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Abstract
Document Visual Question Answering (DVQA) involves respond-
ing to queries based on the contents of document images. Existing
works are confined to locating information within a single page
and lack support for cross-page question-and-answer interactions.
Furthermore, the token length limitation on model inputs can lead
to the truncation of answer-relevant segments. In this study, we
present CREAM, an innovative methodology that focuses on high-
performance retrieval and integrates relevantmultimodal document
information to effectively address this critical issue. To overcome
the limitations of current text embedding similarity methods, we
first employ a coarse-to-fine retrieval and ranking approach. The
coarse phase calculates the similarity between the query and text
chunk embeddings, while the fine phase involves multiple rounds
of grouping and ordering with a large language model to identify
the text chunks most relevant to the query. Subsequently, inte-
grating an attention pooling mechanism for multi-page document
images into the vision encoder allows us to effectively merge the
visual information of multi-page documents, enabling the multi-
modal large language model (MLLM) to simultaneously process
both single-page and multi-page documents. Finally, we apply vari-
ous parameter-efficient tuning methods to enhance document vi-
sual question-answering performance. Experiments demonstrate
that our approach secures state-of-the-art results across various
document datasets.

CCS Concepts
• Information systems→Document representation;Question
answering; • Applied computing→ Document analysis.
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1 Introduction
Document visual question answering holds significant practical
value, enabling rapid and precise extraction of answers from ex-
tensive documents in response to user queries [29, 30, 34]. As one
of the most challenging tasks in the current multimodal field, it
requires understanding not only text semantics but also visual and
layout information in document images. However, the majority of
current methods are limited to single-page documents, demonstrat-
ing inadequate performance on multi-page documents [36, 38] as
well as on lengthy content within single-page documents.

Currently, fine-tuning pre-trained visual document understand-
ing models has yielded impressive outcomes in question-answering
tasks involving visually rich documents (VRDs) [1, 15, 17, 18, 41,
42, 44]. This indicates that the integration of large-scale, unlabeled
training documents during the pre-training phase of document
understanding models can significantly enhance their ability to
answer questions from VRDs. Despite notable advancements, these
approaches heavily invest in comprehending document images. Yet,
most can only process single-page documents or a fixed length of
document information, leading to a constrained understanding of
documents. This limitation introduces irrelevant information noise
and may also result in the loss of pertinent information due to trun-
cation. For multi-page documents, the prevalent method[36, 38]
involves first identifying the document page relevant to the query
and then processing it as a single-page document. This approach
fundamentally lacks generalization capability, underscoring a sig-
nificant journey still ahead toward practical application.

Large language models (LLMs), such as GPT-3 [5], LLaMA [37],
and PaLM [6], have rapidly developed and demonstrated remark-
able results across a broad spectrum of natural language process-
ing (NLP) tasks. Recently, several methods have been explored to
integrate visual features of documents into LLMs for reasoning
[2, 10, 13, 43, 48]. Although certain achievements have been real-
ized, understanding visually rich documents remains limited. The
primary challenge is that relying solely on image modal fails to
fully capture the semantic information of document images, and
the area of multi-page document VQA remains unexplored.

In this paper, we propose CREAM, a framework that combines
high-performance retrieval enhancements with multi-image, multi-
modal, and efficient instruction tuning. Our approach consists of
three modules: (1) an OCR engine that extracts text from document
images; (2) a retrieval module that locates relevant document text
chunks based on a given question; and (3) a MLLM that combines
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Figure 1: The pipeline of our approach. (1) Following the
input of document images and a query, the OCR tool extracts
the corresponding text information and then segments the
text into chunks, with each chunk corresponding to a part
of the document image. (2) Utilizing our designed coarse-
to-fine retrieval algorithm, we obtain text chunks pertinent
to the query and their corresponding document images. (3)
Incorporating the text chunks and corresponding images
into our specially designed MLLM for multi-page documents,
which then predicts the answer.

multi-page document images and related document text chunks for
comprehensive fine-tuning. Figure1 illustrates the specific pipeline.

Specifically, we first propose an innovative algorithm to enhance
the retrieval performance. On one hand, the performance of the
existing text embedding models, which is based on similarity search,
has reached a bottleneck; on the other hand, the LLMs exhibit strong
ranking capabilities. By integrating these approaches—initially per-
forming coarse-grained retrieval with the text embedding model,
followed by several rounds of fine-grained grouping and rerank-
ing by the LLM—the most relevant text chunks are identified. This
method can not only filter out a lot of irrelevant information but also
realize cross-page question answering or even multi-hop question
answering, which has a strong generalization ability. Furthermore,
unlike conventional text, document images encapsulate rich visual
information, prompting us to utilize a vision encoder to extract this
information to aid in comprehending the associated text seman-
tics. However, current vision encoders are limited to processing
single-page documents. Therefore, we have developed a vision en-
coder that accepts multiple document images and is integrated
within an LLM. This allows for the amalgamation of relevant text
chunks with corresponding document images, facilitating the con-
current consideration of text and image information pertinent to
the query, thereby yielding accurate responses. Experiments were

conducted on three single-page document datasets and two multi-
page document datasets, demonstrating that our method achieves
state-of-the-art results in comparison with other methods.

The contributions of this paper are summarized as follows:

• We propose CREAM, a multimodal large language model
designed to enhance the performance and generalization
capabilities of document VQA.
• We design a coarse-to-fine retrieval algorithm to select the
most relevant text chunks from document pages through
embedding-based similarity retrieval, multi-round group-
ing, and LLM reordering, thereby enhancing the question-
answering effectiveness.
• We introduce a vision encoder capable of processing multiple
document images. By incorporating page information and
applying attention pooling for a weighted representation
of multi-page document images, we enable visual question-
answering capabilities for multi-page documents through
integration with a large language model.
• We achieved state-of-the-art results on two multi-page doc-
ument datasets, as well as the best performance on three
single-page document datasets compared to similar methods,
and provided extensive ablations to each component in our
method.

2 Related Work
2.1 Visually Rich Document Understanding

(VRDU)
The VRDU task is aimed at interpreting content within document
images, recognized as a formidable challenge. Existing approaches
to VRDU can be broadly categorized by their use of Optical Charac-
ter Recognition (OCR) tools. There are two primary types of models:
(1) Two-Stage Models Using OCR Tools, which utilize OCR to ex-
tract text and layout information from document images. In this
approach, specific pre-training tasks are designed to align visual
features, layout information, and textual features within a semantic
space. Examples include LayoutLMv3 [15], UDOP [35], and Doc-
formerv2 [1], which incorporate tasks like masked image modeling
and word-patch alignment, aiming to harmonize the relationship
between textual content and its spatial arrangement in documents.
(2) End-to-End Models Based on Image Features [17, 18]. This cat-
egory’s pre-training objectives typically involve text recognition
tasks akin to OCR, focusing on the nuanced understanding of docu-
ment images. Recently, with the advent of MLLMs [9, 23, 25, 47, 49],
efforts have been made to integrate vision encoders into LLMs,
thereby endowing them with image understanding capabilities.
Ureader [43] has been fine-tuned on multiple document under-
standing datasets, including question-answering and document
summarization tasks. LayoutLLM [8] enhances document under-
standing performance by incorporating pre-trained document vi-
sion encoders into large language models. MPLUG-DocOwl 1.5 [13]
proposes unified structure learning to boost the performance of
MLLMs.

While the aforementioned methods harness multimodal informa-
tion from document images, they necessitate substantial resource
consumption for pre-training alignment tasks. Moreover, most of
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these methods can only process documents with limited informa-
tion on a single page and struggle to fully grasp the nuances of
document information, frequently contending with excessive noise.
In our work, acknowledging that such tasks are primarily driven
by textual information and augmented with image information,
we leverage the reasoning capabilities of LLMs. By refining the
instruction-tuning approach, we facilitate the precise generation of
answers.

2.2 Retreival Augmented Generation (RAG)
RAG significantly enhances the input capabilities of LLMs by inte-
grating retrieved text passages [11, 20], leading to notable improve-
ments in knowledge-intensive tasks. This enhancement is evident
post-fine-tuning and even when used with off-the-shelf LLMs [33].
Currently, RAG plays a pivotal role in addressing two key chal-
lenges associated with LLMs: the hallucination of knowledge and
the need for up-to-date information. A more recent advancement
[28] in the field involves instruction-tuning a Language Model (LM)
by appending a fixed number of retrieved passages to the input.
This approach is designed to enrich the model’s context and un-
derstanding by providing additional, relevant information upfront.
Furthermore, some methodologies involve jointly pre-training a
retriever and an LM, which is then followed by few-shot fine-tuning
on specific task datasets.

These methods, while effective in addressing open-domain ques-
tions, also encounter significant shortcomings, notably the retrieval
of non-relevant information. To address this, we have innovatively
applied RAG to the task of DVQA. Our approach enhances the
relevance of the information retrieved by implementing a coarse-
to-fine retrieval method. This method is meticulously designed to
accurately isolate the specific paragraph containing the answer and
to eliminate extraneous content.

3 Approach
We introduce CREAM, a novel approach based on LLaMA Adapter
V2 [47], distinguished by its incorporation of high-performance
document retrieval and visual representation of multi-page doc-
ument images. Initially, we employ an OCR tool to extract text
content from multi-page document images. For the text retrieval
module, we introduce the coarse-to-fine retrieval method to con-
struct relevant text chunks and corresponding document images.
During the MLLM instruction-tuning phase, we expand the im-
age encoder to capture the semantic representation of multi-page
document images, integrating these into the MLLM for enhanced
instruction-tuning. Ultimately, CREAM is adept at handling the task
of single-page and multi-page document visual question answering.

3.1 Coarse-to-Fine Retrieval
RAG has recently been effectively applied across various domains,
however, its application in DVQA, particularly in multi-page DVQA,
remains underexplored. Given the limitation of existing models on
the volume of document content they can process, prioritizing the
retrieval of multi-page documents becomes essential. Furthermore,
the current reliance solely on text embedding similarity for retrieval
proves insufficient, as it may yield irrelevant information while

overlooking pertinent details. Consequently, we have implemented
further enhancements.

Our proposed coarse-to-fine retrieval method effectively selects
content and corresponding document images that are most relevant
to the question. Initially, the extracted text is segmented into chunks,
such as text chunks of 512 characters in length. Subsequently, the
query and each text chunk are analyzed using the similarity of
pre-trained text embedding to rank the text chunks. Ultimately,
RankVicuna [31], a ranking pre-trained model of an LLM, groups
every𝑚 text chunk, and after several screening rounds, identifies
the𝑚 text chunks with the highest semantic match. Only the top 3
text chunks are selected as input. The algorithm’s flow is depicted
in Algorithm 1.

Algorithm 1 Coarse-to-Fine Retrieval Algorithm
Require: 𝑄𝑢𝑒𝑟𝑦: The input query
Require: 𝐶ℎ𝑢𝑛𝑘𝑠: A set of document chunks, {𝐶1,𝐶2, . . . ,𝐶𝑛}
Require: 𝑇𝑒𝑥𝑡_𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔: A pre-trained text embedding model
Require: 𝑅𝑎𝑛𝑘𝐿𝐿𝑀 : A re-ranking model
Ensure: A re-ranked set of document chunks
𝐾 ← 5 {Initialize K}
𝑅𝑎𝑛𝑘𝑒𝑑𝐶ℎ𝑢𝑛𝑘𝑠 ← Text_Embedding(𝑄𝑢𝑒𝑟𝑦,𝐶ℎ𝑢𝑛𝑘𝑠)
𝐺𝑟𝑜𝑢𝑝𝑠 ← Group(𝑅𝑎𝑛𝑘𝑒𝑑𝐶ℎ𝑢𝑛𝑘𝑠,𝑚) {Group every𝑚 chunks}
while True do
𝑅𝑒𝑅𝑎𝑛𝑘𝑒𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← []
for each 𝑔𝑟𝑜𝑢𝑝 ∈ 𝐺𝑟𝑜𝑢𝑝𝑠 do
𝑅𝑒𝑅𝑎𝑛𝑘𝑒𝑑𝐺𝑟𝑜𝑢𝑝 ← 𝑅𝑎𝑛𝑘𝐿𝐿𝑀 (𝑔𝑟𝑜𝑢𝑝)
𝑅𝑒𝑅𝑎𝑛𝑘𝑒𝑑𝐺𝑟𝑜𝑢𝑝𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅𝑒𝑅𝑎𝑛𝑘𝑒𝑑𝐺𝑟𝑜𝑢𝑝)

end for
𝐶𝑎𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 ← ⋃

𝑔∈𝑅𝑒𝑟𝑎𝑛𝑘𝑒𝑑𝐺𝑟𝑜𝑢𝑝𝑠

Top 𝐾 ∈ 𝑔

𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒𝑑𝐶ℎ𝑢𝑛𝑘𝑠 ← Shuffle(𝐶𝑎𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠)
𝐺𝑟𝑜𝑢𝑝𝑠 ← Group(𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒𝑑𝐶ℎ𝑢𝑛𝑘𝑠,𝑚)
𝐾 ← 𝐾 − 2
if

∑
𝑔∈𝐺𝑟𝑜𝑢𝑝𝑠

|𝑔| < 𝑚 ∨ 𝐾 < 1 then

break
end if

end while
return

⋃
𝑔∈𝐺𝑟𝑜𝑢𝑝𝑠

𝑔 {Return the final set of chunks}

3.2 Multi-page Vision Encoder
Most recent multimodal LLMs employ a common framework that
utilizes distinct vision and text towers to independently encode the
twomodalities. These encoded representations are then fused—either
by projecting the image representation through one or multiple
projection layers, or by direct concatenation—before being fed into
LLMs. To our knowledge, all existing visual-language models only
accommodate a single document image as input. To tackle accuracy
and efficiency challenges, we introduce a new attention-pooling
mechanism. This mechanism combines multi-page document im-
ages with page information, effectively bridging the gap between
multiple image inputs and standard vision language models (VLMs).
In particular, multiple images are processed by vision encoders,
generating several visual representations through the vision tower
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Figure 2: Overview of our CREAM framework.CREAM features (1)a vision encoder capable of processing both single-page
and multi-page document images, (2)a LLM, and (3)a projection layer linking the vision encoder to the LLM. We utilize the
attention pooling mechanism to adapt the existing vision encoder, enabling it to process both single-page and multi-page
documents. Upon model construction, we employ various parameter fine-tuning techniques to refine the instruction process
for multi-modal document VQA.

of any VLM, which extracts visual information from each docu-
ment image. Subsequently, these visual representations, along with
combined page embedding information, are fused through the at-
tention pooling mechanism to derive the final semantic features
of the multi-page document. The specific process is shown in Fig-
ure 2(left). Figure 2(right) illustrates the model architecture and
parameter-efficient tuning methods we employed. The following is
a detailed explanation of each module.

Document Image Visual Representation. For our problem
setting, we introduce 𝐼 = {𝐷1, 𝐷2, . . . , 𝐷𝑛}, comprising𝑁 document
images. These images are processed through a vision encoder to
obtain visual representations for each document image:

∀𝑛 = 1, . . . , 𝑁 : 𝑓𝑛 = Vision_Encoder(𝐷𝑛) (1)

where the vision encoder used from Pix2Struct [18].
Subsequently, we augment global location representations by

adding them to page embeddings of corresponding document pages:

∀𝑛 = 1, . . . , 𝑁 : 𝑒𝑛 = 𝑓𝑛 + page_embedding𝑛 (2)

Attention Pooling. It is a weighted average of multiple docu-
ment image representations.

𝐸 =

𝑁∑︁
𝑛=1

𝑎𝑛𝑒𝑛 (3)

𝑎𝑛 =
exp{𝑤⊤ tanh(𝑊𝑒⊤𝑛 )}∑𝑁
𝑖=1 exp{𝑤⊤ tanh(𝑊𝑒⊤

𝑖
)}

(4)

𝑁∑︁
𝑛=1

𝑎𝑛 = 1 (5)

Where 𝐸 indicates the visual vector of the document images.
Visual Query. Upon obtaining the weighted feature represen-

tation of multi-page document images via the attention pooling
mechanism, we generate a visual query vector to capture the global
feature representation of these images. Once combined with 𝐸 and
processed through 𝑛 layers of vision transformer (ViT) [7] blocks,
the visual query ultimately captures a deeper level of multi-page
document images.

𝐷𝑄 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑉𝑖𝑠𝑢𝑎𝑙_𝑄𝑢𝑒𝑟𝑦, 𝐸) (6)

𝐷
𝑄

𝑔𝑙𝑜𝑏𝑎𝑙
= 𝑉𝑖𝑇𝐵𝑙𝑜𝑐𝑘𝑠 (𝐷𝑄 ) (7)

𝐷
𝑄

𝑔𝑙𝑜𝑏𝑎𝑙
, as the final representation of document images, is in-

serted into the LLM through the AdapterMLP [27] to achieve image
and text alignment.

𝑉𝑖𝑠𝑢𝑎𝑙_𝑄𝑢𝑒𝑟𝑦 = 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑀𝐿𝑃 (𝐷𝑄

𝑔𝑙𝑜𝑏𝑎𝑙
) (8)
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3.3 Multimodal Efficient Tuning
In this phase, we integrated multiple parameter efficient tuning
techniques, such as LoRA [12, 14, 46], prefix tuning [19, 21, 26], and
bias tuning, while incorporating the zero-initialization attention
mechanism from prior methodologies [9, 40, 47], enabling us to
achieve sophisticated fine-tuning effects with a minimal number of
training parameters.

LoRA. Trainable low-rank matrices are introduced to modify
the query and value matrices within the multi-head attention layer.
The specific computation is implemented as follows:

Two low-rank matrices,𝑊𝑎 and𝑊𝑏 are initialized. These matri-
ces have dimensions that are significantly smaller than the original
query and value matrices, thereby reducing the number of trainable
parameters. The original query and value matrices, denoted as 𝑄
and 𝑉 respectively, are modified using the low-rank matrices. This
modification is not a direct replacement but an additive update,
which can be mathematically represented as:

𝑄 ′ = 𝑄 +𝑊𝐴𝑄𝑊𝐵 (9)

𝑉 ′ = 𝑉 +𝑊𝐴𝑉𝑊𝐵 (10)

Here,𝑄 ′ and𝑉 ′ represent the updated query and value matrices,
respectively.

Prefix tuning.A prefix of length 𝑙 is strategically positioned pre-
ceding the key and value matrices within each multi-head attention
layer. This approach effectively equates to adding 𝑙 additional soft
prompt tokens alongside each original token for the computation
of similarity measures. In this paper, we add the visual query onto
the K-length adaption prompts at all 𝐿 inserted transformer layers.
The aggregation of these calculations is conducted as follows:

𝑃𝑣
𝑙
= 𝑃𝑙 +𝑉𝑖𝑠𝑢𝑎𝑙_𝑄𝑢𝑒𝑟𝑦 (11)

head𝑖 =Attn(𝑥𝑊 (𝑖 )𝑞 , concat
(
𝑃
(𝑖 )
𝑘
, 𝑃𝑣

𝑙
𝑊
(𝑖 )
𝑘

)
,

concat
(
𝑃
(𝑖 )
𝑣 , 𝑃𝑣

𝑙
𝑊
(𝑖 )
𝑣

)
)

(12)

where 𝑃𝑣
𝑙
denotes the adaption prompt incorporating visual

information from the given image context [47]. The length is𝑚.
𝑊
(𝑖 )
𝑞 ,𝑊

(𝑖 )
𝑘
,𝑊
(𝑖 )
𝑣 ∈ R𝑑×𝑑ℎ , 𝑑 indicates embedding size, 𝑑ℎ means

attention hidden size, 𝑃 (𝑖 )
𝑘
, 𝑃
(𝑖 )
𝑣 ∈ R𝑙×𝑑/𝑁ℎ , there are 𝑁ℎ attention

heads.
To effectively manage the tasks associated with instruction-

following data, same as LLaMA adapterV2 [9], we initially unfreeze
all normalization layers within LLaMA. For each linear layer in the
Transformer, we introduce a bias and a scale factor, both serving as
learnable parameters. The input and pre-trained weights of a given
linear layer are denoted as 𝑥 and𝑊 , respectively.

𝑦 =𝑊 · 𝑥 → 𝑦 = 𝑠 · (𝑊 · 𝑥 + 𝑏), (13)

where 𝑏 = Init(0), 𝑠 = Init(1). (14)

We initialize the bias and scale factors with zeros and ones,
respectively, to stabilize the training process at the early stages.

4 Experiments
4.1 Experimental Setup
4.1.1 Multi-page DVQA. Our experiments are conducted on two
multi-page DVQA datasets, MPDocVQA [36] and DUDE [38], both
of which limited their answers to a specific page, so accurately locat-
ing the page containing the answer is crucial before attempting a re-
sponse. In MPDocVQA, answers are extractive, whereas answers of
DUDE encompass extractive, abstractive, list, and non-answerable
types. Furthermore, the MPDocVQA dataset provides both answers
and corresponding document pages, whereas DUDE only provides
answers, posing challenges in locating answers within large-scale
document images.

For multi-page documents, since there is no LLM to explore this
task currently, we assessed two types of small pre-trained models
based on their utilization of varied modal information. The first
category encompasses models such as BERT [16], T5 [32], Long-
Former [3], and BigBird [45], which rely on plain text information.
BERT and T5 support a maximum sequence length of 512, while
LongFormer and BigBird support up to 4096. The second category
includes models like T5-2D [38], LayoutLMv3 [15], and HiVT5
[36], which leverage a blend of text, image, and layout information.
Among these, T5-2D incorporates text and layout information with
a maximum sequence length of 8192. HiVT5, designed specifically
for multi-page documents, employs two methods: (1) predicting
the document page likely containing the answer, similar to the
single-page document process, and (2) predicting the answer for
each document page, ultimately selecting the most probable one.
Thus, it fundamentally addresses single-page document scenarios.
This analysis reveals the limitations inherent in current pre-training
models when addressing the complexities of multi-page document
understanding, highlighting the need for more innovative solutions
that can effectively manage the intricate dynamics of document
structures across multiple pages.

Both methods utilize OCR tools for text extraction. However,
existing models input the entire document content, leading to trun-
cation when a document exceeds the maximum acceptable length.
This is particularly problematic for spliced multi-page documents,
as relevant information may be lost. Therefore, prioritizing the
retrieval of relevant information is essential.

4.1.2 Single-page DVQA. We conducted experiments across three
distinct types of single-page documents, briefly described as fol-
lows: the DocVQA dataset [30] consists of a significant collection
of scanned and handwritten documents, with answers—usually
one or more entities—being extracted from the text. Conversely,
the VisualMRC dataset [34], derived from layout-rich web pages,
necessitates that answers be deduced from the original text. The
InfographicVQA dataset [29] showcases documents featuring var-
ious chart information and complex layouts, posing considerable
challenges.

For single-page documents, since our method uses a small vision
encoder and a large language model, for the sake of fairness, we
compare two types of models related to our method comparison,
one is small models with a pure visual or text-only modal encoder,
and the other is MLLMs, which belong to the same camp as our
method. In addition to the T5 [32] described above, Donut [17] and
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Table 1: Comparison results of MPDocVQA and DUDE between CREAM and the current pre-training model. In MPDocVQA,
GAP indicates the gold answer page is provided, while NGAP indicates the gold answer page is not provided. Instead, the
coarse-to-fine retrieval method was used to obtain relevant text and page images. Modality T, L, and V denote text, layout, and
vision. Average ANLS results per question type are abbreviated as (Abs)tractive, (Ex)tractive, (N)ot-(A)nswerable, (Li)st.

Model train_param Modality MPDocVQA DUDE
NGAP GAP Ex Abs Li NA Over All

BERT [16] 334M T 53.47 59.04 42.23 7.28 11.13 5.88 25.48
T5 [32] 223M T 41.80 68.14 50.49 47.62 7.56 63.72 41.80

LongFormer [3] 148M T 55.06 61.77 43.58 8.55 10.62 10.78 27.14
BigBird [45] 131M T 58.54 64.50 40.26 7.11 8.46 12.25 26.27
T5-2D [36] 770M T+L - - 55.65 50.81 5.43 68.62 46.06
HiVT5 [36] 316M T+L+V 62.01 65.72 17.60 33.94 6.83 61.76 23.06

LayoutLMv3 [15] 125M T+L+V 55.13 67.29 32.60 8.10 7.82 8.82 20.31
CREAM(Ours) 93M T+V 65.32 74.28 56.39 51.87 37.51 57.32 52.46

Table 2: Results of comparing CREAM with existing pre-
trained VDU models fine-tuned with three different cate-
gories of document visual question answering datasets. Fol-
lowing previous works, DocVQA and InfoVQA are evaluated
by ANLS, and VisualMRC is measured by CIDEr.

Model Modality DocVQA InfoVQA VisualMRC

T5 [32] T 70.4 36.7 318.6
Donut [17] V 67.5 11.6 93.9

Pix2Struct [18] V 76.6 40.0 -
LayoutLMv3𝑙𝑎𝑟𝑔𝑒 [15] T+L+V 83.4 45.1 -
DocFormerv2 [1] T+L+V 87.7 48.8 -
Qwen-VL [2] V 65.1 29.9 76.5
SPHINX [24] V 35.8 24.0 95.3
Monkey [22] V 66.5 36.1 -
Ureader [43] V 65.4 42.2 221.7
CREAM(Ours) T+V 79.4 53.6 377.9

Pix2Struct [18] focus their pre-training on text parsing from images
to understand documents. Qwen-VL [2], SPHINX [10], Monkey [22],
and Ureader [43] utilize off-the-shelf pre-trained vision encoders,
merging them with LLMs to process multimodal information. How-
ever, document images are constituted by various data types, and
existing methods fall short of comprehensively understanding them,
whether through solely visual or textual analysis. Therefore, our
method not only leverages the textual comprehension capabilities
of large language models but also employs powerful document
vision encoders for visual understanding, enhancing document vi-
sual question-answering performance by integrating both aspects
without any pre-training task.

4.1.3 Implementation Details. In our experiments, the effectiveness
of the retrieval module is important, leading us to compare several
embedding models 1, including e5-large, instructor-large, and bge-
large. Given the extensive volume of data involved in our testing, we
ultimately selected the open-source bge-large as our retrieval model
due to its robust performance. For the retrieval framework, we
1https://huggingface.co/spaces/mteb/leaderboard

utilized Langchain 2, known for its efficiency in handling complex
retrieval tasks. In the group ranking phase, we set the text chunks
for each group to 8.

During the instruction-tuning experiment, we opted for Pix2Struct
[18] vision encoder and LLaMA2 [37] 7B as the backbone and uti-
lized a single NVIDIA Tesla A100 80G GPU to train each dataset
for 5 epochs. The batch size was set to 6, with a learning rate of
5e-5 and a weight decay of 0.02. We also set the visual prefix length
to 65, applying insertions exclusively in the last 30 layers of the
model. For LoRA, we set the rank r to 8. For the training phase, we
chose three pages of relevant documentation as input, while for the
test phase, it ranged from one to three pages.

4.2 Evaluation
It is noteworthy that VisualMRC is measured by CIDEr [39], and
other datasets are evaluated by ANLS[4]. CIDEr is calculated as
follows:

CIDEr𝑛 (𝑐𝑖 , 𝑆𝑖 ) =
1
𝑚

∑︁
𝑗

𝑔𝑛 (𝑐𝑖 ) · 𝑔𝑛 (𝑠𝑖 𝑗 )
∥𝑔𝑛 (𝑐𝑖 )∥∥𝑔𝑛 (𝑠𝑖 𝑗 )∥

(15)

Where 𝑐𝑖 is the candidate sentence, 𝑆𝑖 is the set of reference sen-
tences,𝑚 is the number of reference sentences, n is the length of
n-gram, 𝑔𝑛 (𝑐𝑖 ) and 𝑔𝑛 (𝑠𝑖 𝑗) are the vector of candidate sentences
and reference sentences.

The calculation formula of ANLS can be expressed as:

ANLS =
1
𝑁

𝑁∑︁
𝑖=1

(
1 − Levenshtein(𝑠𝑖 , 𝑡𝑖 )

max( |𝑠𝑖 |, |𝑡𝑖 |)

)
(16)

where N is the total number of samples. Levenshtein(𝑠𝑖 , 𝑡𝑖 ) is the
Levenshtein distance between the source string 𝑠𝑖 and the target
string 𝑡𝑖 for the 𝑖 − 𝑡ℎ sample. In the experiment, we followed the
previous approach and set the threshold to 0.5.

4.3 Main Results
Table 1 showcases the performance comparison of CREAM against
seven models across two multi-page datasets. As demonstrated,
BERT [16], LongFormer [3], BigBird [45], and LayoutLMv3 [15]
2https://www.langchain.com
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are limited to handling extractive answer types in the MPDocVQA
datasets and exhibit poor performance on other kinds of answers,
such as those in the DUDE datasets. The T5-based generative mod-
els have shown improvement in abstractive answer types, yet they
falter with data containing complex structures like tables and lists.
Moreover, given that the DUDE dataset does not specify the page
containing the answer, all existing models must accurately answer
the question when the answer page is identified. Without this infor-
mation, relevant content may be truncated due to input limitations,
leading to suboptimal performance. For instance, HiVT5 signifi-
cantly outperformsDUDE in theMPDocVQA. Although ourmethod
is influenced by certain factors, it surpasses previous approaches
across three answer types. However, the LLM continues to struggle
with the hallucination problem, resulting in inferior performance
on non-answerable answers compared to existing methods.

Table 2 presents the performance of seven models across three
single-page document datasets. CREAM exhibited superior per-
formance in all datasets. T5 [32], Donut [17], and Pix2Struct [18]
experience performance degradation as they rely solely on text
modal or image modal information for document comprehension.
Recently, attempts to integrate off-the-shelf image encoders into
LLMs for aligning text instructions have shown that performance
in document visual question answering is lacking. On the one hand,
this shortfall is attributed to the superior text comprehension abil-
ity compared to the visual understanding of LLMs, on the other
hand, the current image encoders exhibit limited capability in un-
derstanding document images. CREAM combines the strengths of
the aforementioned models. For text comprehension, an LLM is
employed, while visual understanding benefits from the superior
performance of the Pix2Struct[18] vision model. This superiority,
particularly against similar multimodal large language models, un-
derscores the distinct advantages of our method.

4.4 Ablation Study
4.4.1 Multi-page DVQA. Our proposed method is more necessary
for multi-page document visual question-answering. Therefore,
our retrieval method is more explanatory on multi-page document
datasets. As shown in Table 3, we conduct more detailed ablation
experiments on the main modules in this paper.

Effect of Text Embedding Module.We utilize a pre-trained
text embedding model to rank the text chunks of documents based
on vector similarity in relation to the query. The experiment re-
veals that accurately identifying text chunks related to the query
is challenging due to the sparse keyword semantic information
in the query itself, and the possibility that each text chunk may
contain relevant keywords. Consequently, distinguishing the most
relevant text chunk is challenging, making reliance solely on the
text embedding module insufficient.

Effect of RankLLMModule. Despite the large language model
lacking retrieval capabilities, it exhibits strong ranking performance.
This is largely attributed to its ability to assess the relevance of
a query to a text chunk from a perspective akin to human lan-
guage comprehension. We employed a strategy of multiple group-
ing rounds for repeated verification, ultimately identifying the most
relevant text chunk. The experiment demonstrates that RankLLM
significantly outperforms in both datasets.

Table 3: The effect of different components in CREAM on
multi-page document VQA.

Dataset Vision Text Embedding RankLLM ANLS

MPDocVQA
✗ ✓ ✗ 58.6
✗ ✓ ✓ 62.9
✓ ✓ ✗ 62.8
✓ ✓ ✓ 65.3

DUDE
✗ ✓ ✗ 46.2
✗ ✓ ✓ 49.9
✓ ✓ ✗ 51.2
✓ ✓ ✓ 52.5

Table 4: The impact of various components in CREAM on
single-page document VQA. VI represents the Vision module.
RE stands for Retrieval. PB denotes Prefix and Bias tuning.
LO signifies LoRA.

DocVQA InfoVQA VisualMRC
CREAM 79.4 53.6 377.9
w/o VI 78.1 52.4 367.5
w/o RE 75.0 51.6 322.1
w/o PB 75.6 51.2 289.6
w/o LO 77.5 51.5 295.6

Effect of Vision Module. Our proposed multi-page document
image encoder is a crucial component of this study. Given that
the text within document images encompasses rich layouts and
visual information, comprehending the document itself is essential.
However, the capability of existing vision encoders to comprehend
large-scale multi-page documents simultaneously is limited; thus,
this study focuses solely on document images pertinent to the query.
This encoder offers auxiliary support to the semantic information
of the text. Experiments demonstrate that the vision module has a
significant impact, particularly on layout-related issues.

4.4.2 Single-page DVQA. In this section, we conduct a detailed
analysis of CREAM and its components. To evaluate the impact
of individual components on model efficacy, we executed ablation
studies across three categories of single-page documents, methodi-
cally omitting one module at a time, as shown in Table 4.

Effect of Vision Module. The ablation study on the vision
module revealed that visual information is pivotal for single-page
document VQA. This is attributed to the text in a document image
encapsulating not only the semantic content but also its spatial
position and color. Integrating this multi-modal information is
essential for a deeper understanding of the document image content.

Effect of Retrieval Module. The majority of documents ex-
ceed 512 tokens, leading most models to employ a truncation strat-
egy that risks omitting crucial answer segments. However, our
coarse-to-fine retrieval approach accommodates the input length
constraints while retaining themost pertinent sections, significantly
enhancing model performance. Table 4 illustrates that the exclusion
of the retrieval module results in diminished performance. Notably,
During the experiment, we found through the experimental results
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User: Which reading is higher than 120 
in Hypertensive crisis stage?
CREAM: Diastolic (✓)

User: What is the second tip for 
managing blood pressure?
CREAM: Move More (✓)

User: What does FSF stands for?
CREAM: Free Software Foundation (✓)

User: Why do most GPL violations occur?
CREAM: Most GPL violations occur by mistake, 
without ill will (✓)

User: What is the position of the 
people picture in the document?
CREAM: Bottom left (✓)

User: how many million 
cases of foodborne illnesses?
CREAM: 76 minllion (✓)

User: What is the title of documents?
CREAM: Heading to review current 
issues in food satety. (✓)

(a)

(b)

(d)

User: What C&O 11 & 12 includes in the top 
right corner?
CREAM: [“Reclining Seats Coaches”, 
“Grand Rapids and Detroit”] (✓)

(c)

Figure 3: Qualitative results of CREAM. Crucial regions are enlarged for clearer visualization.

that the retrieval module exerts the most substantial impact, under-
scoring the efficacy of our retrieval technique across diverse test
datasets.

Effect of Prefix & Bias Tuning and LoRA. Prefix & Bias tun-
ing and LoRA are orthogonal approaches that do not interfere with
each other. Prefix tuning allows for the injection of distinct infor-
mation across various layers of the model, while Lora can further
minimize the number of parameters required, without compromis-
ing on model performance. According to the experimental results,
it is found that Prefix & Bias tuning and loRA have different per-
formances on different datasets, and better results can be obtained
by combining the two. It is noteworthy that visual information
serves as a basis for prefix tuning. Consequently, removing the
prefix module entails the removal of the vision module as well.

4.5 Case Study
Figure 3 shows some qualitative results produced by our CREAM
on different types of documents. CREAM is adept at generating
answers from documents with complex layouts (case a) and per-
forming reasoning based on the document’s content (case b). Fur-
thermore, in multi-page documents, which typically encompass
extensive textual information, CREAM can precisely pinpoint the
location of an answer, as exemplified in case d. Nonetheless, the use
of OCR tools in CREAM introduces certain constraints. Specifically,
text extraction occurs sequentially from the top left to the bottom
right, resulting in the omission of layout and visual information of
the document content. Therefore, the visual information we intro-
duce can alleviate this problem, as shown in case c. The examples

provided demonstrate that CREAM is capable of handling both
single-page and multi-page documents. It not only accurately lo-
cates the relevant content of the query but also adapts its responses
to the style of questions based on varying document formats.

5 Conclusion
This paper introduces a new model named CREAM, designed to
perform single-page and multi-page DVQA simultaneously. Specif-
ically, a coarse-to-fine retrieval algorithm is developed to extract
text chunks relevant to the query. In addition, CREAM is struc-
tured as a multimodal large language model capable of processing
multi-page documents and generating answers by questions, rele-
vant text chunks, and corresponding document images. Within this
framework, CREAM not only processes multimodal information
but also lays a solid foundation for future multi-document image
processing. Extensive experiments across two multi-page and three
single-page DVQA datasets demonstrate our method’s superior-
ity over existing approaches in terms of accuracy, generalization
ability, and efficiency in document visual question answering. Its
limitation is that it is affected by the performance of the retrieval
and ranking models, otherwise, it would achieve more desirable
results.

In most document images, text layout and visual information
play a key role. Therefore, for vision encoders, comprehending the
multimodal information of document images is crucial. Moving
forward, we aim to enhance the seamless integration and effective
utilization of the model across diverse modalities.
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