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Abstract

McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathe-
matical description of the behavior of an infinite number of interacting particles
by imposing a dependence on the particle density. These processes differ from
standard It6-SDEs to the extent that MV-SDEs include distributional information
in their individual particle parameterization. As such, we study the influence of
explicitly including distributional information in the parameterization of the SDE.
We first propose a series of semi-parametric methods for representing MV-SDEs,
and then propose corresponding estimators for inferring parameters from data
based on the underlying properties of the MV-SDE. By analyzing the properties of
the different architectures and estimators, we consider their relationship to standard
1t6-SDEs and consider their applicability in relevant machine learning problems.
We empirically compare the performance of the different architectures on a series
of real and synthetic datasets for time series and probabilistic modeling. The results
suggest that including the distributional dependence in MV-SDEs is an effective
modeling framework for temporal data under an exchangeability assumption while
maintaining strong performance for standard It6-SDE problems due to the richer

class of probability flows associated with MV-SDE:s.

1 Introduction

Stochastic differential equations (SDEs) model
the evolution of a stochastic process through two
functions known as the drift and diffusion func-
tions. Beginning with 1t6-SDEs, where individ-
ual sample paths are assumed to be independent,
neural representations of the drift and diffusion
have achieved high performance in many appli-
cations, such as time series and generative mod-
eling [Song et al., [2020, [Tashiro et al.| 2021]].

On the other hand, interacting particle systems
are also used to model stochastic processes using
many of the same characteristics as an [t6-SDE,

(a) It6-SDE (b) MV-SDE

Figure 1: SDE sample paths of a double-well po-
tential, where the particles (a) do not interact and
(b) exhibit complex phase transitions as a result
only of interaction via weak attraction.

but they additionally dictate an interaction between the different sample paths [Liggett, [1997]]. When
the number of particles approaches infinity, these processes generalize [t6-SDEs to nonlinear SDEs
known as McKean-Vlasov SDEs (MV-SDEs). The nonlinearity arises from the individual particle
dependence on the whole particle density, often in the form of a mean-field term represented by an
expectation with respect to the particle density. This distributional dependence allows for greater
flexibility in the time marginal distributions that the MV-SDE can represent versus the It6-SDE. An
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example of the differences between the two frameworks is illustrated in Figure[T| where Figure[Ta]
depicts an It6-SDE where the sample paths are independent and Figure|1b[depicts a MV-SDE where
the sample paths interact through distributional dependence. While these models appear in a variety
of disciplines such as in finance [Feinstein and Sgjmark, 2021], biology [Keller and Segel, [1971]], and
social sciences [Carrillo et al., 2020], relatively few works have considered the problem of estimating
parameters from observations or their application in machine learning tasks.

This brings us to a motivating question:
(Q1) Can we develop theoretically justified neural architectures to represent MV-SDEs?

To answer (Q1), we use the relationship between the approximation capabilities of neural networks
and properties of MV-SDEs. We consider two ideas: (i) expressing a layer in a neural network as an
expectation with respect to a density and (ii) using generative models to capture distributions and
generate samples.

Our second question relates the theoretical generality of MV-SDEs to [t6-SDEs:
(Q2) Does including explicit distributional dependence empirically affect modeling capabilities?

We discuss a few theoretical properties that motivate this question and answer the question empirically
by comparing different architectures for applications in time series and in probabilistic modeling.

1.1 Related work

Methods that estimate MV-SDEs from observations often assume known interaction kernels and
drift parameters. They then rely on a large number of samples at regularly spaced time intervals
to empirically approximate the expectation in the mean-field term [Messenger and Bortz, 2022,
Della Maestra and Hoffmann, 2022} |Yao et al., 2022} Della Maestra and Hoffmannl, [2023]]. In{Pavliotis
and Zanoni| [2022]], the authors describe a method of moments estimator for the parameters of the
MV-SDE. Other approaches concerned analyzing the partial differential equation (PDE) associated
with MV-SDE:s as in (Gomes et al.|[2019]]. In our work, we are primarily concerned with inference
in regions where we have limited time-marginal data and the number of samples is not large. Other
applications of MV-SDEs in machine learning topics include estimating optimal trajectories in SCRNA-
Seq data [Chizat et al.,2022] and stochastic control problems relating to mean-field games [Han et al.|
2022]). Ruthotto et al.|[2020] considered a machine learning approach for solving certain kinds of
mean field games and mean field control problems. Inverse problems can also be solved by deriving
an appropriate MV-SDE as the authors describe in |Crucinio et al.|[2022]]. Extensive analysis of the
dynamics of the parameters of a neural network under stochastic gradient descent has been conducted
using the theory from MV-SDEs, e.g. [Hu et al.| |2021]]. These methods use a pre-described form of
the drift to conduct their analyses whereas we’re interested in learning a representation of the drift.

Our Contributions To address the lack of non-parametric MV-SDE estimators in the existing litera-
ture, this paper contributes the following: First, we present two neural architectures for representing
MV-SDEs based on learned measures and generative networks; then, we present three estimators,
based on maximum likelihood, used in conjunction with the architectures without prior knowledge
on the structure of the drift; next, we characterize the properties of implicit regularization and richer
probability flows of these architectures; finally, we empirically demonstrate the applicability of the
architectures on time series and generative modeling.

2 Properties of MV-SDEs

We begin by describing the background and properties of the transition densities of MV-SDEs.
Figure [2illustrates some of these concepts qualitatively where we first consider non-local dynamics
and then consider jumps in the sample paths.

2.1 Background

Consider a domain D C R? and let P, (D) be the space of all probability distributions supported on
D with finite kth moment. Let W, € R be a d-dimensional Wiener process and let X; € R? be a
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solution to the following MV-SDE
dXy = b(Xy, pe, t)dt + /2( Xy, py, t)dW, (1

where p; denotes the law of X; at time ¢ and /3 denotes the Cholesky decomposition of ¥. We
assume that the drift vector b : R? x Py(D) x R, — R? and the diffusion matrix X : R% x Py (D) x
R, — SPD(R?*9) are globally Lipshitz for the existence and uniqueness of the solution, with SPD
denoting the space of symmetric, positive definite matrices.

We focus on the case where the diffusion coefficient is a known constant, o, and focus on estimating
the drift, b, from data. In addition, for simplicity in analysis, we suppose that b factors linearly
into a non-interacting component, and an interacting component, where the mean-field term with
dependence on p; is often written in terms of an expectation, specifically

dXt = f(Xt, t)dt + Eyprf, [90 (Xt> yt)]dt + Uth (2)

where f : R% x Ry — R can be seen as the Itd drift, the expectation as the mean-field drift, and
v : RY x R* — R* as the interaction function describing the interaction between particles, e.g.
attraction with ¢(z, y) = —(z — y) in Figure[Ib|and the left side of Figure 2] We also assume that
all coefficients exhibit sufficient regularity such that the empirical law converges to the true law of
the system (i.e. % Zf\il 5Xf“ — N—ooo Pt(Xt)), i.e. propagation of chaos holds [Méléard, |1996].
As mentioned, unlike [t6-SDEs which only consider dependence on X; and ¢, MV-SDEs also depend
on the marginal time distribution p;. By introducing a dependence on the marginal law, the transition
density of the process satisfies a richer class of functions.

2.2 Non-locality of the transition density

Following the background, we describe a favorable property of the MV-SDE that induces non-local
dependencies in the state space. The transition density of (2) can be written as the non-linear PDE

2
g
Op(x) ==V | pef(x) +pe / o(x — ye)pe(ye)dys — ?th . 3)
—
1t6 Drift Non-Local Interactions Diffusion

This non-local behavior has a variety of implications. For example, the distribution of particles “far
away” from a reference particle can affect the behavior of the reference particle. This property is
illustrated in the left side of Figure[2] with an example from the mean-field FitzHugh-Nagumo model
used to model spikes in neuron activation, leading to interactions between distinct spikes [Crevat
et al.,[2019]. Notably, this is not possible when considering only the Itd drift, since that operator acts
locally on the density.

2.3 Discontinuous sample paths

The richer class of densities modeled by MV-
SDEs has direct influence on individual sample
paths. In a modeling scenario, we may wish to
approximate a process that exhibits jumps. For
example, in finance, a number of related entities
may have common exposure and experience fail-
ure simultaneously [Nadtochiy and Shkolnikov)
2019, |[Feinstein and Sgjmark] 2021]]. Similarly,
in neuroscience, a number of neurons spiking Figure 2: MV-SDE sample paths with non-local
simultaneously results in discontinuities in the dynamics (left) and discontinuities (right).
sample paths [Carrillo et al., |2013]]. The fact

that the interaction of many particles can cause blowups leads to a remarkable property of MV-SDEs
that allows discontinuous paths. The major benefit of this property is that we do not need to consider
an additional jump noise process — we only need to specify a particular interaction between the
particles to induce the jump behavior. A simple proof for the case of positive feedback is given
in|Hambly et al.|[2019, Theorem 1.1].

Having described the theoretical advantages of MV-SDEs as compared to [t6-SDEs, we will proceed
to discuss the neural architectures for representing these processes.
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Figure 3: Schematic comparing neural architectures for modeling MV-SDEs. Implicit measure (IM)
architecture uses a mean-field layer that represents particles as learned weights; the empirical measure
(EM) architecture computes the expectation with the observed particles; the marginal law (ML)
estimates the particle density, computing the expectation with samples from the estimated density.

3 Mean-field Architectures

We now describe methods for representing the mean-field drift of a MV-SDE in (2). We first consider
a modification of the cylindrical architecture [Pham and Warinl [2022] that empirically computes
the expectation using observations, and denote it as the empirical measure (EM) architecture. We
then propose two architectures — an architecture based on representing a learned measure with neural
weights, denoted as the implicit measure (IM) architecture, and a generative architecture based on
representing the marginal law of the samples (ML). Figure [3| provides a schematic of the different
architectures and mean-field representations. We denote a function f parameterized by parameters

as f(;0).
3.1 Empirical measure architecture

Suppose we observe N particles at each time ¢ given by {X t(i) }N | and denote the discrete measure
associated with these observations as p{ = % Zf\il 0 X Then, we can use p) to approximate the
expectation in (2)) as

N
1 i
Eyt"’Pt [(P (Xt’ yt)} ~ Eyy\zpf [90 (Xta Yt; 9)] = N Z ¥ (Xta Xt( )7 0) (4)
i=1

for a neural network (-, -; @) describing the interaction function between the particles [Pham and
‘Warin, [2022]]. Suppose the non-mean field component f is also represented with a neural network
f(-,t;0). Assuming that  and f are well learned, this architecture can represent the true MV-SDE
drift in the limit as the number of observations N — oo. We refer to this architecture as the
empirical measure (EM) architecture since at each time step the expectation is taken with respect to
the empirical measure derived from the observations.

3.2 Implicit measure architecture

While the EM architecture in (@) explicitly defines the relationship between the law p; and the
interaction ¢, it relies on obtaining the empirical measure at each time point. This may be difficult in
practice for a variety of reasons such as having few samples or the lack of data at some time points.

Instead, let us first recall that a single layer in a multilayer perceptron (MLP) can be written in terms
of an expectation as

MLPW(z) — / o (W +b) dv (W, b) )

where the expectation is taken over v (-), a measure over the space of parameters y = (W, b), and o
is an activation function.

When v = % Zfil d,(, a discrete measure with IV particles, the expectation is exactly a single
layer of width NV, suggesting a correspondence between an empirical measure with /NV samples and a
single layer of width /V. Building on this correspondence, we propose a mean-field layer:

Definition 3.1 (Mean-field Layer). Define the weight of the mean-field layer with width n as the
matrix Wy € R™*? and denote its ith row as Wéz). The mean-field layer then is defined by the
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1 — dIP’t
MF () (¢o( : EZ (X, WY B (6)

The mean-field layer (MF) can be thought of as another layer within the network architecture that
approximates the law p,. Each row Wé’) is of size R%, corresponding to the dimensions of Xt(l) € R4,
The activation function of the mean-field layer is the average over the augmented dimension over

which MF operates. The change of measure ggt can be learned as part of the estimator of the

interaction function, ¢(-, -, t; #). Importantly, the above representation allows modeling mean-field
interactions without the need for a full set of observations at each time point and without the need to
explicitly represent the distribution p; at each time point. Assuming that (o and MF are well learned,
this architecture can represent the true MV-SDE drift in the limit as the width n — co. We note
empirically that a finite n is sufficient and we provide examples of ablations in the appendix.

A similar analysis can be made for the standard MLP architecture. However, the explicit separation
of f and ¢ is not enforced in this case. This leads us to the following remark:

Remark 3.2. [1t6-SDEs with drift represented using MLPs can model MV-SDEs] From the above
discussion, the expectation with respect to the law p; may be implicitly represented by a MLP.

Our motivation is then concerned with how a relatively more explicit distribution dependence with
o and MF affect modeling capabilities. This explicit structure lends to an implicit regularization
that promotes a smaller norm of the mean-field component under a maximum likelihood estimation
framework, which we detail later in Section[5.1]

3.3 Marginal law architecture

A solution to the MV-SDE is the pair (X, p) such that p; = Law(X;). In addition, if p is a solution
to the SDE in (2)), it is also a weak solution to the PDE in (3)), and the converse holds. For this reason,
p is often itself the main object of study. In the marginal law (ML) architecture, in conjunction with
the drift, we introduce a generative model for representing the time-varying density. In this case, we
approximate the expectation in (2) as

]EytNPt [SO (Xta yt)] ~ EytNﬁt [(p (Xtyyt7 ZQO (Xt7 9) (7)

where the expectation is taken with respect to the discrete measure derived from samples {X 1
from the generative model P,. The parameter estimation problem then requires optimizing both the
generative model P; and the networks f and ¢ representing the drift, while ensuring consistency

between the two. Using knowledge of the PDE in (3), we regularize P, such that it matches the flow
relating to the drift. Additional details regarding the PDE and its relationship to the ML architecture
are in the appendix.

4 Parameter Estimation

Having presented the relevant architectures, we now describe the procedures for estimating the
parameters of the different architectures. We first describe the likelihood function for use in cases
with regularly sampled data. We then describe a bridge estimator for cases of irregularly sampled
data. Finally, we describe an estimator for the generative architecture based on both the likelihood
function and the transition density. For this section, we assume that we observe multiple paths, i.e.,

{{th }§21 K }i:L.‘N. Full details of all algorithms are in the appendix.

4.1 Maximum likelihood estimation

We use an estimator based on the path-wise likelihood derived from Girsanov’s theorem and an
Euler-Maruyama discretization for the likelihood, considered in|Sharrock et al.|[2021]]. The likelihood
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function is given as

1 tr 1 tr 5
L(0;t1,tk) := exp (2/ b(XS7pS7s;9)dX5——/ b(Xs,ps,s;0) ds). (8)
ag t1

2
4 20

Following discretization, with the approximations AX;, = X
log-likelihood is approximated by

th and Atj = tj+1 — tj, the

j+1

—1 K-1
1 2
10g L 9 t1,tK Z b th,ptj,tj;Q) (thJrl th 5 Z b th,ptj,tj;e) (tj+1 — tj).
Jj=1 Jj=1

If the time interval At is large, then this likelihood loses accuracy, as is a property of the Euler-
Maruyama discretization. Optimization is performed using standard gradient based optimizers with
the drift b represented as one of the presented architectures.

4.2 Estimation with Brownian bridges

Often data are not collected at uniform intervals in time, but rather, the time marginals may be
collected at irregular intervals. In that case, we consider an interpolation approach to maximizing the
likelihood following the results of|Lavenant et al.|[2021]] and |Cameron et al.| [2021] in the [t6-SDE
case. We can write the likelihood conditioned on the set of observations (dropping the particle index
for ease of notation) as

‘CBB(Q) = EQ H ]I{Zt]+1 = th+1 }‘C(e;tj’thrl)
j=1...K—1

where {Z : s € [t;,t;11]} is a Brownian bridge from X to Xy, , and Q is the Wiener measure.
Brownian bridges can easily be sampled and reused for computing the expectation.By applying
Jensen’s inequality, we can write an evidence lower bound (ELBO) as

logLpp >Eg | Y. logLBity,tjsn) | {Z, = Xi, )i, | - )

j=1..K—1

The ELBO in this case aims to fit the observed marginal distributions exactly while penalizing
deviations in regions without data that deviate from the Brownian bridge paths.

4.3 Estimation with explicit marginal law B

Returning to the ML architecture described in Section [3.3] where we explicitly model the density p;
with a generative network P, our estimator should enforce the regularity of p; through its PDE in (3).
Let the parameters of the drift be § and the parameters of the generative model be ¢, then we solve
the optimization problem

rgix E [L’,(O,(b | {th}jzlmK)] s.t. (10)

)

/tj+1
tj

for time intervals indexed by j = 1...K — 1, the state space x € supp(X;), and where the
trajectories of X; follow the dynamics of the ML architecture, specifically

Pufw;0) =B [Py, (Xii0) | £, = 2] ds =0 (an

AX, = f(X0 t:0)dt+E,_p, o) [<p (Xt,yt;ﬁ)}dt—&—adwt. (12)

The likelihood at the observed margins is first maximized in (T0). In (TI)), the marginals at previous
times are regularized using the correspondence between the PDE and its associated SDE via the
nonlinear Kolmogorov backwards equation [Buckdahn et al. [2017], which describes p; as an
expectation of trajectories at a terminal time, i.e. p;(x) = E[pr(X71)| Xy = | fort < T.
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5 Modeling Properties

Having discussed the architectures and estimators, we now discuss specific properties of the modeling
framework, which follow from the theoretical discussion presented in Section 2] We first discuss how
the factorization into ¢ and MF lends to an implicit regularization of the IM architecture. We then
compare the gradient flows of It6-SDEs and MV-SDEs.

5.1 Implicit regularization of the implicit measure architecture

Closely related to the IM architecture are neural 1t6-SDEs, where we previously remarked can model
MV-SDEs. On the other hand, the factorization of the IM architecture into ¢ and MF leads to a type
of implicit regularization when the parameters are estimated using gradient descent.

Proposition 5.1 (Implicit Regularization). Suppose f, © known and fixed. Further, assume that ¢ is
twice differentiable. Then, for each time step t, the minimizing finite width MF with weight matrix

Wo € R™ 4 and ith row Wéi) under gradient descent satisfies the following optimization problem

. Z Z 1
HVlVln Xt, ”/0 j s.t. ]E QAt HXt+At Xt (Xtapta )H
0
i=1..nj=1..d

Proof. We follow the blueprint in Belabbas| [2020] and give full details in the appendix. O

Proposition [5.1] effectively says that the mean-field system approximated is the one that has the least
influence from the other particles under perfectly matched marginals. In the case where ¢ can be
decomposed as a norm, this amounts to finding the drift parameterized by weight W with smallest
norm while still matching the marginals.

5.2 Gradient flows of the MV-SDE

To illustrate the difference between the MV-SDE and 1t6-SDE particle flows, we invoke the analysis
in|Santambrogio| [2017, Section 4.6] to describe the functionals that are minimized by each.

Remark 5.2 (Functional Minimizer). C()nSLder two drifts B = Vf(X) and Byr = B +
E[Vo(X — y)|. Consider a functional Flp] = [logpdp+ [ f(X)dp for some measure p absolutely
continuous with respect to the Lebesgue measure Then, the gradient flow satisfying the linear
Fokker-Planck equation with drift B minimizes F. On the other hand, the nonlinear Fokker-Planck
associated with drift Byr minimizes the functional Fyr[p] = Fp] + [ (X —Y)dp(X)dp(Y).

This has an important implication, for example, if we take ¢(-) = 2|| - ||§—Z == P ( p)

then the functional is minimizing the squared energy distance between a target measure q as well as
the entropy. We use this example to motivate some of the experiments on probabilistic modeling.

6 Numerical Experiments

We discussed Q7 on modeling and inferring distributional dependence. We now wish to answer
0?2 and quantify the effect of distributional dependence in machine learning tasks. To do this, we
test the methods on synthetic and real data for time series estimation and sample generation. The
main goal is to determine the difference between standard Neural I1t6-SDE and the proposed Neural
MV-SDEs under different modeling scenarios. In that sense, the baseline we consider is the It6-SDE
parameterized using an MLP. However, we also consider other deep learning based methods for
comparison in a broader context. We abbreviate the different architectures as the Empirical Measure
(EM) in Section [3.1] Implicit Measure (IM) in Section [3.2] and Marginal Law (ML) in Section[3.3]
Full descriptions of the models, baselines, and datasets are given in the appendix.

Synthetic data experiments Motivated by the application of MV-SDEs in physical, biological,
social, and financial settings, we benchmark the proposed methods on 4 canonical MV-SDEs: the
Kuramoto model which describes synchronizing oscillators [Sonnenschein and Schimansky-Geier,
2013|], the mean-field FitzZHugh-Nagumo model which characterizes spikes in neuron activations
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Figure 4: Top row: sample paths from the different synthetic datasets. Bottom row: mean squared
error (MSE) of different architectures’ performance on drift estimation, under the effect of different
levels of observation noise. Reported value is an average of 10 runs.

[Mischler et al.,[2016]], the opinion dynamic model on the formation of opinion groups [Sharrock
et al., |2021]], and the mean-field atlas model for pricing equity markets [Jourdain and Reygner,
2015]. We additionally benchmark the proposed methods on two It6-SDEs: an Ornstein—Uhlenbeck
(OU) process and a circular motion equation to determine the performance on [t6-SDEs. Finally, to
understand the performance on discontinuous paths, we benchmark the proposed methods on an OU
process with jumps. We focus on recovering the drift from observations.

Since the true drifts of the synthetic data are OU with 4 jump  — MLP

known, we directly compare the estimated * == :: - anP /
drifts to the true drifts. The performance . S ol = m

on five different datasets with three differ- £.s :"/EM_/'
ent levels of added observational noise is 520

presented in Figure ] The proposed mean- g1s /
field architectures outperform the standard ::

1 4

MLP in modeling MV-SDEs; moreover, -
our experiments on OU and circular pro-
cess suggest that incorporating explicit dis-
tributional depedence does not diminish the
performance in estimating non-interacting
1t6-SDEs. When modeling processes with
jump discontinuities, Figure [5| highlights the flexibility of the proposed methods, IM, ML, to match
such models. The EM likely does not perform as well due to the high variance of the empirical
measure, leading to difficulties in learning. Additionally, the MLP does not have an explicit decompo-
sition between the MV and It6 components, resulting in issues when estimating the feedback between
the particles inducing jumps.

2
Number of Jumps

Figure 5: Left: Average paths of true and estimated OU
process with 4 jumps. Right: Energy distance between
true and generated paths.

Real data experiments Extending from the synthetic examples, we consider two real examples:
brain activity recorded by electroencephalograms (EEG), which is closely related to the Kuramoto
model [Nguyen et al.,2020]]; and chemically stimulated movement of organisms (chemotaxis), which
can be modeled by the Keller-Segel model [Tomasevic, 2021} |[Keller and Segel, |1971]].

We evaluate the proposed architectures in these modeling tasks by comparing the goodness-of-fit
of generated path samples to the observed path samples. We compute the Continuous Ranked
Probability Score (CRPS) defined in |Gneiting and Raftery| [2007] (see appendix for details) for
the 1-dimensional EEG data, and the normalized MSE (normalized with sample variance) for the
3-dimensional chemotaxis data with respect to the held out data. We also benchmark against the
DeepAR probabilistic time series forecaster [Salinas et al.l 2020 with RNN, GRU, LSTM, and
Transformer (TR) backbones as another baseline model to compare the goodness-of-fit.

The performances of different architectures are presented in Table [I] For EEG, the proposed
architectures generally perform better than the baselines in generating paths within the training time
steps, and on par with the DeepAR architectures for forecasting (full results presented in appendix).
For chemotaxis data, the MV-SDE based architectures all outperform the DeepAR baselines.
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Table 1: Time series estimation on held out trajectories. NA/A stands

for non-alcoholics/alcoholics. Bolded values and ifalic values are best :zj —+ :\:ALP
and second best respectively. _8:5 —4— ML
o — EM
CRPS | MSE | g-ee
-9.0
NA-EEG A-EEG C.Cres E.Coli o2
MLP (It6) 5.52 (1.40) 4.33(1.14) 0.096 (0.002) 0.080 (0.003) -9.4
M 5.23(1.24) 4.30(1.21) 0.094 (0.003) 0.080 (0.001) 510 30 50 100
ML 5.10(1.22) 4.05(1.12) 0.093 (0.002) 0.084 (0.002) Dimension
EM 5.35(1.22) 4.09 (1.11) 0.093 (0.004) 0.086 (0.004) Figure 6: ELBO of generated
LSTM 6.27(2.02) 5.68(2.56) 1.159(0.234) 0.585(0.350) paths from standard Gaussian
GRU 6.35(201)  6.18(2.73) 0.826 (0.289) 0.568 (0.301)  jncreasing dimension) evalu-
TR 5.95(1.45) 4.29(1.36) 1.503(0.212) 1.204(0.212)

ated against OT mapping.

Generative modeling experiments We focus on applying the bridge estimator discussed in Sec-
tion [4.2]to map between a Gaussian and a target distribution. We are interested in two aspects: 1) the
properties of the learned mapping, and 2) the generated trajectories. We first study the properties of
the learned mapping using a synthetic eight Gaussian mixture with increasing dimensionality. We
compare the performance of different architectures through the ELBO of the sample paths generated
by the optimal transport (OT) mapping between the initial distribution and held out target samples.
We next evaluate the generated trajectories through the energy distance (see appendix for details)
between generated and held-out data for 5 real data density estimation experiments. In addition,
we compare to common density estimators of variational autoencoder (VAE) [Kingma and Welling
2013]], Wasserstein generative adversarial network (W-GAN) [|Gulrajani et al.,|2017]], masked autore-
gresive flow (MAF) [Papamakarios et al.,2017]] and score-based generative modeling through SDEs,
which corresponds to a constrained form of the MLP [Song et al.l 2020]. The MV-SDE architectures
not only outperform the Itd architecture for all dimensions in the eight Gaussian experiment, as
shown in Figure[6] but also for the 5 real data density estimation experiments, as shown in Table 2]
while outperforming common baselines. All sampling is performed using standard Euler-Maruyama,
with full details of the sampling and inference algorithms in the appendix. This again suggests the
MV-SDE provides a more amenable probability flow for modeling compared with the It6 case.

Table 2: Density estimation: Energy distance between observed samples and generated samples of
different methods. Bolded values and italic values are best and second best correspondingly.

POWER MINIBOONE HEPMASS  GAS CORTEX
MLP (It5)  0.342(0.096) 0.674 (0.048)  0.537(0.052) 0.405(0.08)  0.742 (0.062)
M 0.292 (0.078)  0.395 (0.045)  0.405 (0.025) 0.287 (0.082)  0.53 (0.026)
ML 0.282 (0.083) 0.443 (0.034)  0.366 (0.03)  0.305(0.063)  0.568 (0.03)
EM 0.328 (0.116)  0.455(0.036)  0.429 (0.046)  0.298 (0.036)  0.577 (0.037)
VAE 1.19.(0.024)  2.117(0.148)  1.763 (0.031) 1.516(0.023) 2.412 (0.197)
W-GAN 1.248 (0.017)  2.079(0.003)  1.819(0.013) 1.3 (0.016) 2.19(0.011)
MAF 0.288 (0.041)  0.467 (0.009)  0.308 (0.017) 0.519 (0.033)  0.532 (0.026)
Score-Based  0.302 (0.049)  0.499 (0.019)  0.324(0.028)  0.562 (0.043)  0.582 (0.020)

7 Discussion

In this paper we discuss an alternative viewpoint of the standard It6-SDE parameterization. In
particular, we focus on MV-SDEs and discuss how neural networks can represent a process that
depends on the distribution, and we describe ways of making this dependence more explicit. We
demonstrated the efficacy of the proposed architectures on a number of synthetic and real benchmarks.
The results suggest that the proposed architectures provide an improvement over baselines in certain
generative modeling and time series applications.

Limitations We only studied the implicit regularization of the IM architecture under gradient descent,
but the extension of the analysis to the other proposed architectures is important to understand the
corresponding regularization. Additionally, computing expectations incurs additional computational
cost. Improving the computational accuracy using a multilevel scheme as proposed in|Szpruch et al.
[2019] could improve the performance of the methods.
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A Proofs

In the main text, we briefly discussed some theoretical advantages in terms of the flexibility in the
time marginal distributions that MV-SDEs can represent versus It6-SDEs, such as non-local dynamics
and jumps in the sample paths. For more background and properties, we refer to the notes by [Lacker|
[2018] and the book by [Carmona et al.[[2018].

In this section, we consider the theoretical advantages of the proposed architectures and estimators.
Specific to the architectures, we develop the implicit measure architecture, and study the implicit
regularization of explicit distributional dependence, with a comparison to optimal transport. Specific
to the estimators, we develop the compatibility criterion for the modeled density to be consistent with
the flow of the modeled SDE, and discuss a similar interpretation for the interpolation approach of
the Brownian bridge estimator.

A.1 Development of Implicit Measure Architecture

The implicit measure (IM) architecture is motivated by the fact that given a drift b that is Lipschitz
continuous, by the universal approximation theorem, a two-layer multi-layer perceptron (MLP) can
approximate b to arbitrary precision [[Hornikl |1991]]. We first show that the drift of a MV-SDE can be
represented by a MLP then describe the IM architecture where the distributional dependence is made
more apparent.

Proof. Consider a McKean-Vlasov process where the drift b is factorized into a linear form

b(Xtaptat) = f(Xtvt) + ]EytN;Dt [@(Xt - yt)}

and assume that f(-;6) and (+; 0) are well approximated by MLPs following the universal approxi-
mation theorem. It remains to show that E,, ., [¢(X; — y¢)| can be well approximated by an MLP.
We will begin by presenting the proof for the case where the law is stationary, then perform a change
of measure to extend to the case where the law is non-stationary.

Recall that a MLP can be written in terms of an expectation as

MLPW () = / o (Wa + b) dv (W, b)
— Ejo(Wz + b)]

where the expectation is taken over v(-), a measure over the space of parameters W, b, and o is an
activation function. By our original argument that ¢ is well approximated by a MLP, we can let that
represent the activation function. Next, set v(W) = &, and v(b) = Law(—X;). Since we assumed
X is stationary, Law(X;) = Law(X,) for all . We now have our approximation as

MLPY(0) = [ o (o~ ) pi(b)ad
— By il — ).

Non-stationary law Next we consider the case where the law of X, is not the same for all ¢. For
this argument, we will consider the change of measure that maps [P, to P, ;. Since we are assuming
that the diffusion is constant, all measures P; are absolutely continuous with respect to each other.
We additionally assume that Novikov’s condition is satisfied. Following Girsanov’s theorem, we can
write the expectation in terms of this changed measure by introducing the time variable
dP
By (o - 9] = Eyne | vla - 1) 5|

Under this formulation Q is the learned measure and PP; is the measure at each time point . Assuming
that the function (+; 9) % can be learned for all ¢ as another MLP ¢ (-, t; §), we conclude the proof.
A similar idea was explored in|Du et al.| [2021]] where the authors attempt to compute a stationary
measure as a change of measure of particle samples.

O
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Following a similar notation to the MLP proof, we only change the base measure such that it is
given by the mean-field layer. A similar change of measure argument is then applied to complete the
development of the IM architecture.

The proposed neural architectures differ from existing methods that consider the empirical measure,
since we consider parameters to describe the measure at different time points. The proposed neural
architectures also differ from existing methods that describe Ito-SDEs since we consider a more
explicit parameterization of distributional dependence.

Relationship to Attention Recently, works such as [Sander et al.|[2022] described the relationship
between interacting particle systems and the attention structure in the transformer architecture. Here
we briefly describe a motivation for using the proposed architectures in the sense that they describe a
similar structure to attention.

Recall that the attention module is defined by Wi, Wy, Wq € RNw*d and the normalized attention
matrix by

ii = Nexp((Wg X® Wox0)y) /Zexp (Wr XD Wox®)).

We focus on the attention matrix since it describes the dependence between particles X (.

We can rewrite the above equation as an expectation
;. = exp((Wg XD Wox ™ /]E exp((Wr X9 Woy))),

where the expectation is taken with respect to a discrete measure v = Z w1 Ox ), as we do in the
IM architecture. We can write the numerator as the expectation with an indicator and the denominator
as the full expectation,

i = Elexp(Wi X, Woy))1,_x o] /Elexp((Wi X @, Woy))].

Finally, since we do not assume a particular structure on ¢ in the IM architecture, we can let ¢ be
equal to the exponential of the dot product with the transformation by W, Wq. Note that this is
applied to particles at each time marginal ¢ rather than for a sequence of particles. A sequence of
particles would correspond to the case of non-exchangability, which is a direction of future work.

A.2 Implicit Regularization of Explicit Distributional Dependence

Proof. Consider a McKean-Vlasov process governed by

dX = {f(Xt7 t) + EytN;Dt [@(Xta yt)]} dt + dWs.

Our goal is to understand the implicit regularization of the IM architecture where the expectation
is approximated by a discrete measure v = % 211::1 dg,, and @, corresponds to the kth row of a
w X d weight matrix 6. We show that the path preferred by gradient descent is the one that minimizes
Ey,~v [p(X¢, y1)], i.e. the solution with least influence from other particles. In addition, when ¢
can be decomposed as a norm, this amounts to finding the weights with smallest norm. For ease of
notation, we will begin by presenting the proof for one time step and in 1-dimension, i.e. d = 1.

Following the blueprint given by Belabbas|[2020]], we wish to study the implicit bias of the weight
matrix 6 by understanding the compatibility between two optimization problems, the training problem
given by the loss:

N w 2
1 i 7 ) 1 )
i=1 k=1

for observations {X @) Xt(jr)l} and the regularization problem given by
=1..N

meinK(G,X) st. L0, X)=0
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for some function K that satisfies the PDE'

2
89299)( +Z>\ GX()) (0,X)=0 (14)

where g denotes the dynamics of gradient descent glven as

: oL
0,X)=0= 0, x
9(6, X) ; 59 0 X")-
Following [Belabbas| [2020], the PDE(T4) has a simple interpretation: the Hessian of K, acting on g,
is a linear combination of the Hessians of £ at datapoints X (), acting on g. The next step is to find

the function K.

We compute the first derivative

i —1 i i i
o0 = (o (0,0 (504 13-, ) ot

Then the second derivative as

, 1 ;
89_7‘,9_7“6(1) = <wg(69790(Xt( )a 0]'))2

1 i i i
—&wQﬁgtx ><ﬂu ZyxmeAQ@wmﬁ%@)

k=1

with the off-diagonal second derivative as
%mﬂ@ 3 0he(X >M%¢M%m

The terms with coefficient —> will have coefficient 5 when multiplied by the first partial derivative
in g. Taking w = O(1/A ) these terms are neghglble With the choice of

A—At<< Xa, - x{) - <f<>+ Zgo %)A)

we obtain the PDE

392 Z Zagk,9k¢ 9 )ZO.
i=1

This suggests that the regularlzatlon problem that we are solving, repeating for 71" time steps, is

mmK@X ZZ Z¢ st. L£(0,X)=0. (15)

t=1 =1

In the context of the MV-SDE, the mean-ﬁeld system approximated is the one that has the least
influence from the other particles.

d-dimensions. Now consider the case with 6, as vectors. The notation becomes more complex as
the partial derivatives now form tensors. However, since the diffusion is assumed to be constant and
diagonal, we can give a brief analysis similar to the 1-dimensional case. The loss function is now

w 2
-39 3 (et~ - (s S ) )
t=1 i=1 k=1 j

The regularized problem has a similar form of
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A.2.1 Comparison to Optimal Transport

Now consider the case f = 0 and recall that the transition density satisfies the PDE

0_2
(e t) ==+ ([ et 0aumtenn)) + 5 9p(at) 6

such that p(z,0) = po(x) and p(z,T) = pr(z). Suppose that ¢ can be represented as a norm
llg(z, y)||* and replace the drift with the one given by the implicit bias, the PDE then becomes

8tp(x7 t)

-9 (o [ oo Pt 000 ) o)) + 0t

=9 - (min By [lo(e, )] ple,0)) + Z-92p(2, )

-V <mging(ac,t)p(ac,t)> + %szp(x,t)

where the last step can be seen as a parameterization of the function g by the measure v.

We see some similarities to the Benamou-Brenier form of the Wasserstein-2 distance, where the
optimization problem is given by

T
Walpy ) =min [ By [lo(Xs. 0] dt 1)
0

subject to
8tp =-V- (g($7t)p($at))7 p()(x) =P pT('T) = K- (18)

Compare (I3) to (I7) where we have the same objective. In addition, note that the probability
flow (T6) satisfies the transport equation (I8) in the limit as o — 0. This lends to an interpretation
that, under certain choices of ¢, the problem relates to the entropy regularized optimal transport
problem under the W5 cost. Notably, this comes as a result of the implicit bias introduced by the
neural network gradient optimization scheme and is not a separate term that needs to be added.

A.3 Compatibility Criterion in Inferring Explicit Distributional Dependence
A.3.1 Feynman-Kac for the Kolmogorov Backward Equation

The Kolmogorov backward and forward equations are PDEs that describe the time evolution of the
marginal density of the associated SDE. The Kolmogorov backward equation describes the evolution
of the density when given a known terminal condition. Its adjoint, the Kolmogorov forward equation,
establishes an initial condition and provides the density at some future time. In this section, we focus
on regularizing the modeled density to be consistent with the flow of the modeled SDE using the
Kolmogorov backward equation. In Section[C.4.5] we derive a likelihood and perform additional
generative modeling experiments based on a linearization of the Kolmogorov forward equation, also
known as the Fokker-Planck equation.

For the modeled density to be consistent with the flow of the modeled SDE, it has to satisfy the
Kolmogorov backward equation defined as

2
g
—0pe = b(-)Vpy + 7V%ot. (19)

A solution to the above equation is given by the Feynman-Kac formula as an expectation of trajectories
at terminal time, i.e.

p(z) = E[pr(Xr) | X; = 2] (20)
where pr(-), t < T is the given terminal condition and X, satisfies the SDE d X, = b(-)ds 4+ odW.

Following (20), we evolve X from X; = z to X7, then penalize the difference between p;(x) and
E [pr(X7) | X; = «]. The estimation algorithm with this compatibility criterion on the marginal
density is detailed in Algorithm
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A.3.2 Feynman-Kac Analysis of the Brownian Bridge Estimator
Consider the bridge estimator

£BB = P({Zt = th+1} | Zt]. = Xt].) = ]EQ []I{Zt = th+1} | th = Xt]l

J+1 J+1
where the expectation is taken over Brownian paths Z; under the Wiener measure Q. This computes
the probability that a Brownian motion Z;, conditioned to be equal to X;, att;, is equal to X;, , at
t;+1. This can be thought of using the Kolmogorov backward equation and Feynman-Kac formula
from the previous section. Applying a change of measure using Girsanov’s theorem to a drifted

Brownian motion, we arrive at the estimator described in the main text

ti+1 1 i+t
Lpp(0) =Eq [1{Z,,, = Xi,,,} exp </ b(-;0)dZ;, — 5/ b( ~;0)2dt> | Zy, = th] .
t t

J J

The indicator function, which acts as the boundary condition for the Kolmogorov backward equation,
restricts the paths of Q to those that are Brownian bridges between X;, and X;,_,. The change of
measure via Girsanov’s provides the mechanism for inferring the optimal drift for the observed data.

The experiments then provide a way of evaluating whether including distributional properties in the
drift (i.e. nonlinear Kolmogorov backward equation with b( X, p;, t; 0)) results in better probabilities
than without (i.e. linear Kolmogorov backward equation with b( Xy, t; 6)).
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B Algorithms

To supplement the algorithmic contributions in the main paper we detail the inference procedure
for the regular time observations in Algorithm [T]and the irregular time observations with Brownian
bridges in Algorithm[2] We then detail the inference procedure with regularization of the marginal
law using a compatibility criterion of the PDE with the associated SDE in Algorithm|3| Finally, we
describe a sampling procedure in Algorithm[] The code is attached in the supplementary material
and will be posted online.

Algorithm 1 Maximum Likelihood Estimation (MLE) with Girsanov’s Theorem

Input: observed trajectories {{th };21 K} .
B limN

Initialize: neural drift b(-; 9).
for 7 in mini-batch do
forjinl..K —1do
Compute AXt(;) = Xt(;)ﬂ - Xt(;).
Compute discretized approximation to log of exponential martingale:
L(0) := b(Xzs(;)7Ptj7tj§9)AX¥) - %b(Xt(;)aptjatﬁe)Q(tjﬂ —tj).
Maximize £(6) using gradient based optimizer.
end for
end for

In the computation of the mean-field component of b(Xt(;) ' Dt Ly 6), we do the following:

* EM architecture: & 3"~ | go(Xt(:)7 Xt(f); 0).

* IM architecture: —— >, @(Xf?), Wék),tj; 0)
w - “J
as a neural network with an additional layer and additional conditioning on t;.

e ML architecture: % L ga(Xt(j),Xt(f); 0)

where we compute the expectation with samples {Xt(,k)}/:L from P(-,1;;6),
a generative network with additional conditioning on ¢;.

Additional details on the parameterization of the neural architectures are in Section[C.2.3]

In the case of irregular time observations, for each trajectory, we first sample Brownian bridges
between observations, then use the sampled Brownian bridges as regular time observations. In this
case, the estimation procedure aims to fit the observations while penalizing deviations from the
Brownian bridge paths in regions without observations. The Brownian bridge approach also has the
interpretation of the shortest distance interpolator that exactly fits the margins. Using a Brownian
bridge path construction reduces the variance of the estimator.

We next detail the estimation procedure with regularization of the marginal law using the corre-
spondence between the PDE and its associated SDE via the nonlinear Kolmogorov backwards
equation [Buckdahn et al.,[2017]].

We finally describe a sampling algorithm.
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Algorithm 2 MLE with Girsanov and Brownian Bridges

Input: observed trajectories {{X b },({21 K}

Initialize: neural drift b(-; 6).
for 7 in mini-batch do
forkinl.. K —1do
Sample Brownian bridge { Z, }J )1 between X( ") and Xt(Z)Jrl
forjinl..J —1do
Compute AZ( D = Zt( 11 Z( 9
Compute discretized appr0x1mat10n to log of exponential martingale:
L(O) =2 e, t5:0)AZY — L0(Z py; 17:0)2(tj 1 — 1)
Maximize £(6) using gradlent based optimizer.
end for
end for
end for

i=1..N

Algorithm 3 MLE with Girsanov and Regularization of Explicit Marginal Law P,

Input: observed trajectories {{th }521 J} N
I fiy

Initialize: neural drift b(-; #), including explicit marginal law P(-; 6).
for ¢ in mini-batch do
forjinl..J —1do .
Compute AXt( =x{ )+1 Xt(;).
Compute discretized approximatipn to log of exponential martingale:
ELBO = b(X{", py,, t;;0)AX[) — 1o(X{ py, 5:0)2(t501 — 1),
Sample {{Z;,,,
Compute the expected log-likelihood E[log ]5,5_7.+1 (Zi;,,)] = = log ]5,57+1 (Zt(kll)
Compute compatibility criterion CC := (log ]-C’tj (Xt(;)) — Ellog ]3,5_7+1 (Zi,,,)])?
Compute total loss £(6) := ELBO + CC.
Maximize £(6) using gradient based optimizer.
end for
end for

|z = Xt(;) }(k) }r=1...k following the dynamics of the ML architecture.

Algorithm 4 Sampling Trajectories with Euler-Maruyama Scheme

Initialize: time grid {¢,},=1.. .
Initialize: initial observations {Xél)}izlm N ~ Do.
for jinl.. K —1do
Compute At; =t;11 —t;.
foriin1...N do
Sample AWt(;) ~iia N'(0, Atj)
Compute Xt(j)+1 = b(Xt(:),pt,- (L 0)At; + O-th(ji).
end for
end for
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C Experimental Details

In this section, we detail the evaluation metrics, datasets, hyperparameter settings, and provide
additional experiments to supplement the results in the main paper.

C.1 Evaluation Metrics
C.1.1 Continuous Ranked Probability Score (CRPS)

Following |Gneiting and Raftery|[2007], the Continuous Ranked Probability Score (CRPS) is given by

CRPS(F.3) = [ [F(y) ~ 1y > o)y

— 00

The CRPS evaluates the modeled distribution against a single observation by comparing the cumu-
lative distribution function (CDF) of the modeled distribution F' to a step function placed at the
observation z.

C.1.2 Energy Distance
The squared energy distance between two distributions Py and P is defined as
d*(Po, P) :=2Expy y~p[IX = Y] = Exopy x~n[IX = X'] = Eyapyap[]Y = Y]

where we compute the expectations empirically.

C.2 Datasets

Here we describe the datasets in more detail and provide exact statements on the simulation parame-
ters.

C.2.1 Synthetic Time Series Data

Kuramoto Model. The Kuramoto model which describes synchronizing oscillators takes the form
ax(? = |ht + = Zl sin (y,@ - Xt(”) dt + odw?,
i=

where movements of IV particles are governed by a linearly factored drift that includes some function
h() and a mean-field term that couples the particles. We simulate 2-dimensional trajectories with

XD =[x x{] e R2, ) = [sin(X{?), sin(XZ(?)}, K =2, N=20,and o = 1.

Fitzhugh-Nagumo Model. The FitzHugh-Nagumo model is a set of equations that models spikes in
neuron activations as membrane voltage spikes X4, driven by external stimulus /oy, and diminishing
over time Xo;. It takes the form

dXy = (aX1 (X1t = A) (1 = Xup) = Xop + Texe) dt + E[ X1y — y1e] dt + odWy,
dXQt = (_bXQt + CXlt + d) dt,
We chose @ = 0.2,b = 0.8,¢c = 1,d = 0.7,\ = 0.4, [oxx = 0.1sin(10¢), and ¢ = 0.3. The

expectation is approximated with N = 20 particles.

Opinion Dynamic Model. The opinion dynamic model simulates the opinion formation process
through an equation with the form

dXy = E [o([|Xe — el ) (Xt — pe)] + odWr,

where 1y (r) = 61 exp(—%). We simulate 2-dimensional trajectories with §; = 1,05 = 2.5.
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Mean-Field Atlas Model. The mean-field atlas model for pricing equity markets takes the form

dXy =7 </ ]l{Xt_yt>0}dpt(y)) dt + odWy,

where the drift 7(-) depends on the rank of the particle at each time. Let u = [ 11y, _y,>03dpe(y)dt,
we define v = 1 — uwexp(2u).

Ito6 Diffusion - Ornstein-Uhlenbeck. We simulated a 2-dimensional Ornstein-Uhlenbeck (OU)
process with drifts [—3X1;, —2Xo;] .

It6 Diffusion - Circle. We simulated a 2-dimensional SDE with circular evolution given by drifts
[— X1 — 2X0, —Xor +2X14).

Jump Diffusions. We simulated a 2-dimensional OU process with drifts [—X;, —Xo;] and addi-
tional 1, 2, or 4 jumps sampled uniformly in time with jump size distributed as exp(Uniform(2, 3)).

All models are two-dimensional except the mean-field atlas model that is one-dimensional.

We first simulated samples using the Euler-Maruyama method on a fine grid At, i.e. Xiynr =
X: + b(Xy, pt, t) At + c AW with AW ~ AN(0,A;) and ¢ € [0,T]. For irregular time samples,
a batch of observation times are then sampled according to an exponential distribution with rate
A = T/N’, where N’ is the number of irregular time samples. The sampled timestamps are then
matched to the closest times in the discretized time sequence used in sample generation. Only the
matched timestamps ¢/, the initial condition X, and the terminal condition X7 are used in training.
For evaluation, we consider the full trajectories. Specific choices of o, T, At, N, and N’ are provided
in Table 3| To realistically simulate real-world parameter estimation, “observation noise" in the form
of Gaussian with standard deviations € {0.1,0.5, 1} is added to the sampled data.

Dataset o Terminal Time T At # Particles N # Irregular Observation N’
Kuramoto 1 5 0.05

Fitzhugh-Nagumo 03 5 0.05

Opinion Dynamic 0.5 100 1.0 20 20

Mean-field Atlas 1 5 0.05

Ornstein-Uhlenbeck 1 5 0.05

Circles 1 5 0.05

OU with Jumps 1 5 0.05 100 Not Applicable

Table 3: Synthetic time series parameters

C.2.2 Real Time Series Data

EEG Data. We used the 1-dimensional EEG data provided by |Zhang et al.|[1995]]. Specifically,
the EEGs recorded with stimulus 1. Each subject has 64 time series, and each time series has 256
timesteps. We used the following subject-run combinations for Non-Alcoholics EEG (NA-EEG):
€02c0000362-076, c02c0000367-052, c02c0000338-016, co2c0000394-044, c02c0000348-016; and
these subject-run combinations for Alcoholics EEG (A-EEG): c02a0000364-000, co2a0000372-
014, c02a0000396-112, c02a0000411-064, c02a0000390-030. We did not perform any further
preprocessing on this dataset.

Chemotaxi Data. We used the 3-dimensional Chemotaxi data provided by |Grognot and Taute
[2021]]. We used V_0208 for C.Crescentus and V_MeAspl_0511 for E.Coli. The time series are
truncated to the first 100 timesteps. Particles with less than 100 timesteps recorded are discarded.

All time series data are split into 0.8 training, 0.1 validation, and 0.1 testing particles.
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C.2.3 Generative Data

We are interested in estimating a flow between a Gaussian and a target distribution described by the
nonlinear Fokker-Planck equation. We thus sample a batch of NV = 100 particles from the initial
condition N (0, Iy« q) where d is the dimensions of the process. We then sample the same number
of particles from different terminal conditions corresponding to the different datasets, i.e. Gaussian
mixture and UCI datasets: Power, Miniboone, Hepmass, Gas and Cortex. To create the training
dataset, we randomly match the particles from the initial condition to the particles from the terminal
condition, then sample Npp = 30 Brownian bridges between each initial-terminal condition pair for
t€[0,7],T =0.1, At = 0.002.

Eight Gaussians. In the case of two dimensions, the terminal condition is an eight Gaussian mixture

with means p € {[05 2], [0, -2, [2,0], [0, —2], [\/i \/i]v [\/57 _\/é}v [_\/ia \/5]7 [_\/: _\/i]} and

variance I, 4. For dimensions 10, 30, 50, 100, w is repeated 5, 15, 25, and 50 times.

Real Data. For POWER, MINIBOONE, HEPMASS, and GAS, we follow the preprocessing of (Grath{
wohl et al.[[2019]. For the CORTEX data, we normalize the data by subtracting the mean and dividing
by the standard deviation.

C.3 Hyperparameter Settings

Since our goal is to determine the effect of different architectures, we try to control such that all
architectures have similar number of parameters. The details of the hyperparameters are specified in
Tables[4] [5 [l and [7] for the different datasets. The learned measure Wy in the IM architecture was
modeled as an additional fully connected layer. The marginal law P, in the ML architecture was
modeled with GLOW [Kingma and Dhariwal, 2018]] with an additional conditioning on time.

For the MV-SDE models, we used the AdamW optimizer with a learning rate of 1 x 1074, e=1x10"4
and exponential decay v = 0.9998 for all experiments, except EEG where the learning rate was
1 x 1073, For the DeepAR models, the learning rate was 1 x 10~3. The batch sizes used were
10, 5, 10 and 200 for the synthetic time series, EEG, Chemotaxis and generative modeling experiments
respectively. The models were trained for 500, 500, 2000 and 500 epochs for the synthetic time series,
EEG, Chemotaxis and generative modeling experiments.

Architecture  Modules: Hidden Layers  Layer Size Activation # of Parameters
MLP (It5) 8 128 132740
EM 4, f: 4 128, 128 133638
M 0 4, 14, Wo: 1 128, 128, 128 eakyReLU 134022
ML o 4, f:4, P 1 128,128,32 s tanh, t: ReLU 136152
MLP (It5) 4 128 66820
EM 02, f:2 128, 128 67718
M 02, f12, Wo: 1 128, 128, 128 eakyReLU 67846
ML 02, f:2, P 1 128,128,32  s: tanh, t: ReLU 70232

Table 4: Hyperparameter specification for synthetic time series data experiments and synthetic
generative modeling experiments. The first set of hyperparameter settings are for: Kuramoto, Opinion
Dynamic, Mean-field Atlas, Jump Diffusions, and Eight Gaussians. The second set of hyperparameter
settings are for: Fitzhugh-Nagumo, 1t6-OU, It6-Circles. For Jump Diffusions, LeakyReL U activation
on the EM architecture led to diverging behavior, while tanh did not, we thus changed the activation
to tanh for a more stable behaviour.
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Architecture Modules: Hidden Layers Layer Size  Activation # of Parameters

MLP (Itd) 10 64 141858
EM p: 4, f 4 64, 64 133795
™ o 4, f: 4 Wo: 1 64. 64,512 LeakyReLU 134371
ML prd, f14, P 3 64, 64, 32 s: tanh, t: ReLU 135960
DeepAR-LSTM 64 117894
DeepAR-RNN 3 130 LeakyReLU 120516
DeepAR-GRU 80 137526
DeepAR-TR Enc: 8, Dec: 8 512 ReLU 298082

Table 5: Hyperparameter specification for real time series data - EEG experiments. For the DeepAR
models, we used a window size of 20.

Architecture Modules: Hidden Layers Layer Size Activation # of Parameters
MLP (1t6) 8 128 133126

EM p: 4, f 4 128, 123 134409

M o 4, fr 4, Wo: 1 128, 128, 128 eakyReLU 134921

ML p: 4, f14,P:3 128, 128, 128  s: tanh, t: ReLU 239724
DeepAR-LSTM 64 117123
DeepAR-RNN 3 130 LeakyReLLU 119733
DeepAR-GRU 80 136723
DeepAR-TR Enc: 4, Dec:4 256 ReLU 81638

Table 6: Hyperparameter specification for real time series data - Chemotaxi experiments. For the
DeepAR models, we used a window size of 10.

Architecture  Modules: Hidden Layers  Layer Size Activation # of Parameters
MLP (Itd) 8 128 133900 ~ 151960
EM w4, [ 4 64, 128 tanh 86098 ~ 122148
M 0 4, 4, Wor 1 64,128,128 a 86930 ~ 131940
ML w4, f:4,P: 1 64, 128, 32 s: tanh, t: ReLU 89208 ~ 146048
MAF 4 128 ReLU 75872 ~ 184512
W-GAN Gen: 4, Dis: 3 Gen: [64, 128, 256], Dis: 256  LeakyReLU 114759 ~ 150669
VAE Enc: 4, Dec: 4 128, 256, latent dim: 50 LeakyReLU 88682 ~ 124592
Score-Based 8 128 SiLU 117318 ~ 135308

Table 7: Hyperparameter specification for generative modeling experiments: Power, Miniboone,
Hepmass, Gas and Cortex. The number of parameters depends on the dimension of the data. The

hyperparameter specification for the generative modeling experiments with Eight Gaussians follow
that of Table [}

23



683

684
685

686

688
689

C.4 Additional Figures and Tables

We provide a series of additional figures to qualitatively illustrate the differences between the proposed
architectures and baselines.

C.4.1 Ablation on IM Architecture Width

We conduct a series of ablations on the width of the IM architecture. These ablations are performed
on the synthetic datasets of the Kuramoto model and the Fitzhugh-Nagumo model. The results are
presented in Figure[7]and [§]

N =32 N = 64 N =128 N = 256
1.0

— dt=05 — dt=05 08 — dt=05
0.8 dt=01 dt=0.1 0.8
08 0.7 —— dt=0.05

0.6
0.6

— dt=05

0.6 05

0.4 0.4 o4

0.3

0.2 0.2 0.2

Figure 7: Ablation on different IM architecture widths N = 32, 64, 128, 256 for the Kuramoto model,
with different time grid size dt and different number of training particles.

N =32 N =128 N = 256

08 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0440

0.2 0.2 0.2

10 50 100 10 50 100 10 50 100 10 50 100

Figure 8: Ablation on different IM architecture widths N = 32,64, 128, 256 for the Fitzhugh-
Nagumo model, with different time grid size dt and different number of training particles.
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C.4.2 Synthetic Data Experiments

Table 8: Synthetic dataset results with noise level standard deviation 0.1

Kuramoto Fitzhugh OD MA ou Circle
MLP (It6)  0.56 (0.081) 0.699 (0.426) 0.048 (0.013) 2.14 (0.142) 0.098 (0.043)  1.351 (1.979)
M 0.448 (0.075)  0.601 (0.422) 0.039 (0.011) 1.208 (0.147)  0.128 (0.047) 1.592 (2.38)
ML 0.428 (0.095) 0.639 (0.395) 0.042 (0.012) 1.519(0.236) 0.101 (0.038) 1.481 (2.237)
EM 0.383 (0.085)  0.606 (0.389) 0.036 (0.01) 1.359 (0.2) 0.097 (0.038) 1.562 (2.476)
Table 9: Synthetic dataset results with noise level standard deviation 0.5
Kuramoto Fitzhugh OD MA ou Circle
MLP (It6) 0.578 (0.124)  0.734 (0.489)  0.047 (0.012) 2.133 (0.156) 0.1 (0.042) 1.334 (1.948)
M 0.45 (0.074) 0.617 (0.415)  0.039 (0.012) 1.223 (0.125) 0.128 (0.046) 1.592 (2.368)
ML 0.397 (0.075)  0.605 (0.408) 0.042 (0.011) 1.518 (0.248) 0.1 (0.035) 1.564 (2.543)
EM 0.373 (0.075) 0.612 (0.383)  0.038 (0.01) 1.347 (0.165)  0.106 (0.036)  1.535 (2.535)
Table 10: Synthetic dataset results with noise level standard deviation 1.0
Kuramoto Fitzhugh OD MA ou Circle
MLP (It6)  0.653 (0.067) 0.897 (0.503)  0.059 (0.009) 2.159 (0.2) 0.481 (0.065) 2.303 (2.039)
M 0.646 (0.065) 0.878 (0.522) 0.055(0.012)  1.65 (0.232) 0.559 (0.062) 2.658 (2.142)
ML 0.601 (0.112)  0.882 (0.527)  0.049 (0.009) 1.748 (0.224)  0.529 (0.055) 2.308 (2.252)
EM 0.592 (0.077)  0.893 (0.523)  0.04 (0.009) 1.652 (0.272)  0.536 (0.055) 2.394 (2.25)

For a better sense of the different synthetic datasets and each model’s ability in recovering the drift,

92 we provide a figure that qualitatively compares the architectures’ performances in Figure 9] We
additionally show the learnt gradient flow for the Kuramoto model in Figure 10}
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Kuramoto, Xy¢ . Fitzhugh-Nagumo, X1¢ Opinion Dynamic, Xi¢ Meanfield Atlas, X1¢ OU Xiy¢ Circles Xi¢

o
~
IS

Figure 9: Synthetic data experiments and estimated drifts, only the first dimension is shown. First
row: sampled trajectories, grey scattered circles indicate irregular time observations. Rows 2-5:
estimated drifts by the MLP (Itd), EM, IM, ML architectures. Black is truth, red is estimated. The
models are trained with additional Gaussian observation noise of SD =0.1.

(a) MLP (b) EM () IM (d) ML (e) Truth

Figure 10: Estimated gradient flow of Kuramoto Model at terminal time. The colors correspond to
the density of generated samples at terminal time. The models are trained with additional Gaussian
observation noise of SD = 0.1.
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C.4.3 Real Data Experiments

We extend the time series experiments in the main paper to forecasting. There are two ways to
perform forecasting: i) given the initial condition at 7j, generate trajectories up to Tiorecast; i1) given
the training terminal condition at T', generate trajectories for ¢ € [T, Torecast)- In both cases, the
dataset time steps are partitioned into 0.8 training, 0.2 forecasting. We present the numerical results
of both types of forecasting in Tables [TT]and [T2] We note that our methods perform on par with
various deepAR methods under both types of forecasting. We also present qualitative results with the

learnt drifts in Figures[IT]and [I2]for the EEG and Chemotaxis data.

Table 11: Time series forecasting Type 1. NA/A stands for Non-alcoholics/ Alcoholics.

Bolded values indicate best performance.

CRPS | MSE |
NA-EEG A-EEG C.Cres E.Coli
MLP (Itd) 30.087 (32.29) 7.837 (3.018)  0.296 (0.007)  0.225 (0.007)
M 8.346 (4.646) 5.438 (1.814) 0.307 (0.010)  0.23 (0.006)
ML 7.967 (4.542) 5.652 (1.515) 0.312(0.015) 0.245 (0.006)
EM 8.963 (4.309) 5.82 (1.818) 0.312 (0.019)  0.26 (0.013)
LSTM 7.231 (3.051) 6.66 (3.948) 1.526 (0.324) 0.786 (0.386)
RNN 6.993 (2.369) 5.292 (2.317) 1.689 (1.107)  0.859 (0.115)
GRU 7.234 (2.75) 7.407 (4.494) 1.115(0.406) 0.813 (0.337)
TR 7.354 (1.998) 5.122 (2.457) 1.489 (0.362) 1.489 (0.362)

Table 12: Time series forecasting Type II. NA/A stands for Non-alcoholics/ Alcoholics.

Bolded values indicate best performance.

CRPS | MSE |
NA-EEG A-EEG C.Cres E.Coli

MLP (Itd) 31.47 (35.659) 6.95 (2.640) 0.013 (0.0003)  0.015 (0.0003)
M 8.675 (5.638) 4.884 (1.687) 0.014 (0.0007) 0.016 (0.0003)
ML 8.747 (5.677) 4.907 (1.490)  0.015 (0.0007) 0.015 (0.0005)
EM 8.938 (4.975) 5.403 (2.205) 0.015(0.0013)  0.015 (0.0005)
LSTM 8.288 (3.142) 6.317 (4.207)  0.291 (0.0704)  0.163 (0.0353)
RNN 7.002 (2.591) 5.296 (2.262) 1.455(0.9367) 0.534 (0.191)
GRU 7.019 (2.686) 6.044 (3.457) 0.397 (0.2134)  0.17 (0.054)
TR 7.087 (2.208) 4971 (2.643) 1.65 (0.1666) 1.65 (0.1666)
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Figure 11: True, generated and forecast trajectories on EEG dataset. Left:Non-Alcoholics;
Right:Alcoholics. The dashed vertical line at ¢ = 205 indicates the start of the forecast.The shaded
region indicates &+ one SD of samples at each time step.
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Figure 12: True, generated and forecast trajectories on chemotaxis, C. Crescentus dataset. The dashed
vertical line at £ = 80 indicates the start of the forecast. The shaded region indicates + one SD of
samples at each time step. From left to right, the columns are movements in z,y and z directions.
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702 C.4.4 Generative Modeling Experiments

703 Figure[I3|shows 5 randomly selected 2-d projections of the 100-d mixture of Gaussians.
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Figure 13: Five randomly selected 2-d projections of 100-d mixture of Gaussians.

704 In addition to the eight Gaussian mixture and real data presented in the main paper, we present a few
705 toy generative modeling experiments to better understand the different architectures in Figure [T4]
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Figure 14: Estimated gradient flow at terminal time. The colors correspond to the density of generated
samples at terminal time. From left to right: MLP, EM, IM, true. From top to bottom: two moons,
two circles, S-curve 2-d, S-curve 3-d, pinwheel, swissroll. The architectures were trained with the
Brownian bridge estimator.
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C.4.5 Additional Experiments: Linear Fokker—Planck

For this set of experiments, the set up is similar to the generative modeling experiments detailed in
Section[C.2.3] where we map between a Gaussian distribution and target distributions of two moons,
two circles, s-curves, and 3-dimensional s-curves. However, we consider a linearization of the PDE
that governs the density and derive a likelihood for the target distribution based on the linearized PDE.
We are mainly interested in the performance differences due to differences in architectures between
MLP (It6), IM, and ML. A similar framework was considered in [Huang et al.|[2021]] with respect to
score-based generative models. We first derive the estimation procedure then show the results.

It is known that the flow satisfies the Fokker-Planck equation given by

2
. o
Opr = —div(b(z, pt, t)pe(x)) + 7V2pt(x). 21
Falling back on the It6-SDE, where b does not depend on p;, the PDE is linear. We can then consider

using the Feynman-Kac formula where the solution to (21)) with b independent of p; can be computed
according to an expectation over sample paths X, that satisfy d.X; = b(-)d¢ + odW; such that

pT(I) = E

exp (/OT —divd(+) dt) po(X7T) ‘ Xo==

We use Girsanov’s theorem to transform the expectation over sample paths with drift to an expectation
under Brownian motion, i.e. over sample paths X, that satisfy dX; = odW, with no drift and

pr(z) =E lexp (/OT —divb(-)dt) po(X7) exp (/OTb(-) dX; — ;/OT b2 (+) dt) ’ X = x] .

leading to an efficient Monte Carlo method for computing the probability. To maximize this likelihood,
we can use Jensen’s inequality to derive an ELBO which we optimize as

T
logpr(z) > E l /0

The integrals are approximated using the forward Euler method and the parameters of b are opti-
mized for the set of observations. The results are given in Table [I3] The results suggest that the
proposed architectures do not decrease performance in the linear setting and sometimes provide slight
improvements.

T T
—divh()dt + log(po(X1)) + / by X, — 5 / b2<~>dt\xox].

Two MOONS Two CIRCLES S CURVE 2D S CURVE 3D PINWHEELS SWISSROLL
MLP (It6)  38.122(0.517) 33.738 (0.150)  54.083 (0.600) 72.045 (0.688) 72.333 (1.018)  69.345 (0.717)
™M 37.356 (0.323)  33.160 (0.371)  54.098 (0.645) 72.013 (0.645) 71.318(0.985) 69.000 0.550
EM 37.793 (0.307) 33.319(0.264)  54.089 (0.607)  72.636 (0.600)  70.692 (3.596) 69.230 0.546

Table 13: Density estimation through linear Fokker-Planck training: ELBO between true samples
and generated samples. Bolded values and italic values are best and second best correspondingly.
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