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Abstract

McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathe-1

matical description of the behavior of an infinite number of interacting particles2

by imposing a dependence on the particle density. These processes differ from3

standard Itô-SDEs to the extent that MV-SDEs include distributional information4

in their individual particle parameterization. As such, we study the influence of5

explicitly including distributional information in the parameterization of the SDE.6

We first propose a series of semi-parametric methods for representing MV-SDEs,7

and then propose corresponding estimators for inferring parameters from data8

based on the underlying properties of the MV-SDE. By analyzing the properties of9

the different architectures and estimators, we consider their relationship to standard10

Itô-SDEs and consider their applicability in relevant machine learning problems.11

We empirically compare the performance of the different architectures on a series12

of real and synthetic datasets for time series and probabilistic modeling. The results13

suggest that including the distributional dependence in MV-SDEs is an effective14

modeling framework for temporal data under an exchangeability assumption while15

maintaining strong performance for standard Itô-SDE problems due to the richer16

class of probability flows associated with MV-SDEs.17

1 Introduction18
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(a) Itô-SDE (b) MV-SDE

Figure 1: SDE sample paths of a double-well po-
tential, where the particles (a) do not interact and
(b) exhibit complex phase transitions as a result
only of interaction via weak attraction.

Stochastic differential equations (SDEs) model19

the evolution of a stochastic process through two20

functions known as the drift and diffusion func-21

tions. Beginning with Itô-SDEs, where individ-22

ual sample paths are assumed to be independent,23

neural representations of the drift and diffusion24

have achieved high performance in many appli-25

cations, such as time series and generative mod-26

eling [Song et al., 2020, Tashiro et al., 2021].27

On the other hand, interacting particle systems28

are also used to model stochastic processes using29

many of the same characteristics as an Itô-SDE,30

but they additionally dictate an interaction between the different sample paths [Liggett, 1997]. When31

the number of particles approaches infinity, these processes generalize Itô-SDEs to nonlinear SDEs32

known as McKean-Vlasov SDEs (MV-SDEs). The nonlinearity arises from the individual particle33

dependence on the whole particle density, often in the form of a mean-field term represented by an34

expectation with respect to the particle density. This distributional dependence allows for greater35

flexibility in the time marginal distributions that the MV-SDE can represent versus the Itô-SDE. An36
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example of the differences between the two frameworks is illustrated in Figure 1 where Figure 1a37

depicts an Itô-SDE where the sample paths are independent and Figure 1b depicts a MV-SDE where38

the sample paths interact through distributional dependence. While these models appear in a variety39

of disciplines such as in finance [Feinstein and Søjmark, 2021], biology [Keller and Segel, 1971], and40

social sciences [Carrillo et al., 2020], relatively few works have considered the problem of estimating41

parameters from observations or their application in machine learning tasks.42

This brings us to a motivating question:43

(Q1) Can we develop theoretically justified neural architectures to represent MV-SDEs?44

To answer (Q1), we use the relationship between the approximation capabilities of neural networks45

and properties of MV-SDEs. We consider two ideas: (i) expressing a layer in a neural network as an46

expectation with respect to a density and (ii) using generative models to capture distributions and47

generate samples.48

Our second question relates the theoretical generality of MV-SDEs to Itô-SDEs:49

(Q2) Does including explicit distributional dependence empirically affect modeling capabilities?50

We discuss a few theoretical properties that motivate this question and answer the question empirically51

by comparing different architectures for applications in time series and in probabilistic modeling.52

1.1 Related work53

Methods that estimate MV-SDEs from observations often assume known interaction kernels and54

drift parameters. They then rely on a large number of samples at regularly spaced time intervals55

to empirically approximate the expectation in the mean-field term [Messenger and Bortz, 2022,56

Della Maestra and Hoffmann, 2022, Yao et al., 2022, Della Maestra and Hoffmann, 2023]. In Pavliotis57

and Zanoni [2022], the authors describe a method of moments estimator for the parameters of the58

MV-SDE. Other approaches concerned analyzing the partial differential equation (PDE) associated59

with MV-SDEs as in Gomes et al. [2019]. In our work, we are primarily concerned with inference60

in regions where we have limited time-marginal data and the number of samples is not large. Other61

applications of MV-SDEs in machine learning topics include estimating optimal trajectories in scRNA-62

Seq data [Chizat et al., 2022] and stochastic control problems relating to mean-field games [Han et al.,63

2022]. Ruthotto et al. [2020] considered a machine learning approach for solving certain kinds of64

mean field games and mean field control problems. Inverse problems can also be solved by deriving65

an appropriate MV-SDE as the authors describe in Crucinio et al. [2022]. Extensive analysis of the66

dynamics of the parameters of a neural network under stochastic gradient descent has been conducted67

using the theory from MV-SDEs, e.g. [Hu et al., 2021]. These methods use a pre-described form of68

the drift to conduct their analyses whereas we’re interested in learning a representation of the drift.69

Our Contributions To address the lack of non-parametric MV-SDE estimators in the existing litera-70

ture, this paper contributes the following: First, we present two neural architectures for representing71

MV-SDEs based on learned measures and generative networks; then, we present three estimators,72

based on maximum likelihood, used in conjunction with the architectures without prior knowledge73

on the structure of the drift; next, we characterize the properties of implicit regularization and richer74

probability flows of these architectures; finally, we empirically demonstrate the applicability of the75

architectures on time series and generative modeling.76

2 Properties of MV-SDEs77

We begin by describing the background and properties of the transition densities of MV-SDEs.78

Figure 2 illustrates some of these concepts qualitatively where we first consider non-local dynamics79

and then consider jumps in the sample paths.80

2.1 Background81

Consider a domain D ⊂ Rd and let Pk(D) be the space of all probability distributions supported on82

D with finite kth moment. Let Wt ∈ Rd be a d-dimensional Wiener process and let Xt ∈ Rd be a83
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solution to the following MV-SDE84

dXt = b(Xt, pt, t)dt+
√
Σ(Xt, pt, t)dWt (1)

where pt denotes the law of Xt at time t and
√
Σ denotes the Cholesky decomposition of Σ. We85

assume that the drift vector b : Rd ×P2(D)×R+ → Rd and the diffusion matrix Σ : Rd ×P2(D)×86

R+ → SPD(Rd×d) are globally Lipshitz for the existence and uniqueness of the solution, with SPD87

denoting the space of symmetric, positive definite matrices.88

We focus on the case where the diffusion coefficient is a known constant, σ, and focus on estimating89

the drift, b, from data. In addition, for simplicity in analysis, we suppose that b factors linearly90

into a non-interacting component, and an interacting component, where the mean-field term with91

dependence on pt is often written in terms of an expectation, specifically92

dXt = f(Xt, t)dt+ Eyt∼pt [φ (Xt, yt)]dt+ σdWt (2)

where f : Rd × R+ → Rd can be seen as the Itô drift, the expectation as the mean-field drift, and93

φ : Rd × Rd → Rk as the interaction function describing the interaction between particles, e.g.94

attraction with φ(x, y) = −(x− y) in Figure 1b and the left side of Figure 2. We also assume that95

all coefficients exhibit sufficient regularity such that the empirical law converges to the true law of96

the system (i.e. 1
N

∑N
i=1 δX(i)

t
→N→∞ pt(Xt)), i.e. propagation of chaos holds [Méléard, 1996].97

As mentioned, unlike Itô-SDEs which only consider dependence on Xt and t, MV-SDEs also depend98

on the marginal time distribution pt. By introducing a dependence on the marginal law, the transition99

density of the process satisfies a richer class of functions.100

2.2 Non-locality of the transition density101

Following the background, we describe a favorable property of the MV-SDE that induces non-local102

dependencies in the state space. The transition density of (2) can be written as the non-linear PDE103

∂tpt(x) = −∇ ·

 ptf(x)︸ ︷︷ ︸
Itô Drift

+ pt

∫
φ(x− yt)pt(yt)dyt︸ ︷︷ ︸

Non-Local Interactions

− σ2

2
∇pt︸ ︷︷ ︸

Diffusion

 . (3)

This non-local behavior has a variety of implications. For example, the distribution of particles “far104

away” from a reference particle can affect the behavior of the reference particle. This property is105

illustrated in the left side of Figure 2 with an example from the mean-field FitzHugh-Nagumo model106

used to model spikes in neuron activation, leading to interactions between distinct spikes [Crevat107

et al., 2019]. Notably, this is not possible when considering only the Itô drift, since that operator acts108

locally on the density.109

2.3 Discontinuous sample paths110
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Figure 2: MV-SDE sample paths with non-local
dynamics (left) and discontinuities (right).

The richer class of densities modeled by MV-111

SDEs has direct influence on individual sample112

paths. In a modeling scenario, we may wish to113

approximate a process that exhibits jumps. For114

example, in finance, a number of related entities115

may have common exposure and experience fail-116

ure simultaneously [Nadtochiy and Shkolnikov,117

2019, Feinstein and Søjmark, 2021]. Similarly,118

in neuroscience, a number of neurons spiking119

simultaneously results in discontinuities in the120

sample paths [Carrillo et al., 2013]. The fact121

that the interaction of many particles can cause blowups leads to a remarkable property of MV-SDEs122

that allows discontinuous paths. The major benefit of this property is that we do not need to consider123

an additional jump noise process – we only need to specify a particular interaction between the124

particles to induce the jump behavior. A simple proof for the case of positive feedback is given125

in Hambly et al. [2019, Theorem 1.1].126

Having described the theoretical advantages of MV-SDEs as compared to Itô-SDEs, we will proceed127

to discuss the neural architectures for representing these processes.128
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Figure 3: Schematic comparing neural architectures for modeling MV-SDEs. Implicit measure (IM)
architecture uses a mean-field layer that represents particles as learned weights; the empirical measure
(EM) architecture computes the expectation with the observed particles; the marginal law (ML)
estimates the particle density, computing the expectation with samples from the estimated density.

3 Mean-field Architectures129

We now describe methods for representing the mean-field drift of a MV-SDE in (2). We first consider130

a modification of the cylindrical architecture [Pham and Warin, 2022] that empirically computes131

the expectation using observations, and denote it as the empirical measure (EM) architecture. We132

then propose two architectures – an architecture based on representing a learned measure with neural133

weights, denoted as the implicit measure (IM) architecture, and a generative architecture based on134

representing the marginal law of the samples (ML). Figure 3 provides a schematic of the different135

architectures and mean-field representations. We denote a function f parameterized by parameters θ136

as f(·; θ).137

3.1 Empirical measure architecture138

Suppose we observe N particles at each time t given by {X(i)
t }Ni=1 and denote the discrete measure139

associated with these observations as pδt = 1
N

∑N
i=1 δX(i)

t
. Then, we can use pδt to approximate the140

expectation in (2) as141

Eyt∼pt [φ (Xt, yt)] ≈ Eyt∼pδ
t
[φ (Xt, yt; θ)] =

1

N

N∑
i=1

φ
(
Xt, X

(i)
t ; θ

)
(4)

for a neural network φ(·, ·; θ) describing the interaction function between the particles [Pham and142

Warin, 2022]. Suppose the non-mean field component f is also represented with a neural network143

f(·, t; θ). Assuming that φ and f are well learned, this architecture can represent the true MV-SDE144

drift in the limit as the number of observations N → ∞. We refer to this architecture as the145

empirical measure (EM) architecture since at each time step the expectation is taken with respect to146

the empirical measure derived from the observations.147

3.2 Implicit measure architecture148

While the EM architecture in (4) explicitly defines the relationship between the law pt and the149

interaction φ, it relies on obtaining the empirical measure at each time point. This may be difficult in150

practice for a variety of reasons such as having few samples or the lack of data at some time points.151

Instead, let us first recall that a single layer in a multilayer perceptron (MLP) can be written in terms152

of an expectation as153

MLPW,b(x) =

∫
σ (Wx+ b) dν (W, b) (5)

where the expectation is taken over ν (·), a measure over the space of parameters y = (W, b), and σ154

is an activation function.155

When ν = 1
N

∑N
i=1 δy(i) , a discrete measure with N particles, the expectation is exactly a single156

layer of width N , suggesting a correspondence between an empirical measure with N samples and a157

single layer of width N . Building on this correspondence, we propose a mean-field layer:158

Definition 3.1 (Mean-field Layer). Define the weight of the mean-field layer with width n as the159

matrix W0 ∈ Rn×d and denote its ith row as W (i)
0 . The mean-field layer then is defined by the160
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operation161

MF(n)(φ(Xt)) :=
1

n

n∑
i=1

φ(Xt,W
(i)
0 )

dPt

dP0
. (6)

The mean-field layer (MF) can be thought of as another layer within the network architecture that162

approximates the law pt. Each rowW
(i)
0 is of sizeRd, corresponding to the dimensions ofX(i)

t ∈ Rd.163

The activation function of the mean-field layer is the average over the augmented dimension over164

which MF operates. The change of measure dPt

dP0
can be learned as part of the estimator of the165

interaction function, φ(·, ·, t; θ). Importantly, the above representation allows modeling mean-field166

interactions without the need for a full set of observations at each time point and without the need to167

explicitly represent the distribution pt at each time point. Assuming that φ and MF are well learned,168

this architecture can represent the true MV-SDE drift in the limit as the width n → ∞. We note169

empirically that a finite n is sufficient and we provide examples of ablations in the appendix.170

A similar analysis can be made for the standard MLP architecture. However, the explicit separation171

of f and φ is not enforced in this case. This leads us to the following remark:172

Remark 3.2. [Itô-SDEs with drift represented using MLPs can model MV-SDEs] From the above173

discussion, the expectation with respect to the law pt may be implicitly represented by a MLP.174

Our motivation is then concerned with how a relatively more explicit distribution dependence with175

φ and MF affect modeling capabilities. This explicit structure lends to an implicit regularization176

that promotes a smaller norm of the mean-field component under a maximum likelihood estimation177

framework, which we detail later in Section 5.1.178

3.3 Marginal law architecture179

A solution to the MV-SDE is the pair (X, p) such that pt = Law(Xt). In addition, if p is a solution180

to the SDE in (2), it is also a weak solution to the PDE in (3), and the converse holds. For this reason,181

p is often itself the main object of study. In the marginal law (ML) architecture, in conjunction with182

the drift, we introduce a generative model for representing the time-varying density. In this case, we183

approximate the expectation in (2) as184

Eyt∼pt
[φ (Xt, yt)] ≈ Eyt∼P̂t

[φ (Xt, yt; θ)] =
1

n

n∑
i=1

φ
(
Xt, X̂

(i)
t ; θ

)
(7)

where the expectation is taken with respect to the discrete measure derived from samples {X̂(i)
t }ni=1185

from the generative model P̂t. The parameter estimation problem then requires optimizing both the186

generative model P̂t and the networks f and φ representing the drift, while ensuring consistency187

between the two. Using knowledge of the PDE in (3), we regularize P̂t such that it matches the flow188

relating to the drift. Additional details regarding the PDE and its relationship to the ML architecture189

are in the appendix.190

4 Parameter Estimation191

Having presented the relevant architectures, we now describe the procedures for estimating the192

parameters of the different architectures. We first describe the likelihood function for use in cases193

with regularly sampled data. We then describe a bridge estimator for cases of irregularly sampled194

data. Finally, we describe an estimator for the generative architecture based on both the likelihood195

function and the transition density. For this section, we assume that we observe multiple paths, i.e.,196 {
{Xtj}

(i)
j=1...K

}
i=1...N

. Full details of all algorithms are in the appendix.197

4.1 Maximum likelihood estimation198

We use an estimator based on the path-wise likelihood derived from Girsanov’s theorem and an199

Euler-Maruyama discretization for the likelihood, considered in Sharrock et al. [2021]. The likelihood200
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function is given as201

L(θ; t1, tK) := exp

(
1

σ2

∫ tK

t1

b (Xs, ps, s; θ) dXs −
1

2σ2

∫ tK

t1

b (Xs, ps, s; θ)
2
ds

)
. (8)

Following discretization, with the approximations ∆Xtj = Xtj+1
−Xtj and ∆tj = tj+1 − tj , the202

log-likelihood is approximated by203

log L(θ; t1, tK) ≈
K−1∑
j=1

b
(
Xtj , ptj , tj ; θ

)
(Xtj+1

−Xtj )−
1

2

K−1∑
j=1

b
(
Xtj , ptj , tj ; θ

)2
(tj+1 − tj).

If the time interval ∆t is large, then this likelihood loses accuracy, as is a property of the Euler-204

Maruyama discretization. Optimization is performed using standard gradient based optimizers with205

the drift b represented as one of the presented architectures.206

4.2 Estimation with Brownian bridges207

Often data are not collected at uniform intervals in time, but rather, the time marginals may be208

collected at irregular intervals. In that case, we consider an interpolation approach to maximizing the209

likelihood following the results of Lavenant et al. [2021] and Cameron et al. [2021] in the Itô-SDE210

case. We can write the likelihood conditioned on the set of observations (dropping the particle index211

for ease of notation) as212

LBB(θ) = EQ

 ∏
j=1...K−1

1{Ztj+1
= Xtj+1

}L(θ; tj , tj+1)


where {Zs : s ∈ [tj , tj+1]} is a Brownian bridge from Xtj to Xtj+1 and Q is the Wiener measure.213

Brownian bridges can easily be sampled and reused for computing the expectation.By applying214

Jensen’s inequality, we can write an evidence lower bound (ELBO) as215

logLBB ≥ EQ

 ∑
j=1...K−1

logL(θ; tj , tj+1)

∣∣∣∣ {Ztj = Xtj

}K
j=1

 . (9)

The ELBO in this case aims to fit the observed marginal distributions exactly while penalizing216

deviations in regions without data that deviate from the Brownian bridge paths.217

4.3 Estimation with explicit marginal law P̂t218

Returning to the ML architecture described in Section 3.3, where we explicitly model the density pt219

with a generative network P̂t, our estimator should enforce the regularity of pt through its PDE in (3).220

Let the parameters of the drift be θ and the parameters of the generative model be ϕ, then we solve221

the optimization problem222

max
θ,ϕ

E
[
L(θ, ϕ | {Xtj}j=1...K)

]
s.t. (10)∫ tj+1

tj

∥∥∥P̂s(x;ϕ)− E
[
P̂tj+1

(
X̂tj+1

;ϕ
)
| X̂s = x

]∥∥∥ds = 0 (11)

for time intervals indexed by j = 1 . . .K − 1, the state space x ∈ supp(Xt), and where the223

trajectories of X̂t follow the dynamics of the ML architecture, specifically224

dX̂t = f(X̂t, t; θ)dt+ Eyt∼P̂t(·;ϕ)

[
φ
(
X̂t, yt; θ

)]
dt+ σdWt. (12)

The likelihood at the observed margins is first maximized in (10). In (11), the marginals at previous225

times are regularized using the correspondence between the PDE and its associated SDE via the226

nonlinear Kolmogorov backwards equation [Buckdahn et al., 2017], which describes pt as an227

expectation of trajectories at a terminal time, i.e. pt(x) = E[pT (XT )|Xt = x] for t < T .228
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5 Modeling Properties229

Having discussed the architectures and estimators, we now discuss specific properties of the modeling230

framework, which follow from the theoretical discussion presented in Section 2. We first discuss how231

the factorization into φ and MF lends to an implicit regularization of the IM architecture. We then232

compare the gradient flows of Itô-SDEs and MV-SDEs.233

5.1 Implicit regularization of the implicit measure architecture234

Closely related to the IM architecture are neural Itô-SDEs, where we previously remarked can model235

MV-SDEs. On the other hand, the factorization of the IM architecture into φ and MF leads to a type236

of implicit regularization when the parameters are estimated using gradient descent.237

Proposition 5.1 (Implicit Regularization). Suppose f , φ known and fixed. Further, assume that φ is238

twice differentiable. Then, for each time step t, the minimizing finite width MF with weight matrix239

W0 ∈ Rn×d and ith row W
(i)
0 under gradient descent satisfies the following optimization problem240

min
W0

∑
i=1...n

∑
j=1...d

φ(Xt,W
(i)
0 )j s.t. E

[
1

2∆t
∥Xt+∆t −Xt − b(Xt, pt, t)∥2

]
= 0.

Proof. We follow the blueprint in Belabbas [2020] and give full details in the appendix.241

Proposition 5.1 effectively says that the mean-field system approximated is the one that has the least242

influence from the other particles under perfectly matched marginals. In the case where φ can be243

decomposed as a norm, this amounts to finding the drift parameterized by weight W0 with smallest244

norm while still matching the marginals.245

5.2 Gradient flows of the MV-SDE246

To illustrate the difference between the MV-SDE and Itô-SDE particle flows, we invoke the analysis247

in Santambrogio [2017, Section 4.6] to describe the functionals that are minimized by each.248

Remark 5.2 (Functional Minimizer). Consider two drifts B = ∇f(X) and BMF = B +249

E[∇φ(X − y)]. Consider a functional F [p] =
∫
log pdp+

∫
f(X)dp for some measure p absolutely250

continuous with respect to the Lebesgue measure. Then, the gradient flow satisfying the linear251

Fokker-Planck equation with drift B minimizes F . On the other hand, the nonlinear Fokker-Planck252

associated with drift BMF minimizes the functional FMF[p] = F [p] +
∫
φ(X − Y )dp(X)dp(Y ).253

This has an important implication, for example, if we take φ(·) = 2∥ · ∥dq
dp − ∥ · ∥2 − ∥ · ∥2

(
dq
dp

)2
254

then the functional is minimizing the squared energy distance between a target measure q as well as255

the entropy. We use this example to motivate some of the experiments on probabilistic modeling.256

6 Numerical Experiments257

We discussed Q1 on modeling and inferring distributional dependence. We now wish to answer258

Q2 and quantify the effect of distributional dependence in machine learning tasks. To do this, we259

test the methods on synthetic and real data for time series estimation and sample generation. The260

main goal is to determine the difference between standard Neural Itô-SDE and the proposed Neural261

MV-SDEs under different modeling scenarios. In that sense, the baseline we consider is the Itô-SDE262

parameterized using an MLP. However, we also consider other deep learning based methods for263

comparison in a broader context. We abbreviate the different architectures as the Empirical Measure264

(EM) in Section 3.1, Implicit Measure (IM) in Section 3.2, and Marginal Law (ML) in Section 3.3.265

Full descriptions of the models, baselines, and datasets are given in the appendix.266

Synthetic data experiments Motivated by the application of MV-SDEs in physical, biological,267

social, and financial settings, we benchmark the proposed methods on 4 canonical MV-SDEs: the268

Kuramoto model which describes synchronizing oscillators [Sonnenschein and Schimansky-Geier,269

2013], the mean-field FitzHugh-Nagumo model which characterizes spikes in neuron activations270
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Figure 4: Top row: sample paths from the different synthetic datasets. Bottom row: mean squared
error (MSE) of different architectures’ performance on drift estimation, under the effect of different
levels of observation noise. Reported value is an average of 10 runs.

[Mischler et al., 2016], the opinion dynamic model on the formation of opinion groups [Sharrock271

et al., 2021], and the mean-field atlas model for pricing equity markets [Jourdain and Reygner,272

2015]. We additionally benchmark the proposed methods on two Itô-SDEs: an Ornstein–Uhlenbeck273

(OU) process and a circular motion equation to determine the performance on Itô-SDEs. Finally, to274

understand the performance on discontinuous paths, we benchmark the proposed methods on an OU275

process with jumps. We focus on recovering the drift from observations.276

0 5
4

25
OU with 4 Jump MLP

IM
ML
EM
True

1 2 4
Number of Jumps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 D

ist
an

ce

MLP
IM
ML
EM

Figure 5: Left: Average paths of true and estimated OU
process with 4 jumps. Right: Energy distance between
true and generated paths.

Since the true drifts of the synthetic data are277

known, we directly compare the estimated278

drifts to the true drifts. The performance279

on five different datasets with three differ-280

ent levels of added observational noise is281

presented in Figure 4. The proposed mean-282

field architectures outperform the standard283

MLP in modeling MV-SDEs; moreover,284

our experiments on OU and circular pro-285

cess suggest that incorporating explicit dis-286

tributional depedence does not diminish the287

performance in estimating non-interacting288

Itô-SDEs. When modeling processes with289

jump discontinuities, Figure 5 highlights the flexibility of the proposed methods, IM, ML, to match290

such models. The EM likely does not perform as well due to the high variance of the empirical291

measure, leading to difficulties in learning. Additionally, the MLP does not have an explicit decompo-292

sition between the MV and Itô components, resulting in issues when estimating the feedback between293

the particles inducing jumps.294

Real data experiments Extending from the synthetic examples, we consider two real examples:295

brain activity recorded by electroencephalograms (EEG), which is closely related to the Kuramoto296

model [Nguyen et al., 2020]; and chemically stimulated movement of organisms (chemotaxis), which297

can be modeled by the Keller-Segel model [Tomašević, 2021, Keller and Segel, 1971].298

We evaluate the proposed architectures in these modeling tasks by comparing the goodness-of-fit299

of generated path samples to the observed path samples. We compute the Continuous Ranked300

Probability Score (CRPS) defined in Gneiting and Raftery [2007] (see appendix for details) for301

the 1-dimensional EEG data, and the normalized MSE (normalized with sample variance) for the302

3-dimensional chemotaxis data with respect to the held out data. We also benchmark against the303

DeepAR probabilistic time series forecaster [Salinas et al., 2020] with RNN, GRU, LSTM, and304

Transformer (TR) backbones as another baseline model to compare the goodness-of-fit.305

The performances of different architectures are presented in Table 1. For EEG, the proposed306

architectures generally perform better than the baselines in generating paths within the training time307

steps, and on par with the DeepAR architectures for forecasting (full results presented in appendix).308

For chemotaxis data, the MV-SDE based architectures all outperform the DeepAR baselines.309
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Table 1: Time series estimation on held out trajectories. NA/A stands
for non-alcoholics/alcoholics. Bolded values and italic values are best
and second best respectively.

CRPS ↓ MSE ↓
NA-EEG A-EEG C.Cres E.Coli

MLP (Itô) 5.52 (1.40) 4.33 (1.14) 0.096 (0.002) 0.080 (0.003)
IM 5.23 (1.24) 4.30 (1.21) 0.094 (0.003) 0.080 (0.001)
ML 5.10 (1.22) 4.05 (1.12) 0.093 (0.002) 0.084 (0.002)
EM 5.35 (1.22) 4.09 (1.11) 0.093 (0.004) 0.086 (0.004)

LSTM 6.27 (2.02) 5.68 (2.56) 1.159 (0.234) 0.585 (0.350)
RNN 6.22 (2.07) 4.64 (1.38) 1.563 (1.070) 0.773 (0.092)
GRU 6.35 (2.01) 6.18 (2.73) 0.826 (0.289) 0.568 (0.301)
TR 5.95 (1.45) 4.29 (1.36) 1.503 (0.212) 1.204 (0.212)

2 10 30 50 100
Dimension

9.4

9.2

9.0

8.8

8.6

8.4

8.2

EL
BO

MLP
IM
ML
EM

Figure 6: ELBO of generated
paths from standard Gaussian
to eight Gaussian mixture (in
increasing dimension) evalu-
ated against OT mapping.

310

Generative modeling experiments We focus on applying the bridge estimator discussed in Sec-311

tion 4.2 to map between a Gaussian and a target distribution. We are interested in two aspects: 1) the312

properties of the learned mapping, and 2) the generated trajectories. We first study the properties of313

the learned mapping using a synthetic eight Gaussian mixture with increasing dimensionality. We314

compare the performance of different architectures through the ELBO of the sample paths generated315

by the optimal transport (OT) mapping between the initial distribution and held out target samples.316

We next evaluate the generated trajectories through the energy distance (see appendix for details)317

between generated and held-out data for 5 real data density estimation experiments. In addition,318

we compare to common density estimators of variational autoencoder (VAE) [Kingma and Welling,319

2013], Wasserstein generative adversarial network (W-GAN) [Gulrajani et al., 2017], masked autore-320

gresive flow (MAF) [Papamakarios et al., 2017] and score-based generative modeling through SDEs,321

which corresponds to a constrained form of the MLP [Song et al., 2020]. The MV-SDE architectures322

not only outperform the Itô architecture for all dimensions in the eight Gaussian experiment, as323

shown in Figure 6, but also for the 5 real data density estimation experiments, as shown in Table 2,324

while outperforming common baselines. All sampling is performed using standard Euler-Maruyama,325

with full details of the sampling and inference algorithms in the appendix. This again suggests the326

MV-SDE provides a more amenable probability flow for modeling compared with the Itô case.327

Table 2: Density estimation: Energy distance between observed samples and generated samples of
different methods. Bolded values and italic values are best and second best correspondingly.

POWER MINIBOONE HEPMASS GAS CORTEX

MLP (Itô) 0.342 (0.096) 0.674 (0.048) 0.537 (0.052) 0.405 (0.08) 0.742 (0.062)
IM 0.292 (0.078) 0.395 (0.045) 0.405 (0.025) 0.287 (0.082) 0.53 (0.026)
ML 0.282 (0.083) 0.443 (0.034) 0.366 (0.03) 0.305 (0.063) 0.568 (0.03)
EM 0.328 (0.116) 0.455 (0.036) 0.429 (0.046) 0.298 (0.036) 0.577 (0.037)

VAE 1.19 (0.024) 2.117 (0.148) 1.763 (0.031) 1.516 (0.023) 2.412 (0.197)
W-GAN 1.248 (0.017) 2.079 (0.003) 1.819 (0.013) 1.3 (0.016) 2.19 (0.011)
MAF 0.288 (0.041) 0.467 (0.009) 0.308 (0.017) 0.519 (0.033) 0.532 (0.026)
Score-Based 0.302 (0.049) 0.499 (0.019) 0.324 (0.028) 0.562 (0.043) 0.582 (0.020)

7 Discussion328

In this paper we discuss an alternative viewpoint of the standard Itô-SDE parameterization. In329

particular, we focus on MV-SDEs and discuss how neural networks can represent a process that330

depends on the distribution, and we describe ways of making this dependence more explicit. We331

demonstrated the efficacy of the proposed architectures on a number of synthetic and real benchmarks.332

The results suggest that the proposed architectures provide an improvement over baselines in certain333

generative modeling and time series applications.334

Limitations We only studied the implicit regularization of the IM architecture under gradient descent,335

but the extension of the analysis to the other proposed architectures is important to understand the336

corresponding regularization. Additionally, computing expectations incurs additional computational337

cost. Improving the computational accuracy using a multilevel scheme as proposed in Szpruch et al.338

[2019] could improve the performance of the methods.339
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A Proofs472

In the main text, we briefly discussed some theoretical advantages in terms of the flexibility in the473

time marginal distributions that MV-SDEs can represent versus Itô-SDEs, such as non-local dynamics474

and jumps in the sample paths. For more background and properties, we refer to the notes by Lacker475

[2018] and the book by Carmona et al. [2018].476

In this section, we consider the theoretical advantages of the proposed architectures and estimators.477

Specific to the architectures, we develop the implicit measure architecture, and study the implicit478

regularization of explicit distributional dependence, with a comparison to optimal transport. Specific479

to the estimators, we develop the compatibility criterion for the modeled density to be consistent with480

the flow of the modeled SDE, and discuss a similar interpretation for the interpolation approach of481

the Brownian bridge estimator.482

A.1 Development of Implicit Measure Architecture483

The implicit measure (IM) architecture is motivated by the fact that given a drift b that is Lipschitz484

continuous, by the universal approximation theorem, a two-layer multi-layer perceptron (MLP) can485

approximate b to arbitrary precision [Hornik, 1991]. We first show that the drift of a MV-SDE can be486

represented by a MLP then describe the IM architecture where the distributional dependence is made487

more apparent.488

Proof. Consider a McKean-Vlasov process where the drift b is factorized into a linear form

b(Xt, pt, t) = f(Xt, t) + Eyt∼pt
[φ(Xt − yt)]

and assume that f(·; θ) and φ(·; θ) are well approximated by MLPs following the universal approxi-489

mation theorem. It remains to show that Eyt∼pt
[φ(Xt − yt)] can be well approximated by an MLP.490

We will begin by presenting the proof for the case where the law is stationary, then perform a change491

of measure to extend to the case where the law is non-stationary.492

Recall that a MLP can be written in terms of an expectation as493

MLPW,b(x) =

∫
σ (Wx+ b) dν (W, b)

= E[σ(Wx+ b)]

where the expectation is taken over ν(·), a measure over the space of parameters W, b, and σ is an494

activation function. By our original argument that φ is well approximated by a MLP, we can let that495

represent the activation function. Next, set ν(W ) = δId and ν(b) = Law(−Xt). Since we assumed496

Xt is stationary, Law(Xt) = Law(X⋆) for all t. We now have our approximation as497

MLPW,b(x) =

∫
φ (x− b) pt(b)db

= Ey∼pt
[φ(x− y)].

Non-stationary law Next we consider the case where the law of Xt is not the same for all t. For
this argument, we will consider the change of measure that maps Pt to Pt+1. Since we are assuming
that the diffusion is constant, all measures Pt are absolutely continuous with respect to each other.
We additionally assume that Novikov’s condition is satisfied. Following Girsanov’s theorem, we can
write the expectation in terms of this changed measure by introducing the time variable

Ey∼Pt [φ(x− y)] = Ey∼Q

[
φ(x− y)

dPt

dQ

]
.

Under this formulation Q is the learned measure and Pt is the measure at each time point t. Assuming498

that the function φ(·; θ)dPt

dQ can be learned for all t as another MLP φ̂ (·, t; θ), we conclude the proof.499

A similar idea was explored in Du et al. [2021] where the authors attempt to compute a stationary500

measure as a change of measure of particle samples.501

502
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Following a similar notation to the MLP proof, we only change the base measure such that it is503

given by the mean-field layer. A similar change of measure argument is then applied to complete the504

development of the IM architecture.505

The proposed neural architectures differ from existing methods that consider the empirical measure,506

since we consider parameters to describe the measure at different time points. The proposed neural507

architectures also differ from existing methods that describe Ito-SDEs since we consider a more508

explicit parameterization of distributional dependence.509

Relationship to Attention Recently, works such as Sander et al. [2022] described the relationship510

between interacting particle systems and the attention structure in the transformer architecture. Here511

we briefly describe a motivation for using the proposed architectures in the sense that they describe a512

similar structure to attention.513

Recall that the attention module is defined by WK ,WV ,WQ ∈ RNW×d and the normalized attention
matrix by

αi,j = N exp(⟨WKX
(i),WQX

(j)⟩)
/ N∑

k=1

exp(⟨WKX
(i),WQX

(k)⟩).

We focus on the attention matrix since it describes the dependence between particles X(i).514

We can rewrite the above equation as an expectation

αi,j = exp(⟨WKX
(i),WQX

(j)⟩)
/
E[exp(⟨WKX

(i),WQy⟩)],

where the expectation is taken with respect to a discrete measure ν =
∑N

k=1 δX(k) , as we do in the
IM architecture. We can write the numerator as the expectation with an indicator and the denominator
as the full expectation,

αi,j = E[exp(⟨WKX
(i),WQy⟩)1y=X(j) ]

/
E[exp(⟨WKX

(i),WQy⟩)].

Finally, since we do not assume a particular structure on φ in the IM architecture, we can let φ be515

equal to the exponential of the dot product with the transformation by WK ,WQ. Note that this is516

applied to particles at each time marginal t rather than for a sequence of particles. A sequence of517

particles would correspond to the case of non-exchangability, which is a direction of future work.518

A.2 Implicit Regularization of Explicit Distributional Dependence519

Proof. Consider a McKean-Vlasov process governed by

dXt = {f(Xt, t) + Eyt∼pt
[φ(Xt, yt)]}dt+ dWt.

Our goal is to understand the implicit regularization of the IM architecture where the expectation520

is approximated by a discrete measure ν = 1
w

∑w
k=1 δθk and θk corresponds to the kth row of a521

w× d weight matrix θ. We show that the path preferred by gradient descent is the one that minimizes522

Eyt∼ν [φ(Xt, yt)], i.e. the solution with least influence from other particles. In addition, when φ523

can be decomposed as a norm, this amounts to finding the weights with smallest norm. For ease of524

notation, we will begin by presenting the proof for one time step and in 1-dimension, i.e. d = 1.525

Following the blueprint given by Belabbas [2020], we wish to study the implicit bias of the weight526

matrix θ by understanding the compatibility between two optimization problems, the training problem527

given by the loss:528

min
θ

L(θ,X) =

N∑
i=1

1

2∆2
t

(
(X

(i)
t+∆t

−X
(i)
t )−

(
f(X

(i)
t , t) +

1

w

w∑
k=1

φ(X
(i)
t , θk)

)
∆t

)2

(13)

for observations
{
X

(i)
t , X

(i)
t+1

}
i=1...N

and the regularization problem given by

min
θ
K(θ,X) s.t. L(θ,X) = 0
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for some function K that satisfies the PDE:529

∂2K

∂θ2
g(θ,X) +

N∑
i=1

λi
∂2L
∂θ2

(θ,X(i))g(θ,X) = 0 (14)

where g denotes the dynamics of gradient descent given as

g(θ,X) = θ̇ =

N∑
i=1

∂L
∂θ

(θ,X(i)).

Following Belabbas [2020], the PDE(14) has a simple interpretation: the Hessian of K, acting on g,530

is a linear combination of the Hessians of L at datapoints X(i), acting on g. The next step is to find531

the function K.532

We compute the first derivative

∂θjL(i) =

(
−1

∆tw

(
(X

(i)
t+∆t

−X
(i)
t )−

(
f (i) +

1

w

w∑
k=1

φ(X
(i)
t , θk)

)
∆t

)
∂θjφ(X

(i)
t , θj)

)
.

Then the second derivative as533

∂θj ,θjL(i) =

(
1

w2
(∂θjφ(X

(i)
t , θj))

2

− 1

∆tw

(
(X

(i)
t+∆t

−X
(i)
t )−

(
f (i) +

1

w

w∑
k=1

φ(X
(i)
t , θk)

)
∆t

)
∂θj ,θjφ(X

(i)
t , θj)

)
.

with the off-diagonal second derivative as

∂θk,θjL(i) =
1

w2
∂θiφ(X

(i)
t , θk)∂θjφ(X

(i)
t , θj).

The terms with coefficient 1
w2 will have coefficient 1

w3 when multiplied by the first partial derivative
in g. Taking w = O(1/∆t), these terms are negligible. With the choice of

λi = ∆t

(
(X

(i)
t+∆t

−X
(i)
t )−

(
f (i) +

1

w

w∑
k=1

φ(X
(i)
t , θk)

)
∆t

)−1

we obtain the PDE
∂2K

∂θ2
−

N∑
i=1

1

w

w∑
k=1

∂θk,θkφ(X
(i)
t , θk) = 0.

This suggests that the regularization problem that we are solving, repeating for T time steps, is534

min
θ
K(θ,X) =

T∑
t=1

N∑
i=1

1

w

w∑
k=1

φ(X
(i)
t , θk) s.t. L(θ,X) = 0. (15)

In the context of the MV-SDE, the mean-field system approximated is the one that has the least535

influence from the other particles.536

d-dimensions. Now consider the case with θk as vectors. The notation becomes more complex as
the partial derivatives now form tensors. However, since the diffusion is assumed to be constant and
diagonal, we can give a brief analysis similar to the 1-dimensional case. The loss function is now

L(θ,X) =

T∑
t=1

N∑
i=1

1

2∆2
t

d∑
j=1

(
(X

(i)
t+∆t

−X
(i)
t )−

(
f(X

(i)
t , t) +

1

w

w∑
k=1

φ(X
(i)
t , θk)

)
∆t

)2

j

.

The regularized problem has a similar form of537

min
θ
K(θ,X) =

T∑
t=1

N∑
i=1

1

w

w∑
k=1

d∑
j=1

φ(X
(i)
t , θk)j s.t. L(θ,X) = 0.

538
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A.2.1 Comparison to Optimal Transport539

Now consider the case f = 0 and recall that the transition density satisfies the PDE540

∂tp(x, t) = −∇ ·
(∫

Ω

φ(x, y)p(y, t)dyp(x, t)

)
+
σ2

2
∇2p(x, t) (16)

such that p(x, 0) = p0(x) and p(x, T ) = pT (x). Suppose that φ can be represented as a norm541

∥g(x, y)∥2 and replace the drift with the one given by the implicit bias, the PDE then becomes542

∂tp(x, t) = −∇ ·
(
min
ν

(∫
Ω

∥g(x, y)∥2ν(y, t)dy
)
p(x, t)

)
+
σ2

2
∇2p(x, t)

= −∇ ·
(
min
ν

Ey∼ν

[
∥g(x, y)∥2

]
p(x, t)

)
+
σ2

2
∇2p(x, t)

= −∇ ·
(
min
g
g(x, t)p(x, t)

)
+
σ2

2
∇2p(x, t)

where the last step can be seen as a parameterization of the function g by the measure ν.543

We see some similarities to the Benamou-Brenier form of the Wasserstein-2 distance, where the544

optimization problem is given by545

W2(ρ, µ) = min
g

∫ T

0

EXt∼p(x,t)

[
∥g(Xt, t)∥2

]
dt (17)

subject to546

∂tp = −∇ · (g(x, t)p(x, t)) , p0(x) = ρ, pT (x) = µ. (18)

Compare (15) to (17) where we have the same objective. In addition, note that the probability547

flow (16) satisfies the transport equation (18) in the limit as σ → 0. This lends to an interpretation548

that, under certain choices of φ, the problem relates to the entropy regularized optimal transport549

problem under the W2 cost. Notably, this comes as a result of the implicit bias introduced by the550

neural network gradient optimization scheme and is not a separate term that needs to be added.551

A.3 Compatibility Criterion in Inferring Explicit Distributional Dependence552

A.3.1 Feynman-Kac for the Kolmogorov Backward Equation553

The Kolmogorov backward and forward equations are PDEs that describe the time evolution of the554

marginal density of the associated SDE. The Kolmogorov backward equation describes the evolution555

of the density when given a known terminal condition. Its adjoint, the Kolmogorov forward equation,556

establishes an initial condition and provides the density at some future time. In this section, we focus557

on regularizing the modeled density to be consistent with the flow of the modeled SDE using the558

Kolmogorov backward equation. In Section C.4.5, we derive a likelihood and perform additional559

generative modeling experiments based on a linearization of the Kolmogorov forward equation, also560

known as the Fokker-Planck equation.561

For the modeled density to be consistent with the flow of the modeled SDE, it has to satisfy the562

Kolmogorov backward equation defined as563

−∂tpt = b(·)∇pt +
σ2

2
∇2pt. (19)

A solution to the above equation is given by the Feynman-Kac formula as an expectation of trajectories564

at terminal time, i.e.565

pt(x) = E [pT (XT ) | Xt = x] (20)

where pT (·), t < T is the given terminal condition and Xs satisfies the SDE dXs = b(·)ds+σdWs.566

Following (20), we evolve Xs from Xt = x to XT , then penalize the difference between pt(x) and567

E [pT (XT ) | Xt = x]. The estimation algorithm with this compatibility criterion on the marginal568

density is detailed in Algorithm 3.569
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A.3.2 Feynman-Kac Analysis of the Brownian Bridge Estimator570

Consider the bridge estimator

LBB = P ({Ztj+1 = Xtj+1} | Ztj = Xtj ) = EQ
[
1{Ztj+1 = Xtj+1} | Ztj = Xtj

]
where the expectation is taken over Brownian paths Zt under the Wiener measure Q. This computes
the probability that a Brownian motion Zt, conditioned to be equal to Xtj at tj , is equal to Xtj+1 at
tj+1. This can be thought of using the Kolmogorov backward equation and Feynman-Kac formula
from the previous section. Applying a change of measure using Girsanov’s theorem to a drifted
Brownian motion, we arrive at the estimator described in the main text

LBB(θ) = EQ

[
1{Ztj+1

= Xtj+1
} exp

(∫ tj+1

tj

b( · ; θ)dZt −
1

2

∫ tj+1

tj

b( · ; θ)2dt

)
| Ztj = Xtj

]
.

The indicator function, which acts as the boundary condition for the Kolmogorov backward equation,571

restricts the paths of Q to those that are Brownian bridges between Xtj and Xtj+1 . The change of572

measure via Girsanov’s provides the mechanism for inferring the optimal drift for the observed data.573

The experiments then provide a way of evaluating whether including distributional properties in the574

drift (i.e. nonlinear Kolmogorov backward equation with b(Xt, pt, t; θ)) results in better probabilities575

than without (i.e. linear Kolmogorov backward equation with b(Xt, t; θ)).576
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B Algorithms577

To supplement the algorithmic contributions in the main paper we detail the inference procedure578

for the regular time observations in Algorithm 1 and the irregular time observations with Brownian579

bridges in Algorithm 2. We then detail the inference procedure with regularization of the marginal580

law using a compatibility criterion of the PDE with the associated SDE in Algorithm 3. Finally, we581

describe a sampling procedure in Algorithm 4. The code is attached in the supplementary material582

and will be posted online.583

Algorithm 1 Maximum Likelihood Estimation (MLE) with Girsanov’s Theorem

Input: observed trajectories
{
{Xtj}

(i)
j=1...K

}
i=1...N

.

Initialize: neural drift b(·; θ).
for i in mini-batch do

for j in 1...K − 1 do
Compute ∆X

(i)
tj = X

(i)
tj+1

−X
(i)
tj .

Compute discretized approximation to log of exponential martingale:
L(θ) := b(X

(i)
tj , ptj , tj ; θ)∆X

(i)
tj − 1

2b(X
(i)
tj , ptj , tj ; θ)

2(tj+1 − tj).

Maximize L(θ) using gradient based optimizer.
end for

end for

In the computation of the mean-field component of b(X(i)
tj , ptj , tj ; θ), we do the following:584

• EM architecture: 1
N

∑N
k=1 φ(X

(i)
tj , X

(k)
tj ; θ).585

• IM architecture: 1
nw

∑nw

k=1 φ(X
(i)
tj ,W

(k)
0 , tj ; θ)586

as a neural network with an additional layer and additional conditioning on tj .587

• ML architecture: 1
np

∑np

k=1 φ(X
(i)
tj , X̂

(k)
tj ; θ)588

where we compute the expectation with samples {X̂(k)
tj }np

k=1 from P̂ (·, tj ; θ),589

a generative network with additional conditioning on tj .590

Additional details on the parameterization of the neural architectures are in Section C.2.3.591

In the case of irregular time observations, for each trajectory, we first sample Brownian bridges592

between observations, then use the sampled Brownian bridges as regular time observations. In this593

case, the estimation procedure aims to fit the observations while penalizing deviations from the594

Brownian bridge paths in regions without observations. The Brownian bridge approach also has the595

interpretation of the shortest distance interpolator that exactly fits the margins. Using a Brownian596

bridge path construction reduces the variance of the estimator.597

We next detail the estimation procedure with regularization of the marginal law using the corre-598

spondence between the PDE and its associated SDE via the nonlinear Kolmogorov backwards599

equation [Buckdahn et al., 2017].600

We finally describe a sampling algorithm.601
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Algorithm 2 MLE with Girsanov and Brownian Bridges

Input: observed trajectories
{
{Xtk}

(i)
k=1...K

}
i=1...N

.

Initialize: neural drift b(·; θ).
for i in mini-batch do

for k in 1...K − 1 do
Sample Brownian bridge {Ztj}

(i)
j=1...J between X(i)

tk
and X(i)

tk+1
.

for j in 1...J − 1 do
Compute ∆Z

(i)
tj = Z

(i)
tj+1

− Z
(i)
tj .

Compute discretized approximation to log of exponential martingale:
L(θ) := b(Z

(i)
tj , ptj , tj ; θ)∆Z

(i)
tj − 1

2b(Z
(i)
tj , ptj , tj ; θ)

2(tj+1 − tj).

Maximize L(θ) using gradient based optimizer.
end for

end for
end for

Algorithm 3 MLE with Girsanov and Regularization of Explicit Marginal Law P̂t

Input: observed trajectories
{
{Xtj}

(i)
j=1...J

}
i=1...N

.

Initialize: neural drift b(·; θ), including explicit marginal law P̂ (·; θ).
for i in mini-batch do

for j in 1...J − 1 do
Compute ∆X

(i)
tj = X

(i)
tj+1

−X
(i)
tj .

Compute discretized approximation to log of exponential martingale:
ELBO := b(X

(i)
tj , ptj , tj ; θ)∆X

(i)
tj − 1

2b(X
(i)
tj , ptj , tj ; θ)

2(tj+1 − tj).

Sample {{Ztj+1
|z = X

(i)
tj }(k)}k=1...K following the dynamics of the ML architecture.

Compute the expected log-likelihood E[log P̂tj+1
(Ztj+1

)] = 1
K log P̂tj+1

(Z
(k)
tj+1

).

Compute compatibility criterion CC := (log P̂tj (X
(i)
tj )− E[log P̂tj+1(Ztj+1)])

2

Compute total loss L(θ) := ELBO + CC.
Maximize L(θ) using gradient based optimizer.

end for
end for

Algorithm 4 Sampling Trajectories with Euler-Maruyama Scheme

Initialize: time grid {tj}j=1...K .
Initialize: initial observations {X(i)

0 }i=1...N ∼ p0.
for j in 1...K − 1 do

Compute ∆tj = tj+1 − tj .
for i in 1...N do

Sample ∆W
(i)
tj ∼iid N (0,∆tj)

Compute X(i)
tj+1

= b(X
(i)
tj , ptj , tj ; θ)∆tj + σdW

(i)
tj .

end for
end for
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C Experimental Details602

In this section, we detail the evaluation metrics, datasets, hyperparameter settings, and provide603

additional experiments to supplement the results in the main paper.604

C.1 Evaluation Metrics605

C.1.1 Continuous Ranked Probability Score (CRPS)606

Following Gneiting and Raftery [2007], the Continuous Ranked Probability Score (CRPS) is given by607

CRPS(F, x) =

∫ ∞

−∞
[F (y)− 1(y ≥ x)]

2
dy.

The CRPS evaluates the modeled distribution against a single observation by comparing the cumu-608

lative distribution function (CDF) of the modeled distribution F to a step function placed at the609

observation x.610

C.1.2 Energy Distance611

The squared energy distance between two distributions P0 and P is defined as

d2(P0, P ) := 2EX∼P0,Y∼P [∥X − Y ∥]− EX∼P0,X′∼P0
[∥X −X ′∥]− EY∼P,Y ′∼P [∥Y − Y ′∥]

where we compute the expectations empirically.612

C.2 Datasets613

Here we describe the datasets in more detail and provide exact statements on the simulation parame-614

ters.615

C.2.1 Synthetic Time Series Data616

Kuramoto Model. The Kuramoto model which describes synchronizing oscillators takes the form

dX
(i)
t =

h(i) + K

N

N∑
j=1

sin
(
y
(j)
t −X

(i)
t

)dt+ σdW
(i)
t ,

where movements of N particles are governed by a linearly factored drift that includes some function617

h(i) and a mean-field term that couples the particles. We simulate 2-dimensional trajectories with618

X
(i)
t = [X

(i)
1t , X

(i)
2t ] ∈ R2, h(i) =

[
sin(X

(i)
1t ), sin(X

(i)
2t )
]
, K = 2, N=20, and σ = 1.619

Fitzhugh-Nagumo Model. The FitzHugh-Nagumo model is a set of equations that models spikes in620

neuron activations as membrane voltage spikesX1t, driven by external stimulus Iext, and diminishing621

over time X2t. It takes the form622

dX1t = (aX1t (X1t − λ) (1−X1t)−X2t + Iext) dt+ E [X1t − y1t] dt+ σdWt,

dX2t = (−bX2t + cX1t + d) dt,

We chose a = 0.2, b = 0.8, c = 1, d = 0.7, λ = 0.4, Iext = 0.1 sin(10t), and σ = 0.3. The623

expectation is approximated with N = 20 particles.624

Opinion Dynamic Model. The opinion dynamic model simulates the opinion formation process
through an equation with the form

dXt = E [ψθ(||Xt − yt||)(Xt − yt)] + σdWt,

where ψθ(r) = θ1 exp(− 0.01
1−(r−θ2)2

). We simulate 2-dimensional trajectories with θ1 = 1, θ2 = 2.5.625
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Mean-Field Atlas Model. The mean-field atlas model for pricing equity markets takes the form

dXt = γ

(∫
1{Xt−yt>0}dpt(y)

)
dt+ σdWt,

where the drift γ(·) depends on the rank of the particle at each time. Let u =
∫
1{Xt−yt>0}dpt(y)dt,626

we define γ = 1− u exp(2u).627

Itô Diffusion - Ornstein-Uhlenbeck. We simulated a 2-dimensional Ornstein-Uhlenbeck (OU)628

process with drifts [−3X1t,−2X2t] .629

Itô Diffusion - Circle. We simulated a 2-dimensional SDE with circular evolution given by drifts630

[−X1t − 2X2t,−X2t + 2X1t].631

Jump Diffusions. We simulated a 2-dimensional OU process with drifts [−X1t,−X2t] and addi-632

tional 1, 2, or 4 jumps sampled uniformly in time with jump size distributed as exp(Uniform(2, 3)).633

All models are two-dimensional except the mean-field atlas model that is one-dimensional.634

We first simulated samples using the Euler-Maruyama method on a fine grid ∆t, i.e. Xt+∆t =635

Xt + b(Xt, pt, t)∆t + σ∆W with ∆W ∼ N (0,∆t) and t ∈ [0, T ]. For irregular time samples,636

a batch of observation times are then sampled according to an exponential distribution with rate637

λ = T/N ′, where N ′ is the number of irregular time samples. The sampled timestamps are then638

matched to the closest times in the discretized time sequence used in sample generation. Only the639

matched timestamps t′, the initial condition X0, and the terminal condition XT are used in training.640

For evaluation, we consider the full trajectories. Specific choices of σ, T,∆t,N , and N ′ are provided641

in Table 3. To realistically simulate real-world parameter estimation, “observation noise" in the form642

of Gaussian with standard deviations ∈ {0.1, 0.5, 1} is added to the sampled data.643

Dataset σ Terminal Time T ∆t # Particles N # Irregular Observation N ′

Kuramoto 1 5 0.05

20 20

Fitzhugh-Nagumo 0.3 5 0.05
Opinion Dynamic 0.5 100 1.0
Mean-field Atlas 1 5 0.05
Ornstein-Uhlenbeck 1 5 0.05
Circles 1 5 0.05
OU with Jumps 1 5 0.05 100 Not Applicable

Table 3: Synthetic time series parameters

C.2.2 Real Time Series Data644

EEG Data. We used the 1-dimensional EEG data provided by Zhang et al. [1995]. Specifically,645

the EEGs recorded with stimulus 1. Each subject has 64 time series, and each time series has 256646

timesteps. We used the following subject-run combinations for Non-Alcoholics EEG (NA-EEG):647

co2c0000362-076, co2c0000367-052, co2c0000338-016, co2c0000394-044, co2c0000348-016; and648

these subject-run combinations for Alcoholics EEG (A-EEG): co2a0000364-000, co2a0000372-649

014, co2a0000396-112, co2a0000411-064, co2a0000390-030. We did not perform any further650

preprocessing on this dataset.651

Chemotaxi Data. We used the 3-dimensional Chemotaxi data provided by Grognot and Taute652

[2021]. We used V_0208 for C.Crescentus and V_MeAsp1_0511 for E.Coli. The time series are653

truncated to the first 100 timesteps. Particles with less than 100 timesteps recorded are discarded.654

All time series data are split into 0.8 training, 0.1 validation, and 0.1 testing particles.655
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C.2.3 Generative Data656

We are interested in estimating a flow between a Gaussian and a target distribution described by the657

nonlinear Fokker-Planck equation. We thus sample a batch of N = 100 particles from the initial658

condition N (0, Id×d) where d is the dimensions of the process. We then sample the same number659

of particles from different terminal conditions corresponding to the different datasets, i.e. Gaussian660

mixture and UCI datasets: Power, Miniboone, Hepmass, Gas and Cortex. To create the training661

dataset, we randomly match the particles from the initial condition to the particles from the terminal662

condition, then sample NBB = 30 Brownian bridges between each initial-terminal condition pair for663

t ∈ [0, T ], T = 0.1,∆t = 0.002.664

Eight Gaussians. In the case of two dimensions, the terminal condition is an eight Gaussian mixture665

with means µ ∈
{
[0, 2], [0,−2], [2, 0], [0,−2], [

√
2,
√
2], [

√
2,−

√
2], [−

√
2,
√
2], [−

√
2,−

√
2]
}

and666

variance Id×d. For dimensions 10, 30, 50, 100, µ is repeated 5, 15, 25, and 50 times.667

Real Data. For POWER, MINIBOONE, HEPMASS, and GAS, we follow the preprocessing of Grath-668

wohl et al. [2019]. For the CORTEX data, we normalize the data by subtracting the mean and dividing669

by the standard deviation.670

C.3 Hyperparameter Settings671

Since our goal is to determine the effect of different architectures, we try to control such that all672

architectures have similar number of parameters. The details of the hyperparameters are specified in673

Tables 4, 5, 6 and 7 for the different datasets. The learned measure W0 in the IM architecture was674

modeled as an additional fully connected layer. The marginal law P̂t in the ML architecture was675

modeled with GLOW [Kingma and Dhariwal, 2018] with an additional conditioning on time.676

For the MV-SDE models, we used the AdamW optimizer with a learning rate of 1×10−4, ϵ = 1×10−4677

and exponential decay γ = 0.9998 for all experiments, except EEG where the learning rate was678

1 × 10−3. For the DeepAR models, the learning rate was 1 × 10−3. The batch sizes used were679

10, 5, 10 and 200 for the synthetic time series, EEG, Chemotaxis and generative modeling experiments680

respectively. The models were trained for 500, 500, 2000 and 500 epochs for the synthetic time series,681

EEG, Chemotaxis and generative modeling experiments.682

Architecture Modules: Hidden Layers Layer Size Activation # of Parameters

MLP (Itô) 8 128

LeakyReLU

132740
EM φ: 4, f : 4 128, 128 133638
IM φ: 4, f : 4, W0: 1 128, 128, 128 134022
ML φ: 4, f : 4, P̂t: 1 128, 128, 32 s: tanh, t: ReLU 136152

MLP (Itô) 4 128

LeakyReLU

66820
EM φ: 2, f : 2 128, 128 67718
IM φ: 2, f : 2, W0: 1 128, 128, 128 67846
ML φ: 2, f : 2, P̂t: 1 128, 128, 32 s: tanh, t: ReLU 70232

Table 4: Hyperparameter specification for synthetic time series data experiments and synthetic
generative modeling experiments. The first set of hyperparameter settings are for: Kuramoto, Opinion
Dynamic, Mean-field Atlas, Jump Diffusions, and Eight Gaussians. The second set of hyperparameter
settings are for: Fitzhugh-Nagumo, Itô-OU, Itô-Circles. For Jump Diffusions, LeakyReLU activation
on the EM architecture led to diverging behavior, while tanh did not, we thus changed the activation
to tanh for a more stable behaviour.

22



Architecture Modules: Hidden Layers Layer Size Activation # of Parameters

MLP (Itô) 10 64

LeakyReLU

141858
EM φ: 4, f : 4 64, 64 133795
IM φ: 4, f : 4, W0: 1 64, 64, 512 134371
ML φ: 4, f : 4, P̂t: 3 64, 64, 32 s: tanh, t: ReLU 135960

DeepAR-LSTM
3

64
LeakyReLU

117894
DeepAR-RNN 130 120516
DeepAR-GRU 80 137526
DeepAR-TR Enc: 8, Dec: 8 512 ReLU 298082

Table 5: Hyperparameter specification for real time series data - EEG experiments. For the DeepAR
models, we used a window size of 20.

Architecture Modules: Hidden Layers Layer Size Activation # of Parameters

MLP (Itô) 8 128

LeakyReLU

133126
EM φ: 4, f : 4 128, 123 134409
IM φ: 4, f : 4, W0: 1 128, 128, 128 134921
ML φ: 4, f : 4, P̂t: 3 128, 128, 128 s: tanh, t: ReLU 239724

DeepAR-LSTM
3

64
LeakyReLU

117123
DeepAR-RNN 130 119733
DeepAR-GRU 80 136723
DeepAR-TR Enc: 4, Dec:4 256 ReLU 81638

Table 6: Hyperparameter specification for real time series data - Chemotaxi experiments. For the
DeepAR models, we used a window size of 10.

Architecture Modules: Hidden Layers Layer Size Activation # of Parameters

MLP (Itô) 8 128

tanh

133900 ∼ 151960
EM φ: 4, f : 4 64, 128 86098 ∼ 122148
IM φ: 4, f : 4, W0: 1 64, 128, 128 86930 ∼ 131940
ML φ: 4, f : 4, P̂t: 1 64, 128, 32 s: tanh, t: ReLU 89208 ∼ 146048

MAF 4 128 ReLU 75872 ∼ 184512
W-GAN Gen: 4, Dis: 3 Gen: [64, 128, 256], Dis: 256 LeakyReLU 114759 ∼ 150669
VAE Enc: 4, Dec: 4 128, 256, latent dim: 50 LeakyReLU 88682 ∼ 124592
Score-Based 8 128 SiLU 117318 ∼ 135308

Table 7: Hyperparameter specification for generative modeling experiments: Power, Miniboone,
Hepmass, Gas and Cortex. The number of parameters depends on the dimension of the data. The
hyperparameter specification for the generative modeling experiments with Eight Gaussians follow
that of Table 4.
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C.4 Additional Figures and Tables683

We provide a series of additional figures to qualitatively illustrate the differences between the proposed684

architectures and baselines.685

C.4.1 Ablation on IM Architecture Width686

We conduct a series of ablations on the width of the IM architecture. These ablations are performed687

on the synthetic datasets of the Kuramoto model and the Fitzhugh-Nagumo model. The results are688

presented in Figure 7 and 8.689
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Figure 7: Ablation on different IM architecture widths N = 32, 64, 128, 256 for the Kuramoto model,
with different time grid size dt and different number of training particles.
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Figure 8: Ablation on different IM architecture widths N = 32, 64, 128, 256 for the Fitzhugh-
Nagumo model, with different time grid size dt and different number of training particles.
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C.4.2 Synthetic Data Experiments690

Table 8: Synthetic dataset results with noise level standard deviation 0.1

Kuramoto Fitzhugh OD MA OU Circle

MLP (Itô) 0.56 (0.081) 0.699 (0.426) 0.048 (0.013) 2.14 (0.142) 0.098 (0.043) 1.351 (1.979)
IM 0.448 (0.075) 0.601 (0.422) 0.039 (0.011) 1.208 (0.147) 0.128 (0.047) 1.592 (2.38)
ML 0.428 (0.095) 0.639 (0.395) 0.042 (0.012) 1.519 (0.236) 0.101 (0.038) 1.481 (2.237)
EM 0.383 (0.085) 0.606 (0.389) 0.036 (0.01) 1.359 (0.2) 0.097 (0.038) 1.562 (2.476)

Table 9: Synthetic dataset results with noise level standard deviation 0.5

Kuramoto Fitzhugh OD MA OU Circle

MLP (Itô) 0.578 (0.124) 0.734 (0.489) 0.047 (0.012) 2.133 (0.156) 0.1 (0.042) 1.334 (1.948)
IM 0.45 (0.074) 0.617 (0.415) 0.039 (0.012) 1.223 (0.125) 0.128 (0.046) 1.592 (2.368)
ML 0.397 (0.075) 0.605 (0.408) 0.042 (0.011) 1.518 (0.248) 0.1 (0.035) 1.564 (2.543)
EM 0.373 (0.075) 0.612 (0.383) 0.038 (0.01) 1.347 (0.165) 0.106 (0.036) 1.535 (2.535)

Table 10: Synthetic dataset results with noise level standard deviation 1.0

Kuramoto Fitzhugh OD MA OU Circle

MLP (Itô) 0.653 (0.067) 0.897 (0.503) 0.059 (0.009) 2.159 (0.2) 0.481 (0.065) 2.303 (2.039)
IM 0.646 (0.065) 0.878 (0.522) 0.055 (0.012) 1.65 (0.232) 0.559 (0.062) 2.658 (2.142)
ML 0.601 (0.112) 0.882 (0.527) 0.049 (0.009) 1.748 (0.224) 0.529 (0.055) 2.308 (2.252)
EM 0.592 (0.077) 0.893 (0.523) 0.04 (0.009) 1.652 (0.272) 0.536 (0.055) 2.394 (2.25)

For a better sense of the different synthetic datasets and each model’s ability in recovering the drift,691

we provide a figure that qualitatively compares the architectures’ performances in Figure 9. We692

additionally show the learnt gradient flow for the Kuramoto model in Figure 10.693
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Figure 9: Synthetic data experiments and estimated drifts, only the first dimension is shown. First
row: sampled trajectories, grey scattered circles indicate irregular time observations. Rows 2-5:
estimated drifts by the MLP (Itô), EM, IM, ML architectures. Black is truth, red is estimated. The
models are trained with additional Gaussian observation noise of SD = 0.1.
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Figure 10: Estimated gradient flow of Kuramoto Model at terminal time. The colors correspond to
the density of generated samples at terminal time. The models are trained with additional Gaussian
observation noise of SD = 0.1.
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C.4.3 Real Data Experiments694

We extend the time series experiments in the main paper to forecasting. There are two ways to695

perform forecasting: i) given the initial condition at T0, generate trajectories up to Tforecast; ii) given696

the training terminal condition at T , generate trajectories for t ∈ [T, Tforecast]. In both cases, the697

dataset time steps are partitioned into 0.8 training, 0.2 forecasting. We present the numerical results698

of both types of forecasting in Tables 11 and 12. We note that our methods perform on par with699

various deepAR methods under both types of forecasting. We also present qualitative results with the700

learnt drifts in Figures 11 and 12 for the EEG and Chemotaxis data.701

Table 11: Time series forecasting Type I. NA/A stands for Non-alcoholics/ Alcoholics.
Bolded values indicate best performance.

CRPS ↓ MSE ↓
NA-EEG A-EEG C.Cres E.Coli

MLP (Itô) 30.087 (32.29) 7.837 (3.018) 0.296 (0.007) 0.225 (0.007)
IM 8.346 (4.646) 5.438 (1.814) 0.307 (0.010) 0.23 (0.006)
ML 7.967 (4.542) 5.652 (1.515) 0.312 (0.015) 0.245 (0.006)
EM 8.963 (4.309) 5.82 (1.818) 0.312 (0.019) 0.26 (0.013)

LSTM 7.231 (3.051) 6.66 (3.948) 1.526 (0.324) 0.786 (0.386)
RNN 6.993 (2.369) 5.292 (2.317) 1.689 (1.107) 0.859 (0.115)
GRU 7.234 (2.75) 7.407 (4.494) 1.115 (0.406) 0.813 (0.337)
TR 7.354 (1.998) 5.122 (2.457) 1.489 (0.362) 1.489 (0.362)

Table 12: Time series forecasting Type II. NA/A stands for Non-alcoholics/ Alcoholics.
Bolded values indicate best performance.

CRPS ↓ MSE ↓
NA-EEG A-EEG C.Cres E.Coli

MLP (Itô) 31.47 (35.659) 6.95 (2.640) 0.013 (0.0003) 0.015 (0.0003)
IM 8.675 (5.638) 4.884 (1.687) 0.014 (0.0007) 0.016 (0.0003)
ML 8.747 (5.677) 4.907 (1.490) 0.015 (0.0007) 0.015 (0.0005)
EM 8.938 (4.975) 5.403 (2.205) 0.015 (0.0013) 0.015 (0.0005)

LSTM 8.288 (3.142) 6.317 (4.207) 0.291 (0.0704) 0.163 (0.0353)
RNN 7.002 (2.591) 5.296 (2.262) 1.455 (0.9367) 0.534 (0.191)
GRU 7.019 (2.686) 6.044 (3.457) 0.397 (0.2134) 0.17 (0.054)
TR 7.087 (2.208) 4.971 (2.643) 1.65 (0.1666) 1.65 (0.1666)
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Figure 11: True, generated and forecast trajectories on EEG dataset. Left:Non-Alcoholics;
Right:Alcoholics. The dashed vertical line at t = 205 indicates the start of the forecast.The shaded
region indicates ± one SD of samples at each time step.
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Figure 12: True, generated and forecast trajectories on chemotaxis, C. Crescentus dataset. The dashed
vertical line at t = 80 indicates the start of the forecast. The shaded region indicates ± one SD of
samples at each time step. From left to right, the columns are movements in x,y and z directions.
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C.4.4 Generative Modeling Experiments702

Figure 13 shows 5 randomly selected 2-d projections of the 100-d mixture of Gaussians.703
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Figure 13: Five randomly selected 2-d projections of 100-d mixture of Gaussians.

In addition to the eight Gaussian mixture and real data presented in the main paper, we present a few704

toy generative modeling experiments to better understand the different architectures in Figure 14.705
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Figure 14: Estimated gradient flow at terminal time. The colors correspond to the density of generated
samples at terminal time. From left to right: MLP, EM, IM, true. From top to bottom: two moons,
two circles, S-curve 2-d, S-curve 3-d, pinwheel, swissroll. The architectures were trained with the
Brownian bridge estimator.
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C.4.5 Additional Experiments: Linear Fokker–Planck706

For this set of experiments, the set up is similar to the generative modeling experiments detailed in707

Section C.2.3 where we map between a Gaussian distribution and target distributions of two moons,708

two circles, s-curves, and 3-dimensional s-curves. However, we consider a linearization of the PDE709

that governs the density and derive a likelihood for the target distribution based on the linearized PDE.710

We are mainly interested in the performance differences due to differences in architectures between711

MLP (Itô), IM, and ML. A similar framework was considered in Huang et al. [2021] with respect to712

score-based generative models. We first derive the estimation procedure then show the results.713

It is known that the flow satisfies the Fokker-Planck equation given by714

∂tpt = −div(b(x, pt, t)pt(x)) +
σ2

2
∇2pt(x). (21)

Falling back on the Itô-SDE, where b does not depend on pt, the PDE is linear. We can then consider
using the Feynman-Kac formula where the solution to (21) with b independent of pt can be computed
according to an expectation over sample paths Xt that satisfy dXt = b(·)dt+ σdWt such that

pT (x) = E

[
exp

(∫ T

0

−divb(·) dt

)
p0(XT )

∣∣∣∣ X0 = x

]
.

We use Girsanov’s theorem to transform the expectation over sample paths with drift to an expectation
under Brownian motion, i.e. over sample paths Xt that satisfy dXt = σdWt with no drift and

pT (x) = E

[
exp

(∫ T

0

−divb(·) dt

)
p0(XT ) exp

(∫ T

0

b(·) dXt −
1

2

∫ T

0

b2(·) dt

) ∣∣∣∣ X0 = x

]
.

leading to an efficient Monte Carlo method for computing the probability. To maximize this likelihood,
we can use Jensen’s inequality to derive an ELBO which we optimize as

log pT (x) ≥ E

[∫ T

0

−divb(·) dt+ log(p0(XT )) +

∫ T

0

b(·) dXt −
1

2

∫ T

0

b2(·) dt
∣∣∣∣ X0 = x

]
.

The integrals are approximated using the forward Euler method and the parameters of b are opti-715

mized for the set of observations. The results are given in Table 13. The results suggest that the716

proposed architectures do not decrease performance in the linear setting and sometimes provide slight717

improvements.718

TWO MOONS TWO CIRCLES S CURVE 2D S CURVE 3D PINWHEELS SWISSROLL

MLP (Itô) 38.122 (0.517) 33.738 (0.150) 54.083 (0.600) 72.045 (0.688) 72.333 (1.018) 69.345 (0.717)
IM 37.356 (0.323) 33.160 (0.371) 54.098 (0.645) 72.013 (0.645) 71.318 (0.985) 69.000 0.550
EM 37.793 (0.307) 33.319 (0.264) 54.089 (0.607) 72.636 (0.600) 70.692 (3.596) 69.230 0.546

Table 13: Density estimation through linear Fokker-Planck training: ELBO between true samples
and generated samples. Bolded values and italic values are best and second best correspondingly.
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