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ABSTRACT

We propose FlowDec, a neural full-band audio codec for general audio sampled at
48 kHz that combines non-adversarial codec training with a stochastic postfilter
based on a novel conditional flow matching method. Compared to the prior work
ScoreDec which is based on score matching, we generalize from speech to general
audio and move from 24 kbit/s to as low as 4 kbit/s, while improving output
quality and reducing the required postfilter DNN evaluations from 60 to 6 without
any fine-tuning or distillation techniques. We provide theoretical insights and
geometric intuitions for our approach in comparison to ScoreDec as well as another
recent work that uses flow matching and conduct ablation studies on our proposed
components. We show that FlowDec is a competitive alternative to the recent
GAN-dominated stream of neural codecs, achieving FAD scores better than those
of the established GAN-based codec DAC and listening test scores that are on par,
and producing qualitatively more natural reconstructions for speech and harmonic
structures in music.

1 INTRODUCTION

An audio codec is a technique aiming to compress an audio waveform into compact and quantized
representations and to reconstruct the audio waveform based on those encoded representations
faithfully. The compact and quantized representations are suitable for efficient transmission and
storage, which is essential for mobile communications and live video streaming applications (Kroon
et al., 1986; Salami et al., 1994; Rao & Hwang, 1996). Different from legacy codecs (Atal &
Schroeder, 1970; Schroeder & Atal, 1985; O’Shaughnessy, 1988) which exhibit considerable quality
sacrifice in low-bitrate scenarios, modern codecs achieve lossless (Liebchen & Reznik, 2004; Coalson,
2000) or acceptable lossy (Valin et al., 2013; Bessette et al., 2002; Dietz et al., 2015) codings with
2× or 10× compression ratios. However, these codecs usually involve ad hoc designs and extensive
manual efforts (Kim & Skoglund, 2024), which hinders the codecs from end-to-end optimizations to
achieve high-fidelity audio coding in even lower bitrates (e.g. <12 kbit/s).

End-to-end (E2E) Neural codecs (Zeghidour et al., 2021; Défossez et al., 2023; Wu et al., 2023;
Kumar et al., 2024) have seen a surge in interest in recent years, particularly due to their usefulness
in generative audio tasks such as generating music or speech conditioned on a textual description
or transcript. These codecs nowadays achieve very good audio quality at bitrates as low as 8 kbit/s,
where most classical non-neural codecs fail to produce acceptable results. To achieve high-quality
results at low bitrates, most E2E neural codecs employ adversarial training inspired by generative
adversarial networks (GANs) (Goodfellow et al., 2020) to recover natural-sounding signals and to
avoid artificial artifacts that arise when training only with waveform or spectral losses.

Score-based (diffusion) and flow-based generative models (Ho et al., 2020; Song et al., 2021; Lipman
et al., 2023) have in recent years taken over many generative application domains from GANs. In
this spirit, a recently proposed score-based codec is ScoreDec (Wu et al., 2024), a widely applicable
generative postfilter for E2E neural codecs. ScoreDec aims to recover natural-sounding signals by
enhancing codec outputs, removing adversarial losses when training the E2E model and instead
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training a score-based generative model (Song et al., 2021) as a postfilter. While ScoreDec shows a
clear advantage in output quality compared to the original codec variants that use adversarial training,
it only considers speech signals, was tested only for a relatively high bitrate of 24 kbit/s, and – most
importantly – has prohibitively expensive inference at a real-time factor (RTF) of 1.7 caused by the
need of around 60 DNN evaluations.

In this work, we propose FlowDec, a generative neural codec based on a novel adaptation of
conditional flow matching (CFM) (Lipman et al., 2023; Pooladian et al., 2023; Tong et al., 2024),
and show that it is a competitive alternative to the current GAN-focused stream of neural codecs for
general full-band audio. We address the shortcomings of ScoreDec (Wu et al., 2024) by designing
and training for general audio beyond only speech, reducing bitrates from 24 kbit/s to below 8 kbit/s,
and reducing the needed number of DNN calls from 60 to 6. We design for full-band audio covering
the whole range of human hearing (≤ 20 kHz) with a 48 kHz sampling rate, to avoid a significant
loss of fidelity due to the total removal of high but audible frequencies as in Défossez et al. (2023) or
Zeghidour et al. (2021). The key advantage of 48 kHz over 44.1 kHz models such as DAC (Kumar
et al., 2024) are that it is easier to achieve whole-number feature rates (75 Hz vs. 86.13 Hz) and
bitrates (7500 vs. 7751.95 bit/s) since 48,000 has simpler divisors.

Our main contributions in this work are: (1) the extension and simplification of prior score-based
generative audio enhancement methods (Welker et al., 2022; Richter et al., 2023; Wu et al., 2024) with
a novel adapted CFM method, with theoretical connections and comparisons to recent works on CFM
(Pooladian et al., 2023; Tong et al., 2024); (2) the application to audio coding and extension of the
speech-only ScoreDec (Wu et al., 2024) to general full-band audio at very low bitrates, while reducing
the number of DNN evaluations by a factor of 10 without fine-tuning or distillation techniques; (3)
high-fidelity perceptual quality competitive with a GAN-based state-of-the-art codec (Kumar et al.,
2024), which we confirm with objective metrics and listening tests.

2 RELATED WORK

2.1 NEURAL CODECS

Based on the training objectives, neural audio codecs can be divided into three main categories:
auto-encoder (AE), neural vocoder, and postfilter. In the early days, legacy AE-based codecs
(Krishnamurthy et al., 1990; Wu et al., 1994; Deng et al., 2010) usually train an AE to reconstruct
handcrafted acoustic features and retrieve discrete codes with an independent quantization module on
the hidden units which is not globally optimized, and require extensive ad hoc assumptions on audio
signals and an additional audio synthesizer. Morishima et al. (1990) propose the first AE speech codec
in the waveform domain but do not train the quantizer jointly. The pioneering fully E2E waveform-
domain audio codecs incorporate a straight-through gradient estimation (Van Den Oord et al., 2017)
or softmax quantization (Kankanahalli, 2018) for joint AE and quantizer training. However, they
suffer from either slow inference from autoregressive decoding or limited quality from the lack of
effective waveform losses for non-autoregressive (NAR) decoding. Recently, given the significant
improvement in NAR audio waveform generation (Yamamoto et al., 2020; Kumar et al., 2019; Kong
et al., 2020) adopting GANs (Goodfellow et al., 2020), GAN-based NAR audio codecs (Zeghidour
et al., 2021; Défossez et al., 2023; Wu et al., 2023; Kumar et al., 2024) achieve fast coding, impressive
audio quality, and low bitrates.

By using the high-fidelity audio generations achieved by neural vocoders (van den Oord et al., 2016;
Kalchbrenner et al., 2018; Valin & Skoglund, 2019a; Kong et al., 2020), methods which reconstruct
the audio waveform based on quantized handcrafted acoustic features (Klejsa et al., 2019; Valin
& Skoglund, 2019b; Mustafa et al., 2021), codes of conventional codecs (Kleijn et al., 2018), or
neural AEs (Wu et al., 2023; San Roman et al., 2024), also achieve impressive coding performance.
Postfiltering (Zhao et al., 2018; Deng et al., 2020; Biswas & Jia, 2020; Korse et al., 2022) is a similar
approach, easing the training burden of abstract code-to-waveform mapping by utilizing the decoder
of a pre-trained codec to generate a distorted waveform, which is then enhanced by a postfilter.

2.2 SCORE-BASED GENERATIVE SIGNAL ENHANCEMENT

Welker et al. (2022) propose SGMSE, a score-based generative model (SGM) for speech enhance-
ment (SE), by formulating the speech enhancement task as a diffusion process in the complex spectral
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Figure 1: Method overview: Codecs such as DAC (Kumar et al., 2024) employ adversarial training,
using multiple specialized discriminator networks trained jointly with the decoder. Our method
FlowDec is trained in a non-adversarial two-stage fashion, removing these discriminators and instead
adding a stochastic postfilter that can produce multiple enhanced estimates of the pretrained decoder.

domain. To avoid the ad hoc assumption that the additive noise in noisy speech follows a white Gaus-
sian distribution, SGMSE directly incorporates the SE task into the diffusion process by interpolating
between clean and noisy spectra, leading to a data-dependent prior similar to PriorGrad (gil Lee et al.,
2022). Richter et al. (2023) propose SGMSE+, extending SGMSE to speech dereverberation and
significantly improving its quality by using the more powerful backbone NCSN++ (Song et al., 2021)
for the score model. Due to the complex spectral modeling, both magnitude and phase spectra are
utilized and enhanced, resulting in high-quality speech restoration.

Coding artifacts can also be viewed as a special type of noise that should be removed. To take
advantage of both E2E and postfilter approaches, ScoreDec (Wu et al., 2024) adopts SGMSE+ as the
postfilter for both conventional and neural codecs and achieves human-level speech quality. However,
the inference of ScoreDec is slow due to the high number of diffusion steps, and the effectiveness
of ScoreDec for general audio is unclear. To tackle these issues, we propose FlowDec for general
audio coding, with significantly reduced runtime cost at a real-time factor below 1, and a simplified
formulation that requires only one hyperparameter instead of four.

3 METHODS

We cast the problem of recovering an estimate x̂ ∈ RL of the clean audio x∗ ∈ RL given the code
c := E(x∗) from an encoder E as a stochastic inference problem, with the goal of having a model
that can provide clean audio estimates x̂ as samples from the distribution

x̂ ∼ pdata(x̂|c) , c = E(x∗) ∈ Zℓ, ℓ ≪ L , (1)

where pdata(·|c) is the conditional distribution of clean audio given the code c. We argue that
this treatment is natural, as any encoder E that maps x∗ ∈ RL to a lower-dimensional discrete
representation c is a many-to-one mapping: multiple x∗ will have the same code c. Hence, fulfilling
the ideal property D(E(x∗)) = x∗ is formally impossible if D is a one-to-one mapping. One could
instead construct D as an optimal estimator in the mean sense by minimizing

min
D

Ex∗ [dist(D(E(x∗)), x∗)] (2)

with a pairwise distance dist such as the L2 or L1 distance. However, it is known that a method
trained this way typically does not produce perceptually pleasing signals (Blau & Michaeli, 2018;
2019) even with domain-specific losses. A popular way around this for neural codecs is to employ
adversarial training losses (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al., 2024) to shift
the distribution of decoded signals closer to that of natural signals. While relatively effective, this
approach lacks clear interpretability, is limited by the quality of the discriminator, and may fail to
properly minimize the distance between p(x̂) and p(x∗).
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An alternative, which we follow here, is to directly construct D as a one-to-many mapping, as done in
recent literature on other audio inverse problems such as speech enhancement, dereverberation, and
bandwidth extension (Richter et al., 2023; Lemercier et al., 2023a;b) and most recently for speech
coding by Wu et al. (2024). We show a conceptual overview of this idea in Fig. 1. We realize
this mapping in the form of a stochastic decoder Ds(c) = Ω(D0(c)), combining a deterministic
pre-trained initial decoder D0 with a stochastic postfilter Ω. Defining y := D0(c), Ω produces
conditional samples x̂ ∼ pΩ(x̂|y) from a learned distribution pΩ(·|y), which approximates the
intractable distribution pdata(·|y) via minimization of a statistical divergence D:

pΩ = argmin
qΩ

D(qΩ(·|y), pdata(·|y)) (3)

We can assume that pΩ(x̂|y) = pΩ(x̂|c) since D0 is known, deterministic and non-compressive. The
role of D0 is now to provide a decent initial estimate, which may well still suffer from artifacts and is
enhanced by Ω to deliver perceptually pleasing results. We choose D as the Wasserstein-2 distance,
and practically minimize equation 3 by training a flow model, a neural network vθ trained with an
adapted CFM objective (Lipman et al., 2023).

3.1 FLOW MATCHING

Lipman et al. (2023) introduce the idea of Flow Matching, where the goal is to learn a model
that can transport samples from a tractable distribution q0(x0) to an intractable data distribution
q1(x1) = pdata by solving the neural ordinary differential equation (ODE)

d

dt
ϕt(x) = ut(ϕt(x)) , ϕ0(x) = x0 (4)

starting from a sample x0 ∼ q0. We call ϕt : [0, 1] × RN → RN the flow with the associated
time-dependent vector field ut : [0, 1] × RN → RN , which generates a probability density path
pt : RN → R>0 with pt=0 = q0 and pt=1 = q1. They propose to learn vθ with the CFM target:

LCFM := Ex,t,pt(x|x1)

[
∥vθ(x, t)− ut(x|x1)∥22

]
(5)

where x1 ∼ q1 and L denotes a training loss function. A key insight is that the conditional Eq. (5)
has the same gradients as an intractable unconditional flow matching objective (Lipman et al., 2023,
Eq. 5), and marginalizes to the correct unconditional probability path pt(x) and flow field ut(x).

3.2 JOINT FLOW MATCHING FOR SIGNAL ENHANCEMENT

Unconditional q0 Shifted q0(·|x1)

Figure 2: Unconditional q0(x0) ver-
sus our q0(x0|x1). Colored dots rep-
resent y, stars are associated x∗.

In the original flow matching (Lipman et al., 2023) and score
matching (Song et al., 2021) formulations, x0

1 is sampled
independently of x1, typically from a zero-mean Gaussian
q0 = N (0, σ2I). Pooladian et al. (2023) and Tong et al. (2024)
show that, while the conditional paths pt(x|x1) fulfill optimal
transport (OT) from q0 to q1 when q0 is a standard Gaussian,
the modeled marginal probability path pt(x) generally does
not fulfill OT. This can lead to high-variance training and low
straightness in the learned marginal flow field vθ, and thus to
inefficient inference and suboptimal sample quality. To rectify
this, both works propose a per-batch approximation to OT
between the full distributions, by reordering the pairings in
each training batch {(xb,0, xb,1)}Bb=1 with optimal couplings determined by an OT algorithm on each
batch. Effectively, this samples (x0, x1) ∼ q(x0, x1) jointly rather than independently.

Here, we also propose sampling (x0, x1) jointly, but in a way that is adapted to enhancement tasks
and does not require any OT solvers or extra computations. Concretely, since we have access to the
initial estimate y = D0(c) = D0(E(x∗)), we choose the probability path

pt(xt|x1, y) = N (xt;µt, σt) := N (xt; y + t(x1 − y), (1− t)2Σy) (6)

1Note the different notational convention in score-based works, where the meaning of x0 and x1 is reversed.
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where Σy = diag(σ2
y) is a diagonal covariance matrix. This probability path is a linear interpolation

between y and x1, with noise linearly decreasing from σy to zero. This leads to a coupling between
x0 and x1 through y. Namely, q0(x0|x1, y) = N (x; y,Σy), i.e., the mean of x0 is shifted from
0 to y, similar to score-based signal enhancement works (Richter et al., 2023; Wu et al., 2024).
Intuitively, while we do not use it for inference or training, the marginalized q0(x0) is now a mixture
of Gaussians, each of variance σ2

y and centered at the respective y from the training data, see Fig. 2.
When σy is well-chosen so these Gaussians have negligible overlap, no minibatch OT is needed as
the per-batch couplings can be assumed optimal by construction. We find that the choice of σy is
important for output quality, see Appendix A.1 for more details. The conditional ut can be found via
(Lipman et al., 2023, Eq. 15), with the full derivation in Appendix A.2:

ut(x|x1, y) =
x1 − xt

1− t
(7)

To simplify, since xt can be written in terms of x0, we note that

xt = tx1 + (1− t)x0, x0 ∼ N (x0; y,Σy)) (8)
= tx1 + (1− t)y + (1− t)σtε, ε ∼ N (0, I) (9)

x0 = y + σyε, ε ∼ N (0, I) (10)

which, using that x1 = x∗ from Eq. (6), leads to the simple joint flow matching loss

LJFM := Et∼U(0,1),(x∗,y)∼D,ε∼N (0,I),xt∼pt(xt|x0)

[∥∥∥∥vθ(xt, t, y)− ( x∗︸︷︷︸
=x1

− (y + σyε)︸ ︷︷ ︸
=x0

)

∥∥∥∥2
2

]
(11)

Ours: σt = 0.4(1− t) SGMSE FlowAVSE: σt = 0.1

Figure 3: Flow field comparison at t = 0.7 for our
linear σt (left) versus score-based SGMSE (center)
and FlowAVSE with constant σt (right) for a toy
problem. The white dot is y, yellow stars are pos-
sible x∗, blue lines are sample trajectories, and the
background color indicates the density pt. SGMSE
has highly curved trajectories and does not contract
to x∗; FlowAVSE is non-contractive.

where D is the training dataset. Note also
that this loss removes the numerical instability
around t ≈ 1 of Eq. (7) by reparameterizing in
terms of x0 and x1. By choosing σy > 0, we en-
force the flow field to be a contractive mapping.
This ensures the ODE for inference is numeri-
cally stable and converges locally. Our choice of
pt improves upon SGMSE (Welker et al., 2022;
Richter et al., 2023; Wu et al., 2024), in that
trajectories in our formulation can reach x∗ ex-
actly, which SGMSE fails to do since it does not
model the correct q0 (Lay et al., 2023). We also
avoid designing and tuning special stochastic
differential equations (SDEs) with multiple hy-
perparameters and use only one hyperparameter,
σy , for which we propose a data-based heuristic
(Appendix A.1). Another recent work for audiovisual speech enhancement by Jung et al. (2024)
also makes use of CFM, but uses an independent CFM formulation (Tong et al., 2024) resulting in
a constant σt = σ and the target flow field ut being independent of the sampled noise. This leads
to a non-contractive flow field and the potential for residual noise being left in the estimates since
σ1 = σ > 0, whereas σ1 = 0 in our case. We illustrate this qualitatively in Fig. 3 and also show
empirically in our results section that, for our postfiltering task, our formulation leads to better quality
than both alternatives, at both a low and high number of function evaluations (NFE).

In practice, we replace x∗, y with the feature representations X∗,Y from an invertible feature
extractor Φ and learn the flow in this feature domain. Namely, Φ is an amplitude-compressed complex
short-time Fourier transform (STFT) (Welker et al., 2022) with compression exponent α = 0.3, see
Appendix A.4 for details. We provide Y to vθ as conditioning via channel-wise concatenation at the
input (Richter et al., 2023).

After training, the flow model vθ together with the ODE (4) models the conditional distribution
pΩ(X

∗|Y). To produce clean feature estimates X̂ ∼ pΩ, we first sample an initial state (latent)
X0 ∼ q0(X0|Y) and then solve the flow ODE (4) using vθ from t = 0 to t = 1 with a numerical
ODE solver to get X̂1. We use the Midpoint solver with 3 steps (NFE = 6) unless otherwise noted,
due to its improved quality over the Euler solver at a low NFE, see Appendix A.7.6. Finally, we apply
the inverse of the feature extractor Φ to produce the waveform estimate x̂ = Φ−1(X̂1).

5



Published as a conference paper at ICLR 2025

3.3 NON-ADVERSARIAL CODEC TRAINING

Due to a lack of effective phase losses, NAR audio generative models trained with only spectral
losses usually exhibit buzzy noise caused by unsynchronized phases. Many works employ adversarial
training to circumvent this and restore more natural-sounding audio. This however requires complex
handcrafted multi-discriminator losses and weightings to avoid unstable training, mode collapse, and
divergence, and lacks interpretability (Wu et al., 2024; Lee et al., 2024). In recent years, generative
diffusion models have largely superseded GANs for image and audio generation due to easier training
and better detail modeling (Dhariwal & Nichol, 2021), but have yet to make such a strong impact for
audio codecs.

To overcome these issues, we remove adversarial training and instead use a generative postfilter. We
train a deterministic neural codec as the initial decoder D0 without any adversarial losses and leave
the task of matching the distributions of output audio and clean audio to the stochastic postfilter Ω.
The simplest way forward, which we follow, is to take an existing state-of-the-art neural codec such
as DAC (Kumar et al., 2024) as D0 and to remove all components related to adversarial loss terms.

3.4 UNDERLYING CODEC: IMPROVED NON-ADVERSARIAL DAC

In principle, stochastic postfilters such as ours can be trained for any underlying codec to enhance its
waveform estimates, as shown in Wu et al. (2024). We use DAC (Kumar et al., 2024) as the basis for
our underlying codecs due to its status as a state-of-the-art neural codec, as also recently established
for speech by Muller et al. (2024), and its adaptibility for other sampling rates and bitrates. We
remove the adversarial losses and modify some configuration settings listed in Section 4.2.

When we first trained this non-adversarial codec, we found that it produced unnatural results and
bad scale-invariant signal-to-distortion ratio (SI-SDR) values around -30 dB, particularly for music.
After finding that low frequencies (≤ 2 kHz) were badly modeled we add a multiscale constant-Q
transform (CQT) loss, inspired by the high low-frequency resolution of the CQT, frequent use of the
CQT in music processing (Moliner et al., 2023), and the multiscale Mel losses used by DAC. As in
DAC’s multiscale Mel loss, we use both the differences of amplitudes and of log-amplitudes. We
further add a L1 waveform-domain loss to improve SI-SDR values and phase errors that magnitude-
only losses are blind to. We demonstrate the effectiveness of these losses in Appendix A.7.2.

3.5 FREQUENCY-DEPENDENT NOISE LEVELS

As noted in Section 3.1, the choice of σy is important for output quality. It is well known that the
power spectrum of most natural signals follows an inverse power law, so high frequencies have much
lower power than low frequencies. A single scalar σy can thus potentially lead to oversmoothing
when the added Gaussian noise dominates high frequencies, as also previously observed for images
(Kingma & Gao, 2023, Appendix J). To rectify this, we calculate frequency-dependent curves σy(f)
by performing the heuristic quantile calculation in Eq. (12) independently for each STFT frequency
band. Similarly, MBD (San Roman et al., 2023) proposes a band-dependent noise scale but uses only
4 broad Mel bands for this purpose. We demonstrate the effectiveness in Appendix A.7.4.

4 EXPERIMENTAL SETUP

4.1 DATASETS

For underlying codec training, we prepare a varied combination of datasets containing music,
speech, and sounds, which are listed in Table 1. As proposed in Kumar et al. (2024), we sample
audios in a type-balanced way during training, i.e., each training batch contains – in expectation – the
same number of speech files as music files and sound files.

For postfilter training, we use the same overall dataset as a basis but perform the following additional
steps: (1) To avoid slow postfilter training from calling D0 in every step, we randomly sample 100,000
clean files x∗ per audio type and crop out segments with a maximum 30-second duration, calculate
y = D0(E(x∗)), and store it on disk. (2) For the postfilter to learn complex audio scenarios,
we increase data variety with 100,000 clean 10-second mixtures of all three audio types from the
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Table 1: Datasets used for codec training. Datasets in [brackets] are internal. fmax
s denotes the

maximum sampling frequency and “h” is short for hours. For WavCaps-FreeSound*, we filter the
part of FreeSound contained in WavCaps to keep only the files with commercial-friendly licenses.
For CommonVoice 13.0* we use a custom subset.

Dataset Duration fmax
s Type

MSP-Podcast (Lotfian & Busso, 2019) 103 h 16 kHz Speech
CommonVoice 13.0* (Ardila et al., 2020) 1602 h 16 kHz Speech
LibriTTS (Zen et al., 2019) 553 h 24 kHz Speech
EARS (Richter et al., 2023) 100 h 48 kHz Speech
VCTK 84spk (Valentini-Botinhao, 2017) 20 h 48 kHz Speech
LibriVox (Kearns, 2014) 55611 h 16 kHz Speech
Expresso (Nguyen et al., 2023) 20 h 48 kHz Speech
[InternalSpeech] 1512 h 48 kHz Speech
[InternalMusic] 18949 h 32 kHz Music
WavCaps-FreeSound* (Mei et al., 2024) 1582 h 32 kHz Sound
[InternalSound] 5309 h 48 kHz Sound

subsets described above. We mix each randomly paired three audios in random proportions with
mixing coefficients (wspeech,k, wmusic,k, wsound,k) sampled from a Dirichlet distribution Dir(αspeech =
4, αmusic = 2, αaudio = 1). We repeat all constituent segments shorter than 10 seconds and center-crop
all that are longer. This leaves us with 400,000 pairs (2778 hours) of data.

As our test set, we use 3,000 random audio samples with 1,000 of each audio type: 500 files
from the VCTK test set (Valentini-Botinhao, 2017) and 500 from the EARS test set (Richter et al.,
2024b) for speech, 500 files from MUSDB18-HQ (Rafii et al., 2019) and 500 from MusicCaps
(Agostinelli et al., 2023) for music, and 1000 files from AudioSet (Gemmeke et al., 2017) for sound.
To avoid overlap with MusicCaps, we remove all files from AudioSet with music-related tags, but
keep tags related to instruments. We crop audios to a 10-second duration. As MUSDB, MusicCaps,
and AudioSet are not used for training, we sample from them without regard to train/test splits.

4.2 MODEL TRAINING AND VARIANTS

Table 2: Our underlying codec variants, compared to
official 44.1 kHz DAC by Kumar et al. (2024). fs is the
sampling rate in kHz, H is the hop length in samples,
ffeat is the feature rate in Hz, nc is the number of code-
books, and demb is the latent code embedding dimension.
Bitrates are in kbit/s.

Name Bitrates fs H nc demb

DAC 0.86–7.75 44.1 512 9 1024
NDAC-75 0.75–7.50 48 640 10 1024
NDAC-25 0.25–4.00 48 1920 16 128

For our underlying codecs, we use the
official code and training settings from
DAC (Kumar et al., 2024) but remove ad-
versarial losses (Section 3.3), add a CQT
and waveform loss (Section 3.4), and mod-
ify the configuration as listed in Table 2.
We call these underlying codecs NDAC
to avoid confusion with the adversarially
trained DAC. NDAC-75 is targeted at
48 kHz audio with a whole-number fea-
ture rate (75 Hz) and whole-number bi-
trates. NDAC-25 is a variant tailored for
downstream generative audio tasks, with
a lower feature rate (25 Hz) and feature dimension which are advantageous for audio generation due
to more efficient memory usage and decreased modeling difficulties. For the CQT loss (Section 3.4),
we use the CQT2010v2 implementation of the CQT from the nnAudio Python package with 9
octaves, hop length 256, minimum frequency 27.5 Hz, {16, 32, 48, 64, 80} bins per octave, with a
loss weight of 1 for music samples and 0 for audio and speech samples. For the L1 waveform loss,
we use a weight of 50. We train for 800,000 iterations with 0.4 second snippets and a batch size of 72.
As baselines, we train DAC-75 and DAC-25, equivalent versions of NDAC-75 and NDAC-25 with
the original adversarial losses. To show that the differences between FlowDec and DAC are not just
caused by the extra parameters from the postfilter, we also train baselines 2xDAC-75 and 2xDAC-25
for which we double the channels of all decoder convolution layers, increasing the parameters by
+100 M vs. +26 M from the postfilter.
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As postfilters, we train the following variants based on NDAC-75 and NDAC-25:

1. FlowDec-75m: 75 Hz, multi-bitrate. Trained based on NDAC-75 with bitrates {7.5, 6.0, 4.5,
3.0} kbit/s, by setting the number of codebooks at inference to {10, 8, 6, 4}. We include
only this set of bitrates for ease and speed of training, and because we found that the codec
does not provide good results below 3.0 kbit/s.

2. FlowDec-75s: 75 Hz, single-bitrate. Trained based on NDAC-75 using only the highest
bitrate of 7.5 kbit/s. The goal of this variant is to serve as a baseline for ablations and to
investigate the quality gap between a single- and multi-bitrate postfilter.

3. FlowDec-25s: 25 Hz, single-bitrate. Trained based on NDAC-25 with a bitrate of 4.0 kbit/s.
We do not train for multiple bitrates here as the bitrate and feature rate is already very low.

We train all postfilters based on a slightly modified NCSN++ architecture (Song et al., 2021) with
26 M parameters (details in Appendix A.3). We use Adam (Kingma, 2014) at a learning rate of 10−4

for 800,000 iterations, a 2-second snippet duration, and a batch size of 64. We track an exponential
moving average (EMA) of the weights with decay 0.999 for inference. For every variant, we train
one version with global σy and one with a frequency-dependent σy(f), see Section 3.5. We use the
frequency-dependent variants for all results unless stated otherwise. For the global variants, we set
σy = 0.66. For the frequency-dependent variants, we estimate 768-point frequency curves σy(f) and
smooth them with a Gaussian kernel of bandwidth 3. We train further models for ablation studies
(Appendix A.7) based on FlowDec-75s.

4.3 OBJECTIVE METRIC EVALUATION

For evaluation with objective metrics we use SI-SDR (Roux et al., 2019), Frechét Audio Distance
(FAD) with clap-laion-audio embeddings as proposed in Gui et al. (2024), frequency-weighted
segmental signal-to-noise-ratio (fwSSNR) (Loizou, 2013), the neural ITU-T P.804 estimation method
SIGMOS (Ristea et al., 2024), and logSpecMSE, i.e., the mean squared error (MSE) of decibel
log-magnitude spectrograms with a 32 ms Hann window and 75% overlap. Note that SIGMOS is
only valid for speech signals, so we only evaluate it on the speech test audios.

4.4 SUBJECTIVE LISTENING TESTS

Table 3: Listening test parameters. Bold numbers in
parentheses denote the bitrates in kbit/s.

Test Compared methods

A FlowDec-75m (7.5, 4.5), FlowDec-75s (7.5),
DAC-75 (7.5, 4.5), EnCodec (6.0), Opus (7.5)

B FlowDec-25s (4.0), FlowDec-75m (4.5),
DAC-25 (4.0), DAC-75 (4.5), Opus (4.0)

Since objective metrics generally do not
tell the full story of how a method is per-
ceived by human listeners (Torcoli et al.,
2021), it is important to also test this per-
ceived quality directly. We conduct two
MUSHRA-like tests (ITU, 2015) detailed
in Table 3, comparing FlowDec variants
against their DAC equivalents. “Test A”
is designed to test our main models, and
“Test B” to test low feature rate (25 Hz)
models. We use Opus (Valin et al., 2013)
at the highest used bitrate as the low anchor and include the original audio as the hidden reference. In
Test A, we also include the official 48 kHz checkpoint of EnCodec (Défossez et al., 2023) at 6.0 kbit/s
for comparison. We conduct both tests with 21 random 10-second audios from our test set: 7 from
the EARS test set, 7 from MUSDB, and 7 from AudioSet. We ask 15 expert listeners to rate each
audio on a scale from 0 to 100. We exclude listeners that rated the reference < 90 or the low anchor
> 90 for more than 15% of trials, resulting in 11 listeners for Test A and 10 for Test B.

5 RESULTS

5.1 OBJECTIVE METRICS

In Fig. 4, we show the objective metric results of FlowDec-75m and FlowDec-75s compared to
EnCodec (48 kHz), DAC-75, 2xDAC-75 and the official DAC 44.1 kHz checkpoint, and also include
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Figure 4: Mean objective metrics attained by compared methods on the test set at varying bitrates.
Colored bands indicate 95% confidence intervals. SIGMOS is speech-only and is calculated only on
the speech test files. FAD is multiplied by 100 for readability. Numbers can be found in Table 8.
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Figure 5: Perception (FAD) – distortion
(SI-SDR) – rate tradeoff (Blau & Michaeli, 2019)
of compared methods. Numbers next to points
indicate the bitrate in kbit/s.

Table 4: FAD×100, mean SI-SDR, and mean
fwSSNR of FlowDec-75s versus the related Score-
Dec (Wu et al., 2024) and constant σt (Jung et al.,
2024). Best in bold.

Method FAD×100 SI-SDR fwSSNR
NFE = 6
FlowDec 1.62 7.55 15.46
ScoreDec 145.30 -27.23 3.15
σt = 0.05 28.88 9.95 5.50
σt = 0.66 29.83 10.10 6.55

NFE = 50
FlowDec 1.34 7.41 15.65
ScoreDec 5.73 7.50 14.45

the 25 Hz feature rate models FlowDec-25s and DAC-25 for comparison. Our main model FlowDec-
75m produces the best FAD values by a large margin and also performs best on the SIGMOS
OVRL metric. For the intrusive spectral metrics SI-SDR, fwSSNR, and logSpecMSE, retrained DAC
generally outperforms FlowDec, though the gap in the perceptually weighted fwSSNR is small. This
is to be expected under the perception-distortion tradeoff discussed in (Blau & Michaeli, 2018; 2019):
FlowDec favors better perception (FAD) along this tradeoff at the cost of increased distortion (SI-
SDR), see also Fig. 5, similar to observations made about score-based models for speech enhancement
(Richter et al., 2023) and JPEG artifact removal (Welker et al., 2024). Furthermore, we see that the
single-bitrate FlowDec-75s slightly outperforms FlowDec-75m at 7.5 kbit/s as expected, and that
2xDAC is slightly better than DAC but does not fundamentally change the qualitative behavior of
DAC. For the 25 Hz models, we can see that the general behavior of FlowDec and DAC is unchanged,
with FlowDec again exhibiting better FAD and SIGMOS.

In Table 4, we compare FAD, SI-SDR and fwSSNR of FlowDec-75s at NFE ∈ {6, 50} against
ScoreDec (Wu et al., 2024) and the alternative flow-based formulation with constant σt (Jung et al.,
2024). We can see that for NFE = 6, FlowDec is a clear improvement over ScoreDec which produces
unusable results at this NFE and also performs significantly better than Jung et al. (2024) here. At
NFE = 50, ScoreDec and FlowDec achieve similar SI-SDR, but FlowDec performs significantly
better in FAD. A full metric comparison table can be found in Appendix A.7.1. Finally, in Fig. 7,
we show a qualitative spectrogram comparison of FlowDec compared DAC for a guitar recording,
which illustrates better reconstruction of harmonic structures by FlowDec. We show more example
spectrogram comparisons, including the worst reconstructions from FlowDec, in Appendix A.8.

5.2 SUBJECTIVE LISTENING TESTS

In Fig. 6, we show the results from both subjective listening Tests, A and B, as boxplots of MUSHRA
scores per method and bitrate. For Test A, we can see that the 4.5 kbit/s variants are rated somewhat
lower than the 7.5 kbit/s variants but still achieve good scores compared to EnCodec at 6.0 kbit/s, and
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Figure 6: Subjective listening results from Test A (left) and Test B (right). Numbers in (parentheses)
denote the used bitrate in kbit/s. FlowDec is rated on par with DAC (Kumar et al., 2024), with no
significant differences between their score distributions at any given bitrate and feature rate.

the low anchor Opus. We can further see that, at any given bitrate, the score distributions of DAC-75
and FlowDec-75m show no significant differences. For Test B with the 25 Hz models, we can again
see that DAC and FlowDec generally perform on par, and also that the 25 Hz models are rated very
similarly as their higher feature rate (75 Hz) equivalents at a similar bitrate. In Appendix A.6, we
also show results split by audio type, which seem to suggest that FlowDec performs better than DAC
for speech samples, slightly worse for sound samples, and on par for music.

5.3 REAL-TIME FACTOR
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Figure 7: Spectrogram comparison (pre-emphasis
of 0.95) of DAC and FlowDec at 7.5 kbit/s for a
guitar test audio. FlowDec better preserves har-
monics where DAC creates noise-like structures.

An important property of a codec is its runtime.
We determine the real-time factor (RTF) of the
two NDAC variants and the FlowDec postfilter
at NFE ∈ {4, 6, 8} with the midpoint solver
on an NVIDIA A100-SXM4-80GB GPU. We
find an RTF of 0.0134 for NDAC-75 and 0.0084
for NDAC-25. For the postfilter, we find that
RTF ≈ 0.0358 × NFE. At our default setting
NFE = 6, this results in a total RTF of 0.2285
for FlowDec-75(m/s) and 0.2235 for FlowDec-
25s, a significant improvement over the RTF of
1.707 for ScoreDec (Wu et al., 2024).

6 CONCLUSION

We presented FlowDec, a novel postfilter-based neural codec for general audio with high perceptual
quality. FlowDec uses a novel modification of the flow matching formalism for signal enhancement,
which is inspired by previous score- and flow-based generative works for signal enhancement (Richter
et al., 2023; Wu et al., 2024; Jung et al., 2024) but improves upon them both in terms of theoretical
properties and output quality. We showed that FlowDec achieves state-of-the-art FAD scores for
the coding task and, in a listening test, performs on par with the current state-of-the-art GAN-based
codec DAC (Kumar et al., 2024) at bitrates between 4.5 and 7.5 kbit/s. Furthermore, FlowDec also
shows promising quality at the very low feature rate of 25 Hz and bitrate of 4.0 kbit/s, which we hope
can contribute to more efficient long-range generative audio modeling.

While FlowDec, like DAC, is currently not streaming-capable due to the noncausal architecture of the
used DNNs, our postfilter approach can be modified for a causal DNN as in (Richter et al., 2024a),
which would pave the way for real-time communication and audio streaming applications. We leave
this for future work, particularly since there are currently no streaming codecs available that achieve
the quality of DAC to our knowledge. Another interesting future direction is the joint training of the
initial decoder and the postfilter similar to Lemercier et al. (2023b), which could improve quality
but may lead to unstable training. Finally, as the NCSN++ architecture we use was originally built
for images, we expect that future work using DNN architectures better adapted to audio signals can
further improve the quality of FlowDec.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary details on the mathematical
formulations and loss functions in Section 3.1 and Appendix A.2, of the network architecture in
Appendix A.3, and the feature representation in Appendix A.4. We explicitly describe the proposed
modifications to non-adversarial DAC in Section 3.4, and provide all hyperparameters for this
modification along with the training details of both this underlying codec and all postfilters in
Section 4.2. We provide the full list and details for all datasets, besides internal datasets which
at present cannot be open-sourced, in Section 4.1. We note that we used only a small fraction
of this total training data for training our FlowDec postfilter, with most being used for training
the underlying codecs (see Section 4.1). Our underlying codecs are based on DAC (Kumar et al.,
2024) and can straightforwardly be retrained with the public datasets listed in their work, using their
available codebase, and the additional implementation details for our proposed CQT loss listed in
Section 3.4. To further ensure reproducibility, we have open-sourced our code for FlowDec training
and inference, along with pretrained model checkpoints of the FlowDec models listed in this paper,
made available at https://github.com/facebookresearch/FlowDec. A demo page is
available at https://sp-uhh.github.io/FlowDec/.
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A APPENDIX

A.1 A HEURISTIC FOR CHOOSING σy

An important question arising in Section 3.1 is how to set σy. In Fig. 8, we show the effects of
three σy settings on a simple toy problem. A too-large σy leads to a regression to the mean effect,
pointing the flow field towards the mean of all viable clean audios x∗ for most times t, which results
in oversmoothing and bad perceptual quality. On the other hand, a very small σy close to 0 does
not allow learning the flow field well, as most regions of the space have very low probability during
training. Similar to the visually guided setting σy = 0.4 in Fig. 8, we find that the following heuristic
works well for all of our cases:

σy =
1

3

√
Q(|X∗ −Y|2, 0.997) (12)

where Q is the quantile operation. Similarly to a root mean squared error (RMSE), this is the root
of the 0.997th quantile of squared errors induced by the initial decoder D0 in the feature domain.
The constants 1

3 and 0.997 are inspired by the 3-sigma rule of a Gaussian distribution. The chosen
σy, 0.66 for our FlowDec models, then covers all viable estimates X∗, except outliers beyond the
0.997th quantile, within the 3-sigma region of the added Gaussian noise around Y.

A.2 DERIVATION OF CONDITIONAL FLOW FIELD

Referring to Section 3.2, we perform the derivation of the target flow field ut in more detail here. We
can find the target flow field ut from our chosen probability path, pt Eq. (6), using (Lipman et al.,
2023, Eq. 15):

ut(x|x1, y) =
σ′
t(x1, y)

σt(x1, y)
(x− µt(x1, y)) + µ′

t(x1, y) (13)

=
−σy

(1− t)σy
(xt − (y + t(x1 − y))) + (x1 − y) (14)

= −xt − y − tx1 + ty

1− t
+

(1− t)(x1 − y)

1− t
(15)

=
−xt + y + tx1 − ty + x1 − tx1 − y + ty

1− t
(16)

=
x1 − xt

1− t
(17)

(18)

which matches the expression (Lipman et al., 2023, Eq. 21) of the flow field for an unconditional
zero-mean x0 when their σmin = 0. We can further see that

ut(x|x1, y) =
x1 − xt

1− t
(19)

=
x1 − (tx1 + (1− t)x0)

1− t
(20)

=
(1− t)x1 − (1− t)x0

1− t
(21)

= x1 − x0 (22)
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Figure 8: Flow fields for our FlowDec formulation at different times t and settings of the hyperparam-
eter σy , illustrated on a toy problem. The white dot represents the initial estimate y, the yellow stars
represent possible target signals x∗, and the red cross is the mean of all x∗. The background shows
the probability density pt and the circle indicates 3σy around y. The flow field for large σy = 1.6
points towards the mean (red cross) for most t, while for σy = 0.4, it points towards each viable point
much earlier. While a low σy = 0.1 leads to the straightest paths, it also results in most regions of the
space having very low probability pt for all t of being sampled during training, which is problematic
under model and truncation errors since it is much more likely that trajectories fall off the small
high-probability regions.
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where x1 = x∗ is exactly the target clean signal x∗ since σ1 = 0, and x0 ∼ N (x0; y,Σy) is a sample
from a Gaussian with mean y (the initial decoder output) and diagonal covariance Σy = diag(σ2

y).
Hence, we can reparameterize x0 as

x0 = y + σyε, ε ∼ N (0, I) (23)

which, together with Eq. (22) and x1 = x∗, leads exactly to the expression used in our loss, Eq. (11).

A.3 NCSN++ NEURAL NETWORK CONFIGURATION DETAILS

For our postfilter flow model, we reconfigure the NCSN++ 2-D U-Net architecture (Song et al., 2021)
used in prior audio works (Richter et al., 2023; Wu et al., 2024). In preliminary investigations, we
found that the original architecture can produce high-frequency harmonic artifacts in music, see
Appendix A.7.5. We found that doubling the channels (128 → 256) at the first two U-Net depths
effectively suppresses these artifacts. An explanation may be that the capacity of only 128 filters
in the early layers may not be enough for the increased sampling rate and data complexity (speech
→ music, sound, speech) compared to Richter et al. (2023). To counteract the increased memory
usage, we reduce the depth from 7 to 4 and reduce the channels at depths 3 and 4 from 256 to 128.
We use 1 instead of 2 ResNet blocks per depth as in (Lemercier et al., 2023b). Finally, we remove
all attention-based layers to ensure that the inference runtime is linear in the audio duration. Our
architecture has 26 M parameters instead of the original 65 M.

A.4 FEATURE REPRESENTATION DETAILS

As in related literature (Richter et al., 2023; Wu et al., 2024), we use amplitude-compressed and
scaled complex spectrograms Xij ∈ CF×T as the input and output feature representations of the
postfilter network with an invertible feature extractor Φ:

Φ(x) = Xij := β|X̃ij |α exp(i · ∠(X̃ij)) , X̃ij := STFT(x)ij (24)

where ∠ denotes the phase of a complex number, and STFT is a complex-valued short-time Fourier
transform (STFT). For this STFT, we use a 1534-sample (31.96 ms) Hann window resulting in
F = 768 frequency bins and a hop length of 384 samples (74.97% overlap). We choose α = 0.3
since we found it to produce better outputs for general audio than the original α = 0.5 used in Wu
et al. (2024), see Appendix A.7.5. Note that the choice of window length and hop length is different
from ScoreDec (Wu et al., 2024) (510-sample Hann window, 320-sample hop length, 37.5% overlap)
since we found the increased overlap and frequency resolution to help with output quality. Our choice
of window length and hop length is the same as in the related 48 kHz speech work by Richter et al.
(2024b). To keep the values of the real and imaginary parts of X constrained to roughly [−1, 1],
we set β = 0.66, which we determine as the 99.7th percentile of compressed but unscaled STFT
amplitudes (i.e., Eq. (24) with β = 1) on 2,500 random clean training audio files.

A.5 QUALITATIVE OUTPUTS FROM INITIAL DECODER

To show how the enhanced outputs by our FlowDec postfilter, Ω(D0(c)), compare to the outputs of
the initial decoder D0(c) of the underlying non-adversarially trained codec NDAC-75, we show three
example spectrograms in Fig. 9. The initial decoder produces overly smooth spectral structures and
buzzy noise artifacts. FlowDec successfully removes these artifacts and replaces them with plausible
natural spectral structures, thereby significantly enhancing the audio.

A.6 DETAILED RESULTS FROM SUBJECTIVE LISTENING TESTS

In Fig. 10, we show the score distribution from both MUSHRA-like listening tests (Section 4.4)
split by audio type. These results suggest that FlowDec may perform better on speech than DAC,
particularly for FlowDec-75m versus DAC-75 at 4.5 kbit/s and that DAC may perform slightly better
than FlowDec on sound files; score distributions for music are very similar.
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Figure 9: Spectrograms from parts of three audio examples (from top to bottom: speech, music,
sound) as output by the initial decoder D0 of NDAC-75, compared to their enhanced version from
FlowDec-75m. The estimates from D0 show severe buzzy and unnatural artifacts, which FlowDec
successfully replaces with plausible spectral structures.
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Figure 10: Detailed results from the listening tests (Section 4.4) split by audio type.
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Table 5: Mean ± 95% confidence interval of objective metrics for FlowDec(-75s) compared against
baselines using the alternative ScoreDec formulation (Wu et al., 2024) or FlowAVSE (constant-σt)
formulation, each trained on the same data with the same backbone DNN and feature representation.
We show results at two different NFE (6 and 50). FAD is multiplied by 100 for readability. For
“ScoreDec NC”, in contrast to the original ScoreDec, we do not use the annealed Langevin corrector
(Song et al., 2021) during inference, and instead double the number of predictor steps to achieve
the same NFE. We can see that ScoreDec returns unusable estimates at NFE=6. At NFE=50, the
metric values are now acceptable but still clearly worse than those of FlowDec in FAD, fwSSNR,
SIGMOS, and logSpecMSE. In SI-SDR and SIGMOS, ScoreDec, and FlowDec achieve similar
values at NFE=50.

Method FAD×100 SI-SDR fwSSNR logSpecMSE SIGMOS

NFE = 6
FlowDec 1.62 7.55 ± 0.25 15.46 ± 0.07 80.57 ± 1.72 3.48 ± 0.03
ScoreDec 145.30 -27.23 ± 0.15 3.15 ± 0.07 4873.42 ± 51.92 1.18 ± 0.01
ScoreDec NC 78.71 -5.89 ± 0.19 4.58 ± 0.08 2484.17 ± 28.89 1.45 ± 0.01
σt = 0.05 28.88 9.95 ± 0.21 5.50 ± 0.19 1613.40 ± 33.08 3.00 ± 0.02
σt = 0.66 29.83 10.10 ± 0.22 6.55 ± 0.18 1442.94 ± 25.52 2.94 ± 0.02

NFE = 50
FlowDec 1.34 7.41 ± 0.25 15.65 ± 0.06 81.83 ± 2.17 3.44 ± 0.03
ScoreDec 5.73 7.50 ± 0.24 14.45 ± 0.09 176.25 ± 4.12 3.51 ± 0.03
ScoreDec NC 3.84 7.56 ± 0.25 15.00 ± 0.08 130.32 ± 2.95 3.43 ± 0.03

A.7 ABLATION STUDIES

In this appendix section, we conduct several ablation studies to further justify the choices we have
made. We show comparative tables with objective metrics, and spectrograms to illustrate model
behaviors qualitatively.

A.7.1 FULL METRIC COMPARISON AGAINST SCOREDEC AND FLOWAVSE

In Table 5 we show objective metric values for FlowDec compared to the prior work ScoreDec (Wu
et al., 2024) and FlowAVSE (Jung et al., 2024) at NFE=6 and NFE=50. For the baseline models
here, we retrained the model with each alternative formulation while keeping all other settings
(data, backbone, feature representation) the same. For FlowAVSE we train one variant with a small
σt = 0.05, and one with the same σt = 0.66 as the σy = 0.66 setting used for FlowDec. As the
metrics show, FlowDec works significantly better at NFE=6 where ScoreDec and FlowAVSE fail to
produce acceptable results, and also generally outperforms ScoreDec at NFE=50.

A.7.2 NON-ADVERSARIAL DAC WITHOUT ADDED CQT AND WAVEFORM LOSSES

As proposed in Section 3.4, we train our underlying non-adversarial codec (“NDAC”) based on
DAC (Kumar et al., 2024) but newly add a multiscale constant-Q transform (CQT) loss and an L1

waveform-domain loss, in particular to combat the bad low-frequency preservation of the initial
non-adversarial NDAC variants we trained in preliminary experiments. In Fig. 11, we show this
effect qualitatively, comparing the original non-adversarial DAC without our added losses (rightmost
column) to our proposed underlying codec NDAC-75 (center column), which includes these losses,
in the frequency range between 0 and 1500 Hz. The original non-adversarial DAC introduces severe
errors and generates a very noisy low-frequency spectrum. In comparison, our variant NDAC-75
(center column) does not suffer from these problems in the low-frequency region and produces
relatively good estimates.

A.7.3 ADVERSARIAL DAC WITHOUT AND WITH ADDED CQT AND WAVEFORM LOSSES

To further show that the advantages of our method are not caused just by the added CQT and waveform
L1 loss, as proposed in Section 3.4, we also train a variant of the adversarially trained DAC-75 that
includes both those original adversarial losses, the original non-adversarial losses (Kumar et al.,
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Figure 11: Low-frequency (0–1500 Hz) spectrum of two music samples (top: vocals, bottom: mixture)
from our test set, comparing our underlying codec NDAC-75 against the version we initially trained
without added CQT and waveform losses (“w/o CQT+wav”).

Table 6: Mean ± 95% confidence interval of objective metrics for DAC-75, compared to a variant
(“+Cw”) trained with the original adversarial and non-adversarial losses as well as our proposed CQT
and waveform losses used for DAC-75 (Section 3.4). Bitrates are in kbit/s, and FAD is multiplied by
100 for readability.

Method Bitrate FAD SI-SDR fwSSNR logSpecMSE SIGMOS
DAC-75 3.00 9.68 4.66 ± 0.18 12.11 ± 0.07 80.79 ± 1.41 3.14 ± 0.03
DAC-75 +Cw 3.00 9.39 4.86 ± 0.19 12.21 ± 0.07 81.93 ± 1.58 3.09 ± 0.02

DAC-75 4.50 6.80 6.95 ± 0.18 13.62 ± 0.08 76.95 ± 1.32 3.19 ± 0.02
DAC-75 +Cw 4.50 6.63 7.17 ± 0.19 13.74 ± 0.07 77.81 ± 1.49 3.16 ± 0.02

DAC-75 6.00 5.23 8.54 ± 0.18 15.01 ± 0.08 74.94 ± 1.29 3.19 ± 0.02
DAC-75 +Cw 6.00 5.12 8.76 ± 0.19 15.14 ± 0.07 75.65 ± 1.42 3.17 ± 0.02

DAC-75 7.50 4.15 10.03 ± 0.19 16.57 ± 0.09 73.05 ± 1.24 3.19 ± 0.02
DAC-75 +Cw 7.50 3.95 10.16 ± 0.19 16.65 ± 0.07 73.98 ± 1.38 3.19 ± 0.02

2024), and our proposed CQT and waveform L1 loss. We show the metric results in Table 6. It
can be seen that our proposed loss terms seem to improve FAD, SI-SDR, and fwSSNR slightly, and
on the other hand, worsen logSpecMSE and SIGMOS slightly. No large differences in any metric
can be seen at any particular bitrate, confirming that the strong improvements in FAD and SIGMOS
of FlowDec we show in Section 5.1 are not caused purely by these loss terms being added to our
underlying codec.

A.7.4 FREQUENCY-DEPENDENT σy VS. GLOBAL σy

In Fig. 12, we compare objective metrics of our main FlowDec-75m and FlowDec-25s variants, both
with frequency-dependent σy, against each corresponding variant with a global σy (“gσy”). We use
each method at a bitrate of 7.5 kbit/s for FlowDec-75m and 4.0 kbit/s for FlowDec-25s, and run
inference at different NFE. At a low NFE, we see that the frequency-dependent σy achieves on par
or better logSpecMSE and FAD scores, particularly for the 25 Hz models. For the metrics SI-SDR,
fwSSNR, and SIGMOS, which choice of σy is optimal seems not as clear. At NFE=4, the global σy

variants deteriorate significantly in logSpecMSE but gain in SI-SDR, indicating that oversmoothing
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Figure 12: Objective metrics at different NFE, from our main FlowDec-75m (top row) and FlowDec-
25s (bottom row) models, compared against each corresponding global σy variant (“gσy”).

Table 7: Mean ± 95% confidence interval of objective metrics for our method compared to the original
NCSN++ architecture, and compared to the original choice of α = 0.5 in contrast to our α = 0.3.
We use NFE=6 with the midpoint solver. FAD is multiplied by 100 for readability. Best in bold,
second best underlined.

Method FAD SI-SDR fwSSNR logSpecMSE SIGMOS
FlowDec-75s 1.62 7.55 ± 0.25 15.46 ± 0.07 80.57 ± 1.72 3.48 ± 0.03
with original NCSN++ 1.75 7.51 ± 0.25 15.30 ± 0.06 79.84 ± 1.76 3.45 ± 0.03
with α = 0.5 2.16 7.54 ± 0.25 14.49 ± 0.09 130.10 ± 1.98 3.57 ± 0.03

of high frequencies is occurring; the frequency-dependent σy variants exhibit this effect much less
strongly.

A.7.5 NETWORK ARCHITECTURE AND FEATURE REPRESENTATION

In Table 7, we show metric results of FlowDec-75s, compared to two ablation model variants: one
trained with the original NCSN++ architecture (Song et al., 2021; Richter et al., 2023), and one
trained with the original choice of the feature representation parameter α = 0.5 (Welker et al., 2022;
Richter et al., 2023; Wu et al., 2024). We can see that FlowDec-75s performs best in FAD, SI-SDR,
and fwSSNR, and significantly improves upon α = 0.5 in logSpecMSE. In SIGMOS, which is a
speech-only metric, the α = 0.5 model achieves the best score, which may hint at α = 0.5 being
more optimal for speech signals; however, in all other metrics α = 0.3 seems to be a better choice,
and it seems to work better overall for general audio.

A.7.6 COMPARISON OF ODE SOLVERS

In Fig. 13, we show that the numerical Midpoint ODE solver is much more effective than the simpler
Euler ODE solver at producing high-quality audio at low numbers of DNN evaluations (low number of
function evaluations (NFE)). Both solvers perform similarly at a high NFE of 50, but Euler generally
degrades significantly at low NFE (4, 6, 8). While Euler achieves better SI-SDR, it at the same
time shows significantly worse fwSSNR and logSpecMSE, which indicates spectral oversmoothing
(removal of high frequencies). Midpoint performs similarly for NFE=6 as for NFE=8 and NFE=50
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Figure 13: Objective metrics for FlowDec-75m at 7.5 kbit/s, comparing the Euler and Midpoint solver
for different NFE.

but degrades slightly at the next possible lower NFE=4, thus confirming our default choice NFE=6 to
be a good choice along the tradeoff between output quality and inference speed.

A.8 QUALITATIVE SPECTROGRAM COMPARISONS

In Fig. 14, we show spectrograms comparing FlowDec-75m and DAC-75 on three examples with
high harmonic content such as speech and isolated music instruments. We can see that, for these
examples, FlowDec recovers more plausible natural spectral structures, and recovers high harmonics
better.

For fairness, in Fig. 15, we show the three examples from our test set with the worst logSpecMSE
values for FlowDec, and also those with the worst fwSSNR values in Fig. 16. We again compare
FlowDec-75m against DAC-75 and also show the output from the initial decoder, NDAC-75. For
the logSpecMSE examples, we see that FlowDec either inpaints frequencies that are not there in the
clean reference, or wrongly removes high frequencies present in the initial decoder outputs beyond
16 kHz, which may be related to training on music data with a sampling rate of 32 kHz.

For the example with worst fwSSNR (-3.32) in Fig. 16, we can see that FlowDec mistakenly filters
out most of the strong frequency content around 6 kHz even though it is present in the initial decoder
output, and replaces it with spectrally more complex but wrong structures, indicating that the FlowDec
postfilter is mistakenly treating these sounds as artifacts from the initial decoder rather than parts of
the target signal. For the other two next-worst fwSSNR examples, FlowDec reconstructs relatively
similar estimates as DAC-75, with no particularly implausible structures visible.

A.9 FULL OBJECTIVE METRICS TABLE

In the main paper, we showed objective metrics result visually. For completeness, we list the exact
numbers of metric values in Table 8.
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Figure 14: Spectrograms (pre-emphasis of 1.0 applied) comparing FlowDec-75m against DAC-75
and NDAC-75 on three audio files: speech (top), glockenspiel and speech (middle), and acoustic
guitar (bottom).
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Figure 15: Spectrograms comparing FlowDec-75m against DAC-75 as well as the initial decoder
output (NDAC-75) on the three audio files where FlowDec-75m produces the worst logSpecMSE
values on the whole test set.
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Figure 16: Spectrograms comparing FlowDec-75m against DAC-75 as well as the initial decoder
output (NDAC-75) on the three audio files where FlowDec-75m produces the worst fwSSNR values
on the whole test set.
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Table 8: Mean ± 95% confidence interval of all metrics shown visually in Fig. 4. Best in bold, second
best underlined. MBD refers to the method from San Roman et al. (2023) using their official 24 kHz
checkpoint at 6 kbit/s. Bitrates in kbit/s.

Method Bitrate FAD ↓ SI-SDR ↑ fwSSNR ↑ logSpecMSE ↓ SIGMOS ↑
7.50–12.00 kbit/s

FlowDec-75m 7.50 2.09 6.12 ± 0.25 15.56 ± 0.06 93.71 ± 1.65 3.39 ± 0.03
FlowDec-75s 7.50 1.62 6.22 ± 0.25 15.61 ± 0.07 93.65 ± 1.72 3.44 ± 0.03
DAC-75 7.50 4.15 9.23 ± 0.19 16.21 ± 0.09 85.49 ± 1.24 3.16 ± 0.02
2xDAC-75 7.50 4.36 9.54 ± 0.19 17.03 ± 0.07 82.16 ± 1.26 3.19 ± 0.02
DAC 44.1 kHz 7.75 6.00 9.30 ± 0.19 16.46 ± 0.07 98.61 ± 1.83 3.16 ± 0.03
NDAC-75 7.50 34.46 7.49 ± 0.26 17.50 ± 0.09 75.07 ± 1.17 2.71 ± 0.02
EnCodec 12.00 4.08 8.98 ± 0.18 13.66 ± 0.13 135.68 ± 2.66 2.61 ± 0.02

6.00–6.03 kbit/s
FlowDec-75m 6.00 2.53 5.16 ± 0.25 14.36 ± 0.06 95.11 ± 1.68 3.40 ± 0.03
DAC-75 6.00 5.23 7.72 ± 0.18 14.70 ± 0.08 88.08 ± 1.29 3.16 ± 0.02
2xDAC-75 6.00 5.30 8.09 ± 0.19 15.53 ± 0.07 84.50 ± 1.30 3.18 ± 0.02
DAC 44.1 kHz 6.03 7.23 7.64 ± 0.19 14.76 ± 0.07 100.87 ± 1.84 3.16 ± 0.03
NDAC-75 6.00 36.80 6.36 ± 0.24 15.74 ± 0.08 76.54 ± 1.21 2.70 ± 0.02
EnCodec 6.00 7.35 6.27 ± 0.18 11.74 ± 0.12 142.69 ± 2.71 2.41 ± 0.02
MBD (24 kHz) 6.00 16.87 -0.75 ± 0.42 7.97 ± 0.10 782.25 ± 15.9 2.73 ± 0.02

4.31–4.50 kbit/s
FlowDec-75m 4.50 3.01 3.57 ± 0.24 12.95 ± 0.07 99.02 ± 1.76 3.41 ± 0.03
DAC-75 4.50 6.80 6.08 ± 0.18 13.33 ± 0.08 90.19 ± 1.32 3.15 ± 0.02
2xDAC-75 4.50 6.42 6.47 ± 0.18 14.20 ± 0.07 87.44 ± 1.36 3.16 ± 0.02
DAC 44.1 kHz 4.31 9.25 5.74 ± 0.19 13.23 ± 0.08 104.08 ± 1.85 3.13 ± 0.03
NDAC-75 4.50 41.01 5.05 ± 0.24 14.41 ± 0.08 78.36 ± 1.23 2.68 ± 0.02

2.58–3.00 kbit/s
FlowDec-75m 3.00 4.41 1.10 ± 0.28 11.43 ± 0.06 104.62 ± 1.87 3.40 ± 0.03
DAC-75 3.00 9.68 3.83 ± 0.18 11.83 ± 0.07 94.81 ± 1.41 3.10 ± 0.03
2xDAC-75 3.00 8.82 4.29 ± 0.19 12.74 ± 0.07 91.79 ± 1.43 3.13 ± 0.03
DAC 44.1 kHz 2.58 12.82 2.78 ± 0.20 11.24 ± 0.08 110.00 ± 1.88 2.93 ± 0.03
NDAC-75 3.00 49.07 2.64 ± 0.26 12.89 ± 0.08 81.75 ± 1.28 2.59 ± 0.02
EnCodec 3.00 15.66 3.44 ± 0.20 9.74 ± 0.12 153.48 ± 2.78 2.10 ± 0.02

4.00 kbit/s (25 Hz)
FlowDec-25s 4.00 2.47 2.21 ± 0.31 13.26 ± 0.07 98.95 ± 1.85 3.42 ± 0.03
DAC-25 4.00 5.98 6.15 ± 0.21 13.57 ± 0.08 89.90 ± 1.34 3.13 ± 0.03
2xDAC-25 4.00 5.96 6.49 ± 0.21 13.95 ± 0.08 90.45 ± 1.27 3.17 ± 0.02
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