
Continual Learning with
Group-wise Neuron Competition

Appendix

Anonymous Author(s)
Affiliation
Address
email

In the following, we provide the Appendix as part of the supplementary material to the main paper.1

In Appendix Section A., we prove the alternative form for the back-propagation to make more2

obvious at which part the gradient of the activation with respect to it arguments comes into use. In3

Appendix Section B., we give additional comment about applying group-wise neuron normalization4

with nonlinear activation, providing additional results. In Appendix Section C., we prove additional5

result regarding performance comparison of existing normalization techniques and our GNC. In6

Appendix Section D., we give very simple pythorch code implementation of the proposed group-wise7

neuron normalization that induces group-wise neuron competition (GNC).8

A. Back-propagation Alternative Form 29

B. Additional Comment on Group-wise Neuron Competition 310

B.1. Relevance of the Order for the Operations Sparse Coding and GNC 311

B.2. Soft Sparse Coding Transform vs Hard Sparse Coding Transform 412

C. Additional Comparative Results with Normalization Methods 513

D. Group-wise Neuron Competition Implementation 614

D.1. Group-wise Neuron Competition (GNC) pythorch Implementation 615

D.2. Hard Sparse Coding Transform (sT) pythorch Implementation 616

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.
1

A. Back-propagation Alternative Form17

In the main text of the paper, we analyzed the influence of GNC that has during back-propagation, so18

we were interested in the gradient of the activation with respect to its arguments, i.e., gL−1 = ∂aL−1

∂zL−1 .19

In this appendix section, we give the full derivation of the equivalent form for the back-propagation,20

and pinpoint where ∂aL−1

∂zL−1 comes to play.21

Consider a neural network that maps inputs x ∈ RN0 to outputs y ∈ RNL . The forward pass reads22

as:23

a0 = x,

zl = Wlal−1 + bl, l ∈ {1, · · · , L},
al = σ(zl), l ∈ {1, · · · , L}.

(1)

Here, Wl ∈ RNl×Nl−1 is the weight matrix of layer l (note that if we have convolution, we can24

express it similarly as a matrix product multiplication), bl the corresponding bias vector. Where Nl25

denotes the dimension of the layer l. The activation function is denoted by σ, it processes the layer’s26

weighted sum nl to the layer’s output al.27

Given data set, we define the training process of a neural network as an optimization over an objective28

function, usually called loss, that we denote as L. In other word, we want to find the parameters29

(weights and biases) that minimize the cost function. The training is commonly done using a gradient30

based rule. Therefore, the update relies on the gradient of L with respect to weight Wl and the bias31

bl, that is it relies on ∇WL and ∇bL, respectively. Back-propagation facilitates the computation of32

these gradients, and makes use of the chain rule to back-propagate the prediction error through the33

network [7]. We express the error vector at layer l as:34

δl = ∇nlL, (2)

and further use it to express the gradients as35

∇WlL = δl(al−1)T,

∇blL = δl.
(3)

The output layer’s error is simply given by36

δL = ∇aLL ⊙ ∂aL

∂zL
, (4)

where ⊙ denotes the Hadamard element-wise product. Subsequent earlier layer’s error are computed37

with38

δl = (Wl+1)Tδl+1 ⊙ ∂al

∂zl
, l ∈ {1, · · · , L− 1}. (5)

where A usual parameter update takes on the form39

(Wl)new = Wl − β∇WlL, (6)

where β is a positive learning rate.40

2

B. Additional Comment on Group-wise Neuron Competition41

B.1. Relevance of the Order for the Operations Sparse Coding and GNC42

Table 1: Results using the CIFAR100 data set in the single pass continual learning regime. At the
penultimate layer we used two different operating orders (i) GNC followed by sT and (ii) sT followed
by GNC, showing that the difference between the two is negligible.

ST ACTIVATION GNC FOLLOWED
FOLLOWED BY GNC BY ST ACTIVATION

RA BTI RA BTI

61.47±1.07 -04.34±-1.34 61.30±0.56 -04.07±-0.94

Existing Methods (Normalization Followed by Nonlinear Activation). In the existing normaliza-43

tion techniques like batch norm [4], group norm [9] and layer norm [2], it is common that we first44

apply the normalization and then the nonlinear activation, i.e., al = ReLu(bn(zl)), where bn(zl) is45

the batch norm in this example. It turn out that when we use the existing normalization techniques46

[4, 9, 2] it makes a big difference whether (i) we fist apply the nonlinear activation and then the apply47

the normalization, or (ii) we fist apply the normalization and then apply the nonlinear activation. In48

the later case, using normalization with learnable parameters [4, 9, 2], we might have degradation of49

performance. We mention this in the paper as well as give additional results in Section C.50

GNC. In our approach we found out that it dose not play a role if we fist apply the nonlinear activation51

(at least in the case of sT) and then the GNC, or the other way around. In the following we will revisit52

the definition about GNC and give explanation.53

In the main text, we construct al as al = [(al1)
T , (al2)

T , ..., (alJ)
T]T and define the group-wise54

normalization as:55

alj = vGNC(z
l
j) =

zlj
∥zlj∥

,∀j ∈ {1, .., J}, (7)

where zlj are linear activation’s that belong to group j and ∥zlj∥ is the ℓ2-norm of zlj . We also56

mentioned that before the normalization, we can apply nonlinear activation, such as ReLu [1], so we57

have alj = vGNC(ReLu(zlj)), or with sparse coding transform sT [6] we have:58

alj = vGNC(sT(zlj)). (8)

Note that the group-wise neuron competition is about the max magnitude neuron response that should59

lay in the group with the highest sparsity. Therefore, when we apply the sT, we pronounce the sparsity60

(ether before or after) within the group of neuron responses, and this should help the group-wise61

neuron competition, since we remove (threshold out) some not-relevant "information".62

In Tab. 1, we give results that evaluated the above line of tough. We experimented using the63

CIFAR100 data set in the task-aware single pass regime. We set the reservoir size of 200 and use64

a reservoir batch size of 20. As we can see in Tab. 1, the results suggest that the order of these65

operation dose not play a role. When we use the sT after the GNC, very slightly we have higher66

retained accuracy, while when we use the sT before the GNC, very slightly we have better backward67

transfer. So, the difference in results between the two are negligible.68

3

B.2. Soft Sparse Coding Transform vs Hard Sparse Coding Transform69

Table 2: Results using the CIFAR100 data set in the single pass continual learning regime. At the
penultimate layer we used two different sparse coding transforms (sT) (i) "hard" sT followed by GNC
and (ii) "soft" sT followed by GNC.

HARD ST ACTIVATION SOFT ST ACTIVATION
RA BTI RA BTI

61.47±1.07 -04.34±-1.34 60.86±0.37 -04.29±-0.18

Hard Sparse Coding Transform. We define the "hard" sparse coding transform (sT) [6], as,70

sT(zlj) = zlj ⊙ tlj , (9)

where tlj,i = 1 if |zlj,i| ≥ λj , and tlj,i = 0 otherwise, while λj = J
Nl

∑Nl/J
i=1 |zlj,i| is a sparsifying71

threshold. We have zlj as the linear activation’s that belong to group j ∈ {1, 2, ..., J}, zl =72

[(zl1)
T , (zl2)

T , ..., (zlJ)
T]T ∈ ℜNl .73

Soft Sparse Coding Transform. The "soft" sparse coding transform (sT) is similar to the "hard"74

sparse coding transform, i.e.:75

sTsoft(z
l
j) = sign(zlj)⊙max(|zlj | − λj , 0), (10)

where we define the sparsifying threshold as above. The difference between (10) and (9) is that in76

(10) in addition to the tresholding to zero the magnitude of the nonzero values are also reduced by77

the sparsifying threshold λj .78

Although (10) might have better bias/variance properties in classical signal processing applications,79

we empirically found out that (9) works better in our continual learning regimes. In Tab. 2, we80

verify this and give comparative results between "hard" and "soft" sT. We experimented using the81

CIFAR100 data set in the task-aware single pass regime. We set the reservoir size of 200 and use a82

reservoir batch size of 20. We use sT ("hard" or "soft") followed by GNC. As we can see in Tab. 2,83

the "hard" sT has an edge over "soft" sT, with higher retained accuracy of .6%, while the backward84

trasferability score is very similar between the "hard" sT and the "soft" sT.85

4

C. Additional Comparative Results with Normalization Methods86

Table 3: Results using the CIFAR100 data set in the single pass continual learning regime. We show
the performance when we use BN [4], GN [9], LN [2] and CN [5] at the penultimate layer. We
experimented with ReLu before and after the normalization.

LINEAR RELU NORMALIZATION
ACTIVATION FOLLOWED ACTIVATION FOLLOWED FOLLOWED BY

BY NORMALIZATION BY NORMALIZATION RELU
NORM RA BTI RA BTI RA BTI

BN 61.01±.984 -04.30±.319 56.90±2.05 -06.80±0.52 60.65±0.92 -06.93±0.54

GN 59.47±.134 -02.20±.026 56.49±0.50 -04.50±.020 58.73±0.67 -04.66±2.89

LN 60.46±3.76 -02.46±.035 58.55±0.58 -05.53±.013 58.14±1.72 -04.93±2.08

CN 60.18±.089 -04.50±2.65 58.26±0.68 -04.50±0.20 58.88±1.65 -07.75±3.08

Table 4: Results using the CIFAR100 data set in the single pass continual learning regime. We show
the performance when we different activation functions.

ACTIVATION FOLLOWED ACTIVATION WITHOUT
BY GNC GNC

fn RA BTI RA BTI

LIN 60.14±1.80 -06.22±0.37 55.89±0.38 -08.09±1.06

RELU 54.61±0.98 -10.04±0.00 53.50±0.05 -09.81±0.37

STsoft 60.86±0.37 -04.29±-0.18 53.63±0.75 -09.25±-0.61

ST 61.76±2.03 -03.99±1.09 54.74±0.80 -09.18±0.03

In Tab. 3, we show the results in the single-pass regime using the CIFAR100 data set. We compare87

against existing normalization techniques, including including BN [4], GN [9], LN [2] and CN [5].88

We used equivalent convolution neural network as in [3], and we apply the normalization at the89

penultimate layer. We use reservoir of size 200 and reservoir batch size of 20. In the GN, CN and90

GNC, we use 32 groups with 10 neuron activation’s each for fair comparison.91

As we can see in Tab. 3 on the left side on the top, when we do not apply non-linearity, BN, GN, LN92

and CN have good performance in both RA and BTI. While when we used ReLu activation followed93

by BN, GN, LN or CN we have lower retained accuracy (RA) and backward transferability (BTI).94

That is the retained accuracy over BN, GN, LN and CN drops by an average of around 3.5%. In the95

case when we preform the operations in the reversed order, that is BN, GN, LN or CN followed by96

ReLu the results have a bit higher retained accuracy compared to the previous ones. However, we97

still have lower retained accuracy compared to the linear activation by an average of around 2%. We98

also observed that when we used a sT activation followed by BN, GN, LN or CN, we had a strong99

degradation of performance (during training, the objective value got stuck at a certain value and was100

not able to improve/learn for the experimented normalization methods). We also tried out instance101

normalization (IN) [8] in a equivalent setup as before, but similarly as above, we were not able to102

make the model to learn.103

In Tab. 4 on the bottom, we show the influence of the used nonlinear activation function before the104

GNC. As activation function we experimented with linear, ReLu, and sT. As reported in the main105

text, we can see that not all combinations of activation function followed by GNC are useful.106

In Tab. 3 and Tab. 4, we can also see that our approach with "hard" sT and GNC has the best107

performance.108

5

D. Group-wise Neuron Competition Implementation109

D.1. Group-wise Neuron Competition (GNC) pythorch Implementation110

In the following we prove a pythorch implementation of the group-wise normalization that induces111

group-wise neuron competition (GNC).112

def gnc(a, group_size, num_of_groups):
GNC implementation
assuming shape_1 = group_size*num_of_groups
shape_0, shape_1 = a.shape
a = a.reshape(shape_0, group_size, num_of_groups)
a = torch.nn.functional.normalize(a, p=2, dim=1).reshape(shape_0, shape_1)

return a

We note that before applying the GNC, we also apply "hard" sparse coding transform (sT) (for more113

details please see Appendix Section B.2.).114

D.2. Hard Sparse Coding Transform (sT) pythorch Implementation115

In the following, we give the pythorch implementation for the "hard" sparse coding transform.116

def st(z, group_size, num_of_groups):
sT implementation
shape_0, shape_1 = z.shape
compute the threshold per group of neuron activation
r = z.reshape(shape_0, group_size, num_of_groups).detach().clone()
tr = torch.abs(r) >= torch.mean(torch.abs(r), 1).unsqueeze(1)
set to zero the components below the threshold
a = z * tr.float().reshape(shape_0, shape_1)

return a

6

References117

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375,118

2018.119

[2] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,120

abs/1607.06450, 2016.121

[3] G. Gupta, Karmesh Yadav, and L. Paull. Look-ahead meta learning for continual learning. In122

NeurIPS, 2020.123

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training124

by reducing internal covariate shift. In Proceedings of the 32nd International Conference on125

Machine Learning, Proceedings of Machine Learning Research, pages 448–456. PMLR, 07–09126

Jul 2015.127

[5] Quang Pham, Chenghao Liu, and Steven HOI. Continual normalization: Rethinking batch normal-128

ization for online continual learning. In International Conference on Learning Representations,129

2022.130

[6] Saiprasad Ravishankar and Yoram Bresler. Sparsifying transform learning with efficient optimal131

updates and convergence guarantees. IEEE Transactions on Signal Processing, 63(9):2389–2404,132

may 2015.133

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by134

back-propagating errors. nature, 323(6088):533–536, 1986. Publisher: Nature Publishing Group.135

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing136

ingredient for fast stylization. CoRR, abs/1607.08022, 2016.137

[9] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference138

on Computer Vision (ECCV), September 2018.139

7

	A. Back-propagation Alternative Form
	B. Additional Comment on Group-wise Neuron Competition
	B.1. Relevance of the Order for the Operations Sparse Coding and GNC
	B.2. Soft Sparse Coding Transform vs Hard Sparse Coding Transform

	C. Additional Comparative Results with Normalization Methods
	D. Group-wise Neuron Competition Implementation
	D.1. Group-wise Neuron Competition (GNC) pythorch Implementation
	D.2. Hard Sparse Coding Transform (sT) pythorch Implementation

