36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2 32.7 ± 2.4 41.4 ± 2.7
σhigh 67.7 ± 1.3 62.7 ± 0.5 23.5 ± 1.6 36.9 ± 1.9

Medium σlow 78.7 ± 9.1 82.4 ± 4.2 66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4 57.7 ± 0.5 75.4 ± 2.9
σhigh 67.7 ± 1.3 62.7 ± 0.5 60.3 ± 0.9 54.3 ± 1.0

Medium replay σlow 78.7 ± 9.1 82.4 ± 4.2 67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1 54.7 ± 0.6 68.5 ± 4.7
σhigh 67.7 ± 1.3 62.7 ± 0.5 58.0 ± 1.7 48.0 ± 0.2

Medium expert σlow 78.7 ± 9.1 82.4 ± 4.2 49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3 36.0 ± 3.8 89.0 ± 2.8
σhigh 67.7 ± 1.3 62.7 ± 0.5 38.1 ± 12.7 52.7 ± 1.4
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Table 8: Results on HalfCheetah with confounding error (challenge 4). Online and hybrid RL models have
access to a simulator with modeling error as well.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Conf. TD3 SAC MOPO TD3-BC IQL H2O HyCORL

Random

σlow

35.3 ± 1.9 35.1 ± 2.4

36.6 ± 2.6 11.4 ± 1.8 11.7 ± 3.5 31.0 ± 1.0 38.3 ± 1.8
σhigh 24.1 ± 1.4 10.3 ± 0.9 2.6 ± 0.1 30.1 ± 2.1 33.6 ± 1.6
hlow 37.4 ± 1.0 11.7 ± 0.6 12.4 ± 3.0 34.2 ± 1.1 31.5 ± 3.3
hhigh 26.2 ± 3.3 9.0 ± 0.9 6.6 ± 3.0 31.0 ± 2.1 30.1 ± 0.4

Medium

σlow

35.3 ± 1.9 35.1 ± 2.4

29.6 ± 13.8 47.5 ± 0.5 48.4 ± 0.2 42.5 ± 7.2 74.9 ± 3.9
σhigh -0.1 ± 0.7 41.0 ± 0.8 37.1 ± 2.1 17.3 ± 7.0 9.8 ± 2.6
hlow 60.6 ± 7.1 48.2 ± 0.2 48.4 ± 0.2 54.3 ± 2.5 75.2 ± 2.6
hhigh 29.4 ± 4.1 46.1 ± 0.5 46.5 ± 0.1 34.5 ± 3.4 35.2 ± 1.7

Medium replay

σlow

35.3 ± 1.9 35.1 ± 2.4

53.6 ± 5.6 44.4 ± 0.4 44.3 ± 0.0 47.0 ± 8.8 73.2 ± 1.2
σhigh 14.7 ± 4.5 38.4 ± 1.4 35.3 ± 3.3 21.8 ± 4.4 38.9 ± 0.4
hlow 58.7 ± 8.0 44.6 ± 0.3 43.8 ± 1.1 49.9 ± 4.9 66.5 ± 0.8
hhigh 32.9 ± 1.1 41.6 ± 1.9 42.5 ± 0.0 22.7 ± 7.5 37.1 ± 1.4

Medium expert

σlow

35.3 ± 1.9 35.1 ± 2.4

-0.1 ± 0.6 78.6 ± 4.3 67.2 ± 6.4 34.6 ± 3.4 80.7 ± 5.8
σhigh -1.0 ± 1.1 33.5 ± 2.8 28.3 ± 5.7 13.0 ± 9.1 16.8 ± 3.0
hlow 52.7 ± 4.4 91.4 ± 2.0 90.7 ± 3.0 34.3 ± 7.7 99.3 ± 0.8
hhigh 2.9 ± 0.8 74.3 ± 4.1 64.0 ± 3.4 18.7 ± 4.7 27.0 ± 2.0
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