
A Appendix

A.1 GNN architectures

We show results with GraphSage [9] architecture as GNN backbone in Table 12 and Table 13. We
investigated the two different splits used in previous sections, as well as different self-supervised
and supervised pretraining objectives. The overall performance using GraphSage architecture is
comparable with results obtained using GIN architecture, and the conclusion about pretraining
objectives is the same with what we obtained on the GIN as well. As generally these architectures
have similar representation power [33], this outcome should be expected. Additionaly, we also
explored graph pretraining with graph transformer proposed in [22], which is supposed to be more
expressive. However, Table 18 in Appendix shows that the results are not competitive. For higher-
order GNNs or the deeper GNNs the conclusion might be different, but in general we hold a
conservative view towards whether the graph architecture can make a big difference in deciding
whether graph pretraining is helpful.

Table 12: GraphSAGE GNN architecture on Balanced Scaffold Split. The average ROC-AUC with-
out pretraining on all benchmark datasets is 78.1%. Gray- and transparent- shaded show supervised
and unsupervised pretraining objectives.

BBBP BACE TOX21 TOXCAST SIDER AVE GAIN
No pretrain 92.46(±2.91) 86.46(±1.63) 78.99(±1.57) 70.35(±0.09) 62.18(±0.77) 0(±1.394)
Node Prediction 93.76(±1.70) 88.71(±1.30) 78.69(±2.26) 69.82(±0.36) 60.89(±1.67) 0.286(±1.458)
Context Prediction 93.82(±2.35) 88.61(±1.69) 79.10(±1.83) 70.18(±0.50) 62.01(±2.06) 0.656(±1.686)
Supervised 93.91(±2.17) 87.56(±1.86) 81.06(±1.96) 71.49(±0.75) 63.07(±0.64) 1.330(±1.476)
Masking Node + Supervised 93.93(±1.50) 87.62(±1.65) 80.43(±1.84) 71.48(±0.86) 62.93(±0.77) 1.190(±1.324)
Context Prediction + Supervised 92.80(±2.67) 86.87(±1.89) 80.62(±1.41) 71.69(±0.66) 63.99(±0.52) 1.106(±1.430)

Table 13: GraphSAGE GNN architecture on Scaffold Split. The average AUC without pretraining
on all 5 datasets is 72.2%.

BBBP BACE TOX21 TOXCAST SIDER AVE GAIN
No pretrain 74.59(±1.02) 81.06(±0.15) 75.72(±0.34) 66.44(±0.27) 63.31(±0.57) 0(±0.470)
Node Prediction 75.18(±0.52) 82.98(±0.62) 75.50(±0.33) 67.32(±0.21) 64.26(±0.06) 0.824(±0.348)
Context Prediction 74.89(±0.47) 82.19(±0.59) 75.45(±0.24) 67.14(±0.02) 64.22(±0.06) 0.554(±0.276)
Supervised 74.58(±0.44) 81.56(±0.77) 76.65(±0.22) 68.26(±0.17) 63.50(±0.25) 0.686(±0.370)
Masking Node + Supervised 75.66(±0.45) 84.14(±0.37) 76.92(±0.08) 67.96(±0.20) 64.70(±0.12) 1.652(±0.244)
Context Prediction + Supervised 76.41(±0.19) 81.59(±0.49) 77.61(±0.17) 67.92(±0.19) 64.92(±0.15) 1.466(±0.238)

A.2 Graph Parameters: GNN layers

We also investigate the effect of the number of GNN layers in Graph pretraining. We use the
recommended graph parameters in [12] (number of GNN layer=5), which are selected for best
performance. Table 14 below is using node mask pretraining for GNN layer = 7. Results of GNN
layer = 5 is presented in Table 2 and 4. Compared with layer 5 vs 7, the conclusion that “pretraining
does not help statistically significantly" does not change.

Table 14: Tune number of GNN layers: Self-supervised + Rich feature. Layer number=7

GNN layers Methods BBBP BACE TOX21 TOXCAST SIDER

Balanced Scaffold Split No pretrain 92.53(±1.96) 87.01(±1.28) 78.97(±1.78) 69.07(±0.45) 61.35(±1.51)
Node Prediction 92.68(±2.33) 86.98(±2.71) 79.20(±1.97) 69.83(±0.73) 61.59(±1.05)

Scaffold Split No pretrain 74.64(±1.28) 79.85(±0.02) 75.75(±0.79) 66.09(±0.29) 61.81(±0.41)
Node Prediction 74.94(±1.01) 81.33(±1.12) 75.81(±0.46) 66.39(±0.23) 63.80(±0.18)

A.3 Selection of Dataset

As many pretraining objectives to be evaluated are following [12, 22], we used the intersection dataset
of the two papers, except we eliminate CLINTOX. Because CLINTOX has a significant high variance
in balanced scaffold split even without pretraining (see Table 15 and 16 below), so we remove it from
the evaluation to avoid unstable and biased evaluation. Additionally, we provide CLINTOX results
(Table 15 and 16). The conclusion is the same on CLINTOX as on the other datasets.
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Table 15: Clintox:High variance on Balanced Scaffold Split.

No Pretrain Layer = 5 Layer = 7
Balanced Scaffold Split 77.47(±10.44) 77.45(±9.26)
Scaffold Split 89.70(±0.93) 88.50(±0.85)

Table 16: Self-supervised + rich feature + GNN layer = 7

Methods BBBP BACE CLINTOX TOX21 TOXCAST SIDER
Balanced Scaffold Split No pretrain 92.53(+/-1.96) 87.01(+/-1.28) 77.45(+/-9.26) 78.97(+/-1.78) 69.07(+/-0.45) 61.35(+/-1.51)

Node prediction 92.68(+/-2.33) 86.98(+/-2.71) 79.63(+/-9.21) 79.2(+/-1.97) 69.83(+/-0.73) 61.59(+/-1.05)
Scaffold Split No pretrain 74.64(+/-1.28) 79.85(+/-0.02) 88.5(+/-0.85) 75.75(+/-0.79) 66.09(+/-0.29) 61.81(+/-0.41)

Node predicion 74.94(+/-1.01) 81.33(+/-1.12) 87.16(+/-0.99) 75.81(+/-0.46) 66.39(+/-0.23) 63.8(+/-0.18)

A.4 Reproduce existing results

We first reprudce the results from Hu et al. [12] in Table 17, where we make sure the code base can
obtain the similar results where the pretraining seems to be helpful. However as in our analysis, The
three factors (feature engineering, data splits, tuning of hyper-parameters) all contribute positively to
the results, and the effect of these factors could be even larger than the pretraining itself.

Table 18 shows the results we reproduced for GROVER [22]. We compared the fine-tuning results
with the model initialized from the pretrained ones provided in their website. However we didn’t see
significant gains over the model trained from scratch. We believe the hyper-parameters matters more
in this case.

A.5 Molecular benchmark description

• BBBP:
The Blood-brain barrier penetration (BBBP) dataset is extracted from a study on the mod-
eling and prediction of the barrier permeability. As a membrane separating circulating
blood and brain extracellular fluid, the blood-brain barrier blocks most drugs, hormones
and neurotransmitters. Thus penetration of the barrier forms a long-standing issue in devel-
opment of drugs targeting central nervous system. This dataset includes binary labels for
over 2000 compounds on their permeability properties. References: Martins, Ines Filipa, et
al. "A Bayesian approach to in silico blood-brain barrier penetration modeling." Journal of
chemical information and modeling 52.6 (2012): 1686-1697.

• BACE
The BACE dataset provides quantitative (IC50) and qualitative (binary label) binding results
for a set of inhibitors of human β-secretase 1 (BACE-1). All data are experimental values
reported in scientific literature over the past decade, some with detailed crystal structures
available. A collection of 1522 compounds with their 2D structures and properties are
provided.
References: Subramanian, Govindan, et al. "Computational modeling of β-secretase 1
(BACE-1) inhibitors using ligand based approaches." Journal of chemical information and
modeling 56.10 (2016): 1936-1949.

• TOX21
The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring
toxicity of compounds, which has been used in the 2014 Tox21 Data Challenge. This
dataset contains qualitative toxicity measurements for 8k compounds on 12 different targets,
including nuclear receptors and stress response pathways.
The data file contains a csv table, in which columns below are used: "smiles" - SMILES
representation of the molecular structure "NR-XXX" - Nuclear receptor signaling bioassays
results "SR-XXX" - Stress response bioassays results please refer to the links at https:
//tripod.nih.gov/tox21/challenge/data.jsp for details.
References: Tox21 Challenge. https://tripod.nih.gov/tox21/challenge/

• TOXCAST
ToxCast is an extended data collection from the same initiative as Tox21, providing toxicol-
ogy data for a large library of compounds based on in vitro high-throughput screening. The
processed collection includes qualitative results of over 600 experiments on 8k compounds.
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Table 17: Test ROC-AUC (%) performance on molecular property benchmarks using unsupervised
and supervised pre-training objectives (self-supervised). Unlike the basic framework, the results are
generated using Basic features (not rich feature), scaffold split without averaging over three different
data splits, and no selection of the best performance on six learning rates. All these factors lead to
conclusion in favor of pretraining.

ICLR code BBBP BACE TOX21 TOXCAST SIDER
No pretrain 89.82 79.46 77.39 67.91 58.38
Node Prediction 90.42 84.03 78.70 68.36 59.97
Context Prediction 91.07 83.41 78.84 68.57 60.78
Supervised 89.37 82.74 79.78 68.39 63.30
Masking Node + Supervised 91.53 83.94 81.34 70.93 62.46
Context Prediction + Supervised 91.00 82.90 81.23 71.34 62.72

Table 18: Reproduce Grover [22]
GROVER Number of parameters BBBP BACE TOX21 TOXCAST SIDER
No pretrain (base) 48,790,038 92.6 (+/- 2.0) 86.2 (+/- 2.4) 79.3 (+/- 2.6) 71.5 (+/- 0.3) 62.3 (+/- 0.3)
No pretrain (large) 107,714,488 91.8 (+/- 2.9) 86.4 (+/- 2.1) 79.8 (+/- 2.2) 71.5 (+/- 4.0) 63.6 (+/- 0.7)
grover pretraining (base) 48,790,038 89.6 (+/- 0.8) 85.1 (+/- 1.1) 78.7 (+/- 2.4) 71.5 (+/- 0.5) 62.0 (+/- 2.4)
grover pretraining (large) 107,714,488 89.2 (+/- 0.7) 84.6 (+/- 1.4) 78.6 (+/- 2.6) 69.1 (+/- 2.4) 61.4 (+/- 1.9)

The data file contains a csv table, in which columns below are used: "smiles" - SMILES
representation of the molecular structure "ACEA_T47D_80hr_Negative",
"Tanguay_ZF_120hpf_YSE_up" - Bioassays results please refer to the section
"high-throughput assay information" at https://www.epa.gov/chemical-research/
toxicity-forecaster-toxcasttm-data for details.
References: Richard, Ann M., et al. "ToxCast chemical landscape: paving the road to 21st
century toxicology." Chemical research in toxicology 29.8 (2016): 1225-1251.

• SIDER
The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug
reactions (ADR). The version of the SIDER dataset in DeepChem has grouped drug side
effects into 27 system organ classes following MedDRA classifications measured for 1427
approved drugs.
The data file contains a csv table, in which columns below are used: "smiles" - SMILES
representation of the molecular structure "Hepatobiliary disorders" "Injury, poisoning
and procedural complications" - Recorded side effects for the drug Please refer to http:
//sideeffects.embl.de/se/?page=98 for details on ADRs.
References: Kuhn, Michael, et al. "The SIDER database of drugs and side effects." Nucleic
acids research 44.D1 (2015): D1075-D1079. Altae-Tran, Han, et al. "Low data drug
discovery with one-shot learning." ACS central science 3.4 (2017): 283-293. Medical
Dictionary for Regulatory Activities. http://www.meddra.org/
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