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A ADDITIONAL ANALYSIS ON
PERFORMANCE

A.1 Text Embeddings of CREAM

The success of our retrieval process will depend to some extent
on the quality of the text embeddings, emphasizing the need for
an embedding model with superior semantic matching capabilities.
In order to highlight the performance of the text embedding, we
choose the text chunk of 512 tokens to conduct experiments and
compare it to three open-source embedding models, including e5-
large, instructor-large, and bge-large. As indicated in Figure 1, The
comparative evaluation revealed that bge-large consistently outper-
forms the others in terms of average performance. Therefore, we
ultimately selected bge-large as the retrieval model for all datasets.
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Figure 1: The effect of different text embedding models

A.2 LLM Ranking strategies of CREAM

Given that the pre-trained model we utilized, RankVicuna [1], is
limited to processing only 8 text chunks of 512 tokens each at a
time, and since most multi-page documents contain more than
8 text chunks, we addressed this limitation through grouping. In
the experiment, to validate the effectiveness of our method , we
compared different reranking strategies employed by the LLM. As
demonstrated in Table 1, the text chunks selected after multiple
rounds of ranking show more effective results than those chosen
following a single round of ranking.

A.3 Further Analysis of CREAM

Similar to word embedding, different page embedding relationships
can influence semantic interpretation. Therefore, we assess the
performance of the page embedding module as shown in Table
2. Simultaneously, after conducting retrieval, we select the three
most relevant pages due to resource and model acceptance length

Table 1: Comparison of ranking strategies in LLM

Dataset Single-round Multi-round
MPDocVQA 63.72 65.32
DUDE 51.34 52.46

Table 2: Effect of page embedding and mumber of pages

page MPDocVQA DUDE
Embedding 1 2 3 1 2 3
v 64.46 64.84 6532 | 51.55 52.21 52.46
X 64.01 64.42 64.28 | 50.88 5143 51.79

constraints. The continuity of the relevant pages confirms their
pertinence to the query. The experimental results reveal that page
embedding has a impact when dealing with several pages. Using
just one page results in lower performance, whereas the difference
in results between two and three pages is minimal, suggesting that
the content of two or three pages generally contains the information
pertinent to the query.

A.4 Compared with more methods

Table 3 enumerates the current state-of-the-art models in terms
of performance, and the results indicate that our approach main-
tains its status as the leading state-of-the-art on all datasets, except
for DocVQA. Upon analyzing the error instances in the DocVQA
dataset, it was observed that most errors arise from the failure to
recognize the layout and visual elements of the document, which
is a known limitation of OCR and the vision encoder. Moving for-
ward, we aim to delve deeper into the multi-modal aspects of the
framework to address and mitigate this issue.

B MORE QUALITATIVE RESULTS

B.1 Results from different datasets

CREAM demonstrates the ability to accurately identify correspond-
ing values in charts with complex layouts, which likely reflects
the inherent robustness of the document vision encoder and the
large language model. As illustrated in Figure 3 a, The model ef-
fectively comprehends a document page featuring multiple charts.
Although the sequences identified by OCR lacked document layout
information, our implementation of a visual encoder equipped with
document image understanding capabilities played a complemen-
tary role.

Concurrently, it is noteworthy that despite the expansion in the
acceptable token length for LLMs, certain limitations persist. These
models often exhibit sensitivity to the beginning and end of sen-
tences and may selectively overlook some contextual information
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Table 3: Performance comparison between CREAM and state-of-the-art methods.

DocVQA InfoVQA VisualMRC MP-DocVQA DUDE
87.8(DocFormerv2) 48.8(DocFormerv2) 364.2(LayoutT5) 62.0(HiVT5) 50.0(DocGptVQA)
79.4 53.6 377.9 65.3 52.5

in the middle. Therefore, the retrieval of pertinent information and
the condensation of context remain critical steps in the process. As
shown in Figure 3 b, CREAM first locates the context related to the
question, thereby improving the accuracy of the answer.

B.2 Examples of different text embedding

Figure 4 and Figure 5 illustrate the distinct performances of three
different embedding models. Here we set up a text embedding only
retrieval with a text chunk length of 512 tokens. It is observed that
bge-large demonstrates the highest accuracy in context localization,
followed by instructor-large, with e5-large ranking last. The efficacy
of the embedding model is crucial in the retrieval module, showing

a positive correlation with the overall performance in document-
based question answering.

B.3 Examples of different retrieval methods

Figure 6 and Figure 7 present a comparison between the outcomes
of our coarse-to-fine retrieval and text embedding only retrieval.
The examples clearly indicate that the content retrieved through
our method exhibits greater accuracy. By applying a filter through
LLM, we can obtain a context of the higher quality.
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Betanal herbicides + HOE-23408 gave excellent postemergence
weed control at several locations particularly from applications

made by Wicks (North Platte Station, University of Nebraska).
Herbicide Effect on Production
Under normal production practices, herbicides have a benefictal

" effect on crop production (Table 4).

Table 4. Preplant herbicide effect on yields, Longaont,Colo., 1974

/A L 1 z
Berbicide dose_ A Puriey
Nortron 3.5 26.0 92.4
Ro-Neet 4 24.9 92.1
Pyranin 4 25.0 172 915
Untreated 0 2.0 171 916

Sinilar results have been obtained previously.

Programed Weeding Systens®
Complete chemical veeding is the key to final stand planting and
elinination of clean wp labor in beet fields, Programed or
sequence herbicide applications offer the best chance for weed-
free beets and production improvement. It is estimated that only
15-20 percent of Great Vestern acreage was sequence treated in
‘1974, A 40 percent goal achievement should be realized in 1975,
Consult the Sugarbeet Production Guide, page 29 for typical _

sequence applications.

User: what is the % of sugar in
nortron?

CREAM: 173 (V)

()

Figure 2: In the case of the DocVQA dataset,
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14 DAY SMOKE INHALATION STUDY IN MICE TRD-ATS-020
TIDAL VOLUME MEANS AT PRE-EXPOSURE AND 60 MINUTE
EXPOSURE PERIOD AVERAGE BOTH SEXES COMBINED

o1vs cavis

User: What does the unshaded bar represent?
CREAM: EXPOSURE GROUPS (X)

User: What is the pre-exposure tidal volume
(mls) for MC?

CREAM: 0.15 (V)

(b)

the section encircled in the box represents the answer.

54.42%
Thinking of learning
something new

User: What percentage of people invest their time to study
something new?
CREAM: 84.42% (V)

User: What percentage of people agree with washing their hands

often ever than before?
CREAM: 49 (V)

(@)

They are: 1) A public pledge to oppose Article 13 of the EU's chilling copyright reforms which threatens
to restrict the sharing of data and other content on the internet. 2) Support improved transparency
measures at social media companies like Facebook to prevent the spread of disinformation and fake
news. 3) Champion ‘responsible data’ to ensure that data is used ethically and legally, and protects
privacy. 4) Back efforts to force governments and organisations to use established and recognised
open licences when releasing data or content. 5) Push for greater openness in their country, including
committing to domestic transparency legislation.

User: What is the third demand in Catherine
Stihler's keynote speech?

CREAM: The third demand is to champion
responsible data to ensure that data is used

ethically and legally, and protects privacy. (v)

(b)

Figure 3: In the case of the InfoVQA and VisualMRC datasets, Crucial regions are enlarged for clearer visualization.
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After the page loads, you'll be asked how you'd
o like to edit. Click "Start editing” to begin using the
Creating your userpage visual editor.

Log in to Wikipedia and look at the top of the You can
page - click on your username, in red. always

later using
the pencil
button.

You'll see amassage that appears whenever you
click a redlink -it tells you that the page doesn’t
exist. Click on the tap, bold bullet point to create
the page

)

. You can safely dismiss
* these notices.

Write a sentence or
two introducing
yourself. =

Irecommend telling other editors when you
joined Wikipedia, and what topics interest you.

Text Embedding+RankLLM

Context retrieved: editing articles about museums and history. Featur
ed content X Add a citation Current events Random article Automati
¢ Manual Donate to Wikipedia Privacy policy About Wikipedia Discl
aimers Contact Wikipedia Developers Cookie statement Reuse Wiki
pedia store URL, DOI, ISBN, PMC/PMID, QID. title, or citation Inte
raction ...... Generate Help Click Insert Media to find a picture to ad
d to your page. Type something to see suggestions. SecrelTunnel Tal
k Sandbox Preferences Beta Watchlist Contributions Log out User pa
ge Talk ......

Question : What is the key to find a picture?

prediction : insert media

Real answer: Insert Media

Figure 6: Case comparison of different retrieval strategies. The text embedding only retrieval locates an error message.

Use the link button to try out making a link to a Once you've finished trying things out, click
Wikipedia article - you'll see some suggestions Publish page n e
to help you find the right one.

; summary box will
appear - always fill these out, especially on
proper Wikipedia articles, because they will
remind you what you have been doing and let
others know what you're doing t0o so they can
help you. A summary Is fine.

Then click Publish page again - congratulations,
you've introduced yourself and learned how
Vilkipeda editing tools work!

%
Use the cite button to practice showing people
where your information comes from. You can
paste in a link or use the Manual tab to create
a citation by filling in some blanks.

To explore some more, click edit to make more
Click Insert Media ta find a picture to add to your changes. For instance, you might like to click the
page. Type something to see suggestions. pencil button ta see what Source editor looks

e aew a=. To find mare guides on how to edit, take a look
ere: hitps//tinyur.comy/WikiBeginnersGuides

Text Embedding Only

Context retrieved: Review your changes contributions To explore s
ome more, click edit to make more changes. For instance, you mig
ht like to click the pencil button to see what Source editor looks lik
[ in editing articles about museums and history Featured conte
nt Add a link Done Current events Random article Donate to Wikip
edia Privacy policy About Wikipeda Declamers Contact Wikipeda
Developers Cookie stat Wikipedia External site Wikipedia store M
useums Interaction Help Museum About Wikipedia Institution that
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holds artifacts and other obj ......

Question : What is the key to find a picture?
prediction : the magnifying glass icon

Real answer: Insert Media

Text Embedding+RankLLM:

Context retrieved: . Balbus, J.L. Gamble, C.B. Beard, J.E. B
ell, D.......

PHOTO CREDITS port-on-the-impacts-of-climate-change-o
n-human-health-in cover and title page-Manhattan skyline: iS
tockPhoto.com/ the-united-states stockelements; Farmer: Ma
sterfile/Corbis; Girl getting checkup: Rob Lewine/Tetra Imag
es/Corbis 3. 2014: Climate Change Impacts in the United Sta
tes: The Third Pg. vii-Elderly Navajo woman and her niec

Ch.9: Human health. Climate Change Impacts in the United
States: The Third National Climate Assessment. Melillo, J.M.,
T..,

Question : which country specified in this document?
Prediction : united states

Real answer: United States

Text Embedding Only:

Context retrieved: Centers for Disease Control and Preventio
n Rupa Basu, California Office of Environmental Health Haz
ard Ross Bowling, Office of the Assistant Secretary for Admi
nistration Assessment Kathleen Danskin, Office of the Assist
ant Secretary for Preparedness Paul English, Public Health In
stitute, Oakland, CA and Response Kim Knowlton, Columbia
University Mailman School of Public Health Stacey Degrass

medium consensus Unlikely Medium Two kinds of language
are used when describing the 1 in 3 Suggestive evidenc
€ ...... Office of Air and Radiation Michelle Hawkins, Natio
nal Oceanic and Atmospheric Am.

Question : which country specified in this document?
Prediction : none

Real answer: United States

Figure 7: Case comparison of different retrieval strategies. The text embedding only retrieval could not locate the relevant information.
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