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Recent advances in machine learning have
spurred new ways to explore and classify quantum
phases of matter. We propose an Eigensystem-
based representation, combined with a Gaussian
Mixture Model (GMM), to unsupervisedly clus-
ter Hamiltonians into distinct topological phases
with minimal feature engineering. The method
identifies different topological phases without any
prior knowledge, pinpoints phase boundaries with
remarkable precision ∼ O(10−5), remains robust
under moderate noise, and scales efficiently via a
simple dimensionality-reduction step. The success
of GMM offers a novel physical insight — each
phase forms a well-separated multivariate Gaussian
in a high-dimensional “Eigensystem space.” We
illustrate the approach on several 1D lattice models,
all achieving near 100% accuracies.

1. Introduction andMotivation
Topological phases of matter—recognized by the

2016 Nobel Prize in Physics—are characterized by
non-local invariants rather than conventional sym-
metry breaking. They enable fault-tolerant quantum
computing proposals and guide novel material dis-
coveries.
Automated discovery of such phases is a com-

pelling goal. Early works employed supervised
learning that requires labeled data [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13]. More recent approaches increas-
ingly favor unsupervised methods [14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38], paving the way for automatic dis-
covery of new or unexpected phases.
However, existing unsupervised approaches of-

ten need hyperparameter tuning or sophisticated
physics-biased features (e.g., correlation functions,
entanglement spectra, partially known symmetries,
pseudo-spin configurations).
Here, we introduce a direct Eigensystem vec-

tor representation of Hamiltonians, involving only
eigen-decomposition. Combined with a Gaussian
Mixture Model (GMM) for clustering, the approach:
1. Identifies distinct topological phases with near
100% accuracy without any prior knowledge.

2. Determines topological phase boundaries with
high precision (on the order of 10−5).

3. Eliminates specialized feature engineering and
tuning of free hyperparameters.

4. Scales efficiently by applying a simple linear pro-
jection to the full Eigensystem vectors.

5. Demonstrates success across several benchmark
models, suggesting its broad applicability.

2. Method
Eigensystem vector — Consider anN ×N Hamilto-

nianH with eigenvalues {Ei} andnormalized eigen-
vectors {|ψi⟩ := (ψi1, ψi2, . . . , ψiN )T }1. We concate-
nate all eigenvector components and the eigenvalues
into a single, long Eigensystem vector:

|Eig⟩ :=
(
ψ11, ψ12, . . . , ψ1N , ψ21, . . . , ψNN ,

E1, E2, . . . , EN

)T (1)

When generated for a series of Hamiltonians H(θ)
parameterized by θ, we obtain a collection of Hamil-
tonians distributed over all phases, which then are
transformed into |Eig⟩, i.e., points in “Eigensystem
space.”
GaussianMixture Model (GMM)— Given a dataset

of Eigensystem vectors {|Eig⟩1, |Eig⟩2, . . .}, we fit a
GMMwith k components:

p(data) =

k∑
i=1

πi N (µi,Σi), (2)

where each component is a Gaussian specified by
mean µi and covariance Σi, and πi are mixture
weights.
The number of components k is chosen via silhou-

ette analysis, which equates to the number of distinct
phases in the dataset.
After fitting, each sample is assigned to the clus-

ter (phase) with the highest responsibility, i.e., the
dataset is automatically partitioned into different topo-
logical phases.

3. Example: 1D Spin-Orbit Coupled Fermi Chain
Model and Dataset — We illustrate our method on

a 1D lattice model with spin-orbit coupling [39] (de-
tails in appendix B). In momentum space, its Hamil-
tonian reads

h(k) =
[
mz − 2ts cos(ka)

]
σz − 2 tso sin(ka)σy. (3)

1Following the convention in quantum mechanics, we adopt
the Dirac notation to represent the eigenvector.
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Here, ts, tso,mz are Hamiltonian parameters. For
tso ̸= 0, the system is in a topological phase when
mz < 2ts and in a trivial phase when mz > 2ts. We
fix ts = 1, tso = 0.3, and generate a dataset of Eigen-
system vectors acrossmz ∈ [0, 4].
Clustering results— Table 1 compares several clus-

tering methods on the unlabeled Eigensystem vec-
tors from this model. GMM attains a perfect 100%
accuracy in distinguishing topological (mz < 2) and
trivial (mz > 2) phases. In contrast, popular base-
line methods including diffusion map [14] all per-
form worse.

Method Accuracy (%) ARI AMI
Gaussian Mixture 100.0 1.00 1.00
k-means 95.4 0.82 0.77
Spectral Clustering 88.6 0.60 0.59
Diffusion Map 61.4 0.05 0.16

Table 1: Clustering results on Eigensystem vectors of the
1D spin-orbit Fermi chain.

The GMM also precisely localizes the phase tran-
sition with O(10−5) precision by identifying the
|Eig⟩(mz) whose responsibilities for the two Gaus-
sians are almost equal. Details of the clustering re-
sult metrics and GMM algorithm are in appendix A
and appendix C respectively.
Noise robustness — To assess stability, we add ran-

dom Gaussian noise to each feature of the Eigensys-
temvector. As summarized in table 2, evennoise lev-
els comparable to a few times the feature standard
deviations degrade GMM performance only mod-
estly.

Noise Level Accuracy (%) ARI AMI
0.5σ 97.5 0.90 0.85
1σ 96.5 0.87 0.79
2σ 93.6 0.76 0.66
3σ 89.9 0.64 0.53

Table 2: Noise robustness. σ is the feature-wise standard
deviation, serving as a reference scale.

4. New Physics Insights
The success of GMM offers an intuitive geomet-

ric interpretation: each topological phase corre-
sponds to a distinct multivariate Gaussian in the
high-dimensional Eigensystem space.
This perspective enriches our understanding of

topological phases, and worth further exploration —
e.g., in figure 1, the topological phase cluster forms
multiple sectors, whereas the trivial phase “trivially”
forms a single cluster.
Another insight is: as suggested in recent theoret-

ical results [40, 41, 42], local Hamiltonians typically
have O(N) degrees of freedom, |Eig⟩ as the full set
of eigenvectors and eigenvalues over-parameterizes
the system, analogous to data augmentation – each
eigenvector and the set of eigenvalues provide dif-
ferent “views” of the same Hamiltonian.
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Fig. 1: UMAP visualization of Eigensystem vectors for the
spin-orbit Fermi chain. (Left)Points are coloredby their
true phase (topological or trivial). (Right) Fitted GMM
components projected into the same space.

5. Scalability and Generalization
Since many local Hamiltonians effectively have

O(N) degrees of freedom, despite the raw Eigensys-
tem vector dimension beingO(N2), we can use stan-
dard Principal Component Analysis (PCA) to reduce
dimensionality to O(N), without losing accuracy in
this example (table 3).

Method Accuracy (%) ARI AMI
Gaussian Mixture 100.0 1.00 1.00
k-means 77.5 0.82 0.95
Spectral Clustering 33.7 0.24 0.75
Diffusion Map 16.4 0.05 0.61

Table 3: Clustering results after PCA reduces each Eigen-
system vector toO(N) dimensions.

To test broader applicability, we examined sev-
eral other 1D models, including the Su-Schrieffer-
Heeger chain (SSH), a non-Hermitian SSH variant
(nH-SSH), and theKitaev p-wave superconductor (Ki-
taev). Table 4 shows that GMM again reliably classi-
fies phases, often achieving near-perfect accuracy.

SoC Fermi SSH nH-SSH Kitaev
Acc. (%) 100.0 99.85 99.73 99.99

Table 4: GMM clustering performance on various 1D
topological models.

6. Conclusion
We introduced an Eigensystem-based representa-

tion that, when combined with a Gaussian Mix-
ture Model, provides a simple and effective way
to discover topological phases from Hamiltonian
data. The representation requires minimal domain
knowledge, yields precise phase boundaries, and
generalizes tomultiplemodels. The success of GMM
further implies a transparent interpretation: topo-
logical phases formwell-separatedGaussian clusters
in Eigensystem space.
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Appendix A. Clustering Metrics

1.1 Adjusted Rand Index (ARI):
The Rand Index computes the similarity between

two clusterings by considering all pairs of samples
and counting pairs that are assigned in the same
or different clusters in the predicted and true clus-
terings. The raw Rand Index is then "adjusted for
chance" into the ARI score using the following for-
mula:

RI =
a+ b(

Nsamples

2

) (A1)

ARI =
RI− E[RI]

max(RI)− E[RI]
(A2)

Where RI is the Rand Index, E[RI] is the expected
value of the Rand Index. The ARI ranges from -1 to
1. A score close to 1 indicates that the clusterings are
almost identical, a score close to 0 indicates that the
clusterings are random, and a score close to -1 indi-
cates that the clusterings are dissimilar.

1.2 Adjusted Mutual Information (AMI):
Mutual Information of two variables is a mea-

sure of the amount of information obtained about
one variable through observing the other variable.
AMI is an adjustment of theMutual Information (MI)
score to account for chance. It accounts for the
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fact that the MI is generally higher for two cluster-
ings with a larger number of clusters, regardless of
whether there is actually more information shared.
The AMI removes this bias:

MI =
∑
u∈U

∑
v∈V

p(u, v) log

(
p(u, v)

p(u)p(v)

)
(A3)

AMI =
MI− E[MI]

max(H(U), H(V ))− E[MI]
(A4)

WhereMI is theMutual Information,E[MI] is the ex-
pected value of the Mutual Information, H(U) and
H(V ) are the entropies of the two clusterings. AMI
ranges from 0 to 1. A score of 0 indicates two cluster-
ings are independent, and 1 indicates that they are
identical.

1.3 Accuracy:
Simply the percentage of correctly identified data

points.

Appendix B. 1D Spin-Orbit Coupled Fermi Chain

We study a 1D optical lattice with Raman-induced ar-
tificial spin-orbit coupling. The optical lattice is of
great significance for quantum simulation based on
ultra-cold atomsbecausemost condensedmatter ex-
ists in the form of crystals. Firstly, the lattice depth,
periodic length, and atom-atom interaction of the
optical lattice can be adjusted. Secondly, compared
with solid materials, the optical lattice itself does
not haveproblems suchas disorder, lattice vibration,
and structural defects, but these factors can be real-
ized in the optical lattice through quantum control.
In addition, because it does not carry a net charge,
the ultra-cold atomic gas in the optical lattice has al-
most no couplingwith the outsideworld, and the en-
vironment is very clean. Compared to the electron
motion in solidmaterials, the time scale of ultra-cold
atomic motion is in the millisecond or even second
range, so there is no need for fine ultrafast optical
means for detection in the experiment. The above
factors make the ultra-cold atomic gas in the optical
lattice very suitable for simulating the electron mo-
tion in crystals.
Spin-orbit coupling is a physical effect caused by

the coupling between the internal spin degree of
freedom and the external motion degree of freedom
of particles. Spin-orbit coupling is widespread in
nature: in atomic physics, the coupling of electron
spin and orbital motion leads to the fine structure of
atomic energy levels; in condensed matter physics,
spin-orbit coupling is the basis of many novel physi-
cal phenomena, such as the spinHall effect, topolog-
ical insulators, etc. At present, the main method to
create artificial spin-orbit coupling experimentally
is to couple the internal states of atoms through a
two-photon Raman process. Using the single-band
tight-binding approximation, we can obtain the fol-
lowing Hamiltonian:

H =mz

∑
σ,j

ξσ ĉ
†
jσ ĉjσ − ts

∑
σ,⟨i,j⟩

ĉ†iσ ĉjσ

+ tso
∑
j

[
(−1)

j
ĉ†j↑ĉj+1↓ +H.c.

]
(A5)

Further performing a unitary transformation
ĉj↓ → (−1)

j
ĉj↓, and then a Fourier transformation

ĉjσ = 1√
N

∑
kx
ĉkxσe

ikxja, whereN is the number of
lattice points, and a is the lattice constant, we can get
themomentumspace representationof theHamilto-
nian:

H =
∑
kx

ψ†
kx,σ

(
mz − 2ts cos(ka) 2itso sin(ka)
−2itso sin(ka) 2ts cos(ka)−mz

)
ψkx,σ

⇐⇒ H =
∑
kx

(
ĉ†kx↑ ĉ†kx↓

)
h (kx)

(
ĉkx↑
ĉkx↓

)
(A6)

h (kx) = [mz − 2ts cos (kxa)]σz − 2tsoσy sin (kxa)
(A7)

By exactly diagonalizing thisHamiltonian, we obtain
the dispersion relation:

E±(k) = ±
√

(2ts cos(ka)−mz)2 + (2tso sin(ka))2

(A8)
When tso ̸= 0, the system undergoes a topologi-
cal phase transition at the critical point mz = 2ts,
characterized by a change in the topological invari-
ant, that is, the change in the winding number (also
called Zak phase). When mz < 2ts, the system is
in a topological phase, and the winding number is
1; when mz > 2ts, the system is in a trivial phase,
and the winding number is 0. This is a Su-Schrieffer-
Heeger-type phase transition.
To generate the input dataset X := {|Eig⟩}, we

first set tso = 0.3 and ts = 1 and then randomly gen-
erate M = 40000 values of mz in the range [0, 2ts)
for topological phases, and M = 40000 values in
the range (2ts, 4ts] for trivial phases. Next, for each
mz, we diagonalize the corresponding Hamiltonian
H(mz), whereupon splice the obtained eigenstates
and eigenvalues into a Eigensystemvector |Eig(mz)⟩
as defined in Eq.1. Now we have X = {|Eig⟩} =
{|Eigt⟩} ∪ {|Eign⟩}.

Appendix C. GaussianMixture Model

Thebasic ideaofGMMis to approximate thedata dis-
tribution as a weighted sum of several Gaussian dis-
tributions. In other words, GMM assumes that the
data is generated from a mixture of Gaussian distri-
butionswith unknownparameters—themeanµi and
covariance Σi of each Gaussian, and πi that deter-
mine theweight of eachGaussian in themixture. It is
a generalized version of the KMeans clustering algo-
rithm, with the advantage that it allows for soft clus-
tering and performs well even when small overlaps
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between clusters exist as long as they are Gaussian-
shaped. The procedure is as follows:
Initialization: Select the number of clusters k you

want to identify in your data. Randomly initialize
the parameters of the Gaussians - the mean µi, the
covariance matrixΣi, and the mixing coefficients πi
for each cluster.
Expectation-Maximization (EM): Expectation (E)

Step: Calculate the posterior probability of each data
point belonging to each cluster, also known as the
"responsibility" that cluster j takes for data point xi.
This is computed using the current parameter val-
ues.

wij =
πjN (xi|µj ,Σj)∑k
l=1 πlN (xi|µl,Σl)

(A9)

Where wij is the responsibility that the jth Gaussian
takes for the ith data point xi; πj is the mixing coef-
ficient of the jth Gaussian; N (xi|µj ,Σj) is the prob-
ability density function of the jth Gaussian at xi.
Maximization (M) Step: Update the parameters of

the Gaussians using the current responsibilities:

µj =

∑N
i=1 wijxi∑N
i=1 wij

(A10)

Σj =

∑N
i=1 wij(xi − µj)(xi − µj)

T∑N
i=1 wij

(A11)

πj =
1

N

N∑
i=1

wij (A12)

WhereN is the total number of data points.
Convergence: Repeat theE andMsteps until thepa-

rameters do not change significantly, or a maximum
number of iterations is reached.

Appendix D. Silhouette Analysis

Note that before applying GMM we need to spec-
ify the number of clusters k we want to identify
in our data. In order to find clusters correspond-
ing to actual physical phases, we need to choose
the “right” number that best reflects the underlying
global structure of the data. A common approach is
to use the silhouette analysis, which is a graphical
tool to evaluate the performance of clustering algo-
rithms, and thushelpusdetermine theoptimalnum-
ber of clusters.
Fig.A1 shows the distributions of silhouette scores

as k varies from 2 to 5. From which we can see that
kc = 2 yields the highest / peak of average silhou-
ette score SC(X, kc). Moreover, we see a balanced,
single peak distribution of silhouette scores, instead
of having unbalanced multiple peaks in other cases,
which indicate the appropriateness of set the num-
ber of phases to kc = 2.

Fig. A1: The violin plots of the distributions of silhouette
scores as k varies from 2 to 5.
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