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A APPENDIX

A.1 FIGURES AND TABLES

Figure 5: Performance of RL in different hand-crafted reward designs to optimize clinical efficacy.
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(b) Random Seed 2002
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(c) Random Seed 2003
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Figure 6: Performance of Multi-objective RL with linear scalarization on three reward factors:
survival rate, last tumor size, and maximum toxicity levels. The linear weight assigned to each factor
is one of four values: {1, 2, 4, 8}.
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Figure 7: Cancer treatment strategies recommended by agent AbRM: (a) clinical efficacy and expected
return during training, and (b) expected return of policies ending with different negative impacts
during testing.
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(b) AbRM on Negative Impacts
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Figure 8: Effects of different agent designs on performance.
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Figure 9: Sepsis treatment strategies recommended by the AbRM agent: (a) clinical efficacy and
expected return during training, (b) reward transferability among different configurations.
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Figure 10: For Cancer experiments, true expected return of DQN learning from behavioral policies of
Policy Gradient and its estimations from different off-policy evaluation methods.
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Table 2: Performance for Cancer medication recommendation considering negative impacts from two
factors: the tumor size in the end and the ever experienced maximum toxicity.

Method Type Method Name Clinical Efficacy Other Factors
Survival Rate Last Tumor Max Toxicity

Non-learning

Constant Best (0.4) 19.91%±0.58% 1.76±0.02 0.57±0.01
Constant Worst (0.1) 4.89%±0.68% 3.72±0.03 0.48±0.04
Random 17.81%±0.91% 0.82±0.02 1.64±0.04

Preference Learning PBPI 20.80%±0.56% 1.38±0.12 1.01±0.12

Reinforcement
Learning
(Hand-crafted reward)

Single-objective RL 26.96%±3.02% 0.48±0.28 1.37±0.28
Single-objective RL (Ensemble) 27.38%±3.32% 0.47±0.29 1.38±0.29
Existing Multi-objective RL 18.84%±5.77% 0.25±0.10 2.16±0.60
Grid-search Multi-objective RL 25.10%±1.44% 0.63±0.20 1.21±0.16

Reinforcement
Learning
(Preference-based reward)

AbRM (CE) 31.52%±1.38% 0.11±0.10 1.74± 0.06
AbRM (CE&OF-II) 30.34%±2.71% 0.23±0.22 1.63±0.19
SbRM(CE) 30.54%±3.46% 0.18±0.25 1.67±0.22
SbRM(CE&OF-II) 30.76%±2.64% 0.08±0.09 1.75±0.09
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Table 3: Evaluating the clinical efficacy (survival rate) achieved by the proposed preference-based
RL framework when hand-crafted and preference-based rewards are linear combined with different
ratios.

Ratios AbRM
(CE)

AbRM
(CE&OF-I)

AbRM
(CE&OF-II)

SbRM
(CE)

SbRM
(CE&OF-I)

SbRM
(CE&OF-II)

8:1 28.36%±3.09% 28.07%±3.50% 28.23%±3.82% 29.10%±3.19% 26.51%±2.47% 28.94%±3.17%
4:1 28.92%±2.82% 27.41%±3.66% 27.9%3±3.61% 27.77%±3.16% 28.45%±3.18% 27.54%±3.09%
2:1 26.30%±3.19% 27.50%±3.64% 27.71%±3.47% 27.55%±3.40% 27.81%±3.15% 28.43%±3.12%
1:1 27.42%±3.24% 27.70%±3.73% 27.62%±2.88% 27.99%±2.9% 28.49%±3.23% 28.71%±3.50%
1:2 26.96%±2.95% 27.55%±2.90% 28.66%±3.19% 28.59%±2.94% 28.79%±3.21% 28.30%±3.29%
1:4 27.46%±3.53% 26.59%±3.40% 28.25%±3.47% 29.91%±1.93% 28.75%±3.06% 27.08%±3.64%
1:8 27.15%±3.00% 29.21%±2.42% 27.67%±3.38% 29.18%±2.45% 28.55%±2.85% 28.48%±3.28%
0:1
(Ours) 31.52%±1.38% 31.33%±1.18% 30.34%±2.71% 30.54%±3.46% 31.72%±1.08% 30.76%±2.64%
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A.2 PREFERENCE-BASED REINFORCEMENT LEARNING ALGORITHMS

The preference-based Reinforcement Learning framework is composed of two main modules,
Preference-based Reward Learning and Preference-guided Agent Learning. In Preference-based
Reward Learning, the reward estimator parameterized by θP delivers step-wise rewards to the two
agents parameterized by θ1A and θ2A based on their policy preference. In Preference-guided Agent
Learning, the agents update their parameters so as to optimize the clinicians’ objectives. The pair of
policies performed by the two agents on the sampled subject is stored in the policy pool and leveraged
for parameter update in reward estimator, with the aim to ensure higher expected return for the
preferred policy. We list the pseudo codes for collaborative learning in Algorithm 1, Preference-based
Reward Learning in Algorithm 2, and Preference-guided Agent Learning in Algorithm 3, respectively.

Collaborative Learning Algorithm 1 illustrates the collaborative learning process between the two
modules in order to estimate reward and learn policies in personalized treatment recommendation. In
the beginning, the model parameters are randomly initialized (line 1), and the policy pools for the
reward estimator and the two agents are created as empty sets (line 2). In each iteration, one subject
is sampled from the training set for agent learning (line 3 to 5). At each simulation step, the two
agents are asked to make decisions based on the current state and the reward estimator generates
corresbonding step-wise reward for each of them (line 6 to 10). The subject’s internal state keeps
on updating until the simulation time has reached or the subject dies intermediately according to
the underlying mathematical modeling. The policy pools of the two agents are augmented with
the trajectories on the newest sampled subject (line 9 and 11), while the policy pool for the reward
estimator is also updated (line 13) after computing the ground-truth preference label (line 12). After all
the samples have been utilized for policy generation, the reward estimator minimizes the classification
loss during policy preference inference with Algorithm 2 (line 16), while the RL agents optimize the
expected return with Algorithm 3 (line 17).

Algorithm 2 PREFERENCE-BASED REWARD LEARNING

Require:
Dn: sampled policy pairs in n-th iteration
θP : parameters to update in reward function
γP : discounted factor on reward
β: step size for parameter update

1: L← 0
2: for all (τ1, τ2, pre(τ1, τ2)) ∈ Dn do
3: R(τ1; θP )← 0, R(τ2; θP )← 0
4: for all (s1t , a

1
t , r

1
θP ,t

, s1t+1) ∈ τ1 do
5: R(τ1; θP )← R(τ1; θP ) + γtP r

1
θP ,t

6: end for
7: for all (s2t , a

2
t , r

2
θP ,t

, s2t+1) ∈ τ2 do
8: R(τ2; θP )← R(τ2; θP ) + γtP r

2
θP ,t

9: end for
10: Compute p(τ1 � τ2)
11: if τ1 � τ2 then
12: L← L+ log p(τ1 � τ2)
13: else if τ2 � τ1 then
14: L← L+ log

(
1− p(τ1 � τ2)

)
15: else if τ1 ∼ τ2 then
16: L← L+ 0.5 log p(τ1 � τ2) + 0.5 log

(
1− p(τ1 � τ2)

)
17: end if
18: end for
19: Update θP ← θP − β∆θPL
20: return θP

Preference-based Reward Learning Given pairs of policies with corresponding preferences, the
reward estimator updates its parameters to maximize the probability that the preferred policy achieves
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higher expected return than the other. As shown in Algorithm 2, the discounted expected returns
achieved by each agent are firstly calculated respectively for each sampled policy pair (line 3 to 9).
Then the probability that policy τ1 is preferred to τ2 is positively correlated to the expected return
of τ1, and is computed as (Agresti & Kateri, 2011) introduced (line 10). Hence p(τ2 � τ1) is
equal to 1− p(τ1 � τ2). Then the loss value is computed considering different kinds of preference
relationships between the two policies (line 11 to 17). Incomparable policy pairs are also leveraged
in reward learning for better preference space exploration (line 15 to 16).

Algorithm 3 PREFERENCE-GUIDED AGENT LEARNING

Require:
Γn: sampled policies from one agent in n-th iteration
α: step size for parameter update
M: one of the two reward assignment methods
LθA : loss function in any deep RL approach parameterized by agent parameters θA

1: ε = ∅
2: for all (st, at, rθP ,t, st+1) ∈ Γn do
3: ifM is Action-based Reward Modification then
4: rt ← rθP (st, at)
5: else ifM is State-based Reward Modification then
6: rt ← hθP (st)− hθP (st−1)
7: end if
8: ε← ε ∪ {(st, at, rt, st+1)}
9: end for

10: Update θA ← θA − α∆θA

∑
x∈ε

LθA
(
x
)

11: return θA

Preference-guided Agent Learning Each agent updates their parameters individually as Algo-
rithm 3 depicts. The agent receives rewards computed by either Action-based Reward Modification
(line 3 to 4) or State-based Reward Modification (line 5 to 6). Then we leverage (st, at, rt, st+1) to
update the agent model implemented by any deep Reinforcement Learning approach.

A.3 SIMULATION PLATFORM DESIGN

A.3.1 MEDICATION RECOMMENDATION FOR GENERAL CANCER

Survival Analysis Within time interval (t−1, t], where (1 ≤ t ≤ 6), the survival status is assumed
to depend on both the current tumor size yt and the toxicity level xt. The probability of a patient’s
death is modeled as follows:

Hazard function: λ(t) = exp(−4 + yt + xt), Cumulative hazard function: ∆∆(t) =

∫ t

t−1
λ(s)d(s),

Survival function: ∆F (t) = exp(−∆∆(t)), Death probability: pdeath = 1−∆F (t).

Implementation Details The action space is discrete and the dosage amount decisions are selected
among 4 options: 0.1, 0.4, 0.7, 1.0 (Fürnkranz et al., 2012). For state initialization, the tumor size
and the toxicity level in the 0th month are generated independently from the uniform distribution
U(0, 2). The simulation terminates after t = 6th month or if the patient dies intermediately.

Model Implementation and Training For 6-month simulation, we randomly sample 10, 000
subjects for training, 2, 000 for validation, and 2, 000 for testing. The neural networks for all deep
learning approaches including preference learning and reinforcement learning share the similar
network structure and hyper-parameters: 2 fully-connected layers, the first followed by ReLU
activation and the second followed by different activation functions for different approaches. In one
epoch, the agent gets updated after seeing all the training samples. The learning rate is set to 0.01 and
all the networks converge after 400 epochs. For deep RL methods, we set the discount factor γ to 1.
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A.3.2 BLOOD PURIFICATION RECOMMENDATION FOR SEPSIS

Mathematical Modeling in Simulation Sepsis is initiated by spillover of pathogens into blood,
where the pathogen is allowed to spread throughout the organism in which systemic inflammation
takes place (Stojkovic et al., 2016). Motivated by the promising results of blood purification in
other critical illness conditions like acute kidney failure (Ronco et al., 2000), blood purification has
gained attention as a potentially effective solution for septic subjects (Rimmelé & Kellum, 2011). In
blood purification treatment, the patient is connected to an extracorporeal hemoadsorption device that
removes harmful particles from the blood and leads the patient towards a healthy state.

We employ the mathematical model derived by Song et al. to simulate the acute inflammation process
in response to an infection (Song et al., 2012). Both heuristic knowledge about the mechanism
underlying infection and real measurements from experiments on CLP-induced septic rats were
leveraged for the model design. The distribution of initial physiological features and their interactions
are derived from domain knowledge. The initial physiological features that characterize a subject
accords with the probability distributions based on real experimental measurements for septic rats.
The parameters in transition functions are calibrated so that the generated trajectories closely follow
experimentally observed temporal patterns in septic rats.

Figure 12 demonstrates the feature interaction network. There are 19 physiological features that
govern sepsis dynamics, 8 of which are observable (features above the horizontal dashed line) while
the remaining 11 are conceptual variables (features below the horizontal dashed line). When a blood
purification operation is made, three components in the circulation are eliminated (features marked
by red dashed ring), i.e., activated neutrophils Na and the pro- and anti-inflammatory mediators PI
and AI. Besides effects from the blood purification operation, the variables influence each others’
progression through Ordinary differential equations (ODEs).

State Transition There are 18 ODEs to describe feature interactions and 3 ODEs for the hypothetic
mechanism of blood purification. The hypothetic mechanisms of action of the blood purification
are implemented by assuming the hemoadsorption device eliminates only three components in the
circulation: activated neutrophils (Na), pro-inflammatory mediators (PI), and anti-inflammatory
mediators (AI) during the treatment period. We here only show the transition equation of these three
key features with and without operation, ODEs concerning other features can be found in (Song et al.,
2012).

The variable PI stands for the extent of the systemic inflammation and progresses as follows:

dPI

dt
=
( B/B∞
hPI_B +B/B∞

(
1− Dn

hnPI_D +Dn

)(
1− AIn(1− PI)

hnPI_AI +AIn
)

(3)

+
(
1− B/B∞

hPI_B +B/B∞

) Dn

hnPI_D +Dn

(
1− AIn(1− PI)

hnPI_AI +AIn
)

+
B/B∞

hPI_B +B/B∞

Dn

hnPI_D +Dn

(
1− AIn(1− PI)

hnPI_AI +AIn
)
− PI

) 1

τPI
,

P I(t′ + 1) =

{
PI(t′) + dPI

dt (t′) If no operation is performed
PI(t′) + dPI

dt (t′)− PI
hPIHA+PI Otherwise

, (4)

where B is the population of bacteria in the peritoneum, D is a coarse-grained representation of
integrated tissue damage, variables hPI_B , hPI_D, hPI_AI , τPI are subject-specific parameters, B∞
is a predefined upper bound of B, hPIHA = 0.3 and n = 3.
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Table 4: Configurations for Sepsis treatment simulation. h represents hour in the simulation platform.

Step Size τ Horizon Length T Operation Time
Interval L

Decision-making
Frequency f

Duration per
Operation l

τ = 0.1 h T = 100 h 5th to 18th h f = 2 h or 4h l = 2 h or 4h

The variable AI describes the level of the anti-inflammation corresponding to systemically acting
anti-inflammatory mediators and gets updated as follows:

dAI

dt
=
( PIn1

hn1

AI_PI + PIn1

(
1− Na/N∞

hAI_Na
+Na/N∞

)
+
(
1− PIn1

hn1

AI_PI + PIn1

) Na/N∞
hAI_Na

+Na/N∞

(5)

+
PIn2

hn2

AI_PI + PIn2

Na/N∞
hAI_Na +Na/N∞

−AI
) 1

τAI
,

AI(t′ + 1) =

{
AI(t′) + dAI

dt (t′) If no operation is performed
AI(t′) + dAI

dt (t′)− AI
hAIHA+AI Otherwise

, (6)

where variables hAI_PI , hAI_Na , τAI are subject-specific parameters, N∞ is a predefined upper
bound of neutrophils, hAIHA = 0.3, n1 = 1 and n2 = 3.

The variable Na represents the activated blood neutrophils and transits in each simulation step as
follows:
dNa
dt

=
NrPI

n

hnNr_Na
+ PIn

1

τNr_Na︸ ︷︷ ︸
transmission fromNr toNa

+
NpPI

n

hnNp_Na
+ PIn

1

τNp_Na︸ ︷︷ ︸
transmission fromNp toNa

− Na
τNa

− NaPI
n

hnNa_Ns
+ PIn

1

τNa_Ns︸ ︷︷ ︸
transmission fromNa toNs

, (7)

Na(t′ + 1) =

{
Na(t′) + dNa

dt (t′) If no operation is performed
Na(t′) + dNa

dt (t′)− Na/N∞
hNaHA+Na/N∞

(t′) Otherwise
, (8)

where Nr is resting blood neutrophils, Np is blood neutrophils, Ns is neutrophils sequestered in
the lung capillaries, variables hNr_Na

, hNp_Na
, hNa_Ns

, τNr_Na
, τNp_Na

, τNa_Ns
are subject-specific

parameters, hNaHA = 0.3, and n = 3.

Survival Analysis The survival status of the subject only depends on the value of the systemic
pro-inflammatory response PI at the end of the simulation. When the PI value at the last time-step
is smaller than the pre-defined threshold 0.5, then the subject is assumed to be alive, otherwise
dead. Note that after the blood purification process, the PI value reduces as time passes, hence one
cannot conclude whether the subject is alive in the intermediate time-steps. After the pre-defined
simulation horizon is reached, we can confirm which subjects survive with the help of treatment. The
mathematical model is quite different from the general Cancer Treatment model where subjects have
a probability to die intermediately.

Implementation Details Due to phenotype differences, some subjects survive without any blood
purification operation while some die. This is consistent with laboratory experiments where 30%
of rats survived till seven days while the remaining died between two to five days after CLP (Zhao
et al., 2009). We call the survivor group Survival Population and the non-survivor group Death
Population. The survival status of the Survival Population gets no influence from blood purification
operations. Subjects from Death Population have the potentials to survive if proper treatment
policies are delivered. Since we are primarily concerned about the outcomes on subjects from Death
Population, we only sample subjects from the Death Population in this paper to train and evaluate
treatment policies.

There are a few hyper-parameters that should be set in advance: 1) Simulation step size τ : every
τ time, the simulator updates the internal status of subjects by computing the ODEs with feature
values from the last simulation step and the current action. 2) Simulation horizon length T : we can
evaluate the performance of a policy by checking outcomes of subjects after time T . 3) Valid time
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range L for patients to receive treatment: operations can take place at any time-step (L = [0, T − 1])
or be constrained to predefined time intervals (L  [0, T − 1]). 4) Frequency of decision-making f
: subjects can receive operations at each simulation step τ or less frequently. 5) Duration of each
blood purification operation l: it takes some costs to turn on/off the purification device and it is also
unrealistic to attach and detach the device from the subject too frequently. Therefore, there should be
a pre-defined value for the purification duration to rule out the possibility of too frequent actions.

To generate testable hypotheses that guide future laboratory experiments (Song et al., 2012; Stojkovic
et al., 2016), the simulation of sepsis evolution should be configured to make the generated trajectory
closely follow experimentally observed temporal patterns (Song et al., 2012). Further, several
constraints can be imposed on the simulation in accordance with previous blood purification studies
(Song et al., 2012; Stojkovic et al., 2016). Therefore we use the configuration listed in Table. 4 for
experiments.

Model Implementation and Training We randomly sample 3,000 subjects for training, 1,000 for
validation, and 1,000 for testing. Implementation details of the deep RL approaches are similar to
those mentioned in the Cancer task, except that the backend network is LSTM-based since this is a
POMDP.

Learning efficient treatment policies for Septic subjects is more difficult for Cancer due to the larger
state space and the partially observable environment. Therefore, we adopt the following methods to
ensure robust learning: 1) Mini-batch gradient descent with batch size 10,000 is adopted to update
parameters in reward estimator and RL agents. 2) The learning rate for RL agents is 0.01 while
0.001 for the reward estimator. 3) As discussed in Experiment Section, experience replay makes the
estimated reward positively proportional to the Survival Rate. We randomly extract policy pairs from
the latest 30,000 samples for model updates.
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Figure 11: Distribution of state features (tumor size and toxicity level) from Cancer subjects without
treatment or with treatment from different agents.
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Figure 12: Interaction network of inflammatory responses and hypothetic hemoadsorption mecha-
nisms of action in CLP-induced sepsis. Nodes in green represent components in peritoneum, nodes
in orange stand for blood components, and nodes in purple stand for lung components. Edges
represent network interactions under blood purification treatment compiled from literature. When
blood purification is performed, only features PI,AI and Na are influenced (marked by red dashed
rings).
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Figure 13: Distribution of 19 state features from Septic subjects without treatment or with treatment
from SbRM.
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