
Published as a conference paper at ICLR 2024

Supplementary Material: Bayesian Coreset Optimization for Personalized
Federated Learning

In this supplementary material we discuss extensively on the proofs. involved for the theoretical
analysis for CORESET-PFEDBAYES along with more fine-grained experimental details and corre-
sponding baselines.

9 PROOFS

Here we discuss the proofs involved with particular propositions and theorems specified in the The-
oretical Contributions of this paper. Utilising the assumptions taken in Zhang et al. (2022b), Polson
& Ročková (2018) we consider the analysis for equal-width Bayesian Neural network.

Assumption 1: The widths of the neural network are equal width i.e. si = M .

Assumption 2: Each individual client i 2 [N] has equal coreset size of samples nk < n.

Assumption 3: Parameters s0, n (total client dataset size) nk (coreset client dataset size), M , L
(number of DNN layers as per Section 3) are large enough such that the sequence �2

n is bounded as
follows

�2
n =

T

8n
A  ⌦2,

where ⌧ = ⌦M and

A = log�1 (3s0M) · (2⌧)�2(L+1)

"✓
s0 + 1 +

1

⌧ � 1

◆2

+
1

(2⌧)2 � 1
+

2

(2⌧ � 1)2

#�1

.

Here T indicates the total number of parameters as defined in Section 3

Similarly, utilising the coreset regime, we have the following:

�2
nk

=
T

8nk
A  ⌦2,

Since nk << n, hence �2
nk

>> �2
n

Assumption 4: We consider 1-Lipschitz continuous activation function �(•)

We also define here a few terms as defined in (Zhang et al., 2022b) which would be useful for our
following proof proposals as well.
Definition 2. Preliminaries and Definitions required for theoretical proofs under PFEDBAYES

d2(Pi
✓,P

i) = EXi(1� e
�

⇥
fi
✓(Xi)�fi(Xi)

⇤2
8�2

✏)

rn = ((L+ 1)T/n) logM + (T/n) log
⇣
s0
p
n/T

⌘

⇠in = inf
✓2⇥(L,S),k✓k1⌦

��f i
✓ � f i

��2
1 ,

"n = n� 1
2

r
(L+ 1)T logM + T log

⇣
s0
p
n/T

⌘
log�(n) =

p
rn log

�(n),

where � > 1

14

Published as a conference paper at ICLR 2024

Here rn indicates the variational error incurred due to the Bayesian approximation to the true pos-
terior distribution in Equation 1 and ⇠in indicates the approximation error incurred during regression
w.r.t the actual function to be learnt.

Similarly for the coreset size nk we define the following:
Definition 3. Preliminaries and Definitions required for theoretical proofs under

CORESET-PFEDBAYES

d2(Pi
✓,w,Pi) = EXi(1� e

�

⇥
fi
✓,w(Xi)�fi(Xi)

⇤2
8�2

✏)

⇠ink
= inf

✓2⇥(L,S),k✓k1⌦

��f i
✓,w � f i

��2
1

rnk = ((L+ 1)T/nk) logM + (T/nk) log
⇣
s0
p
nk/T

⌘

"nk = nk
� 1

2

r
(L+ 1)T logM + T log

⇣
s0
p

nk/T
⌘
log�(nk) =

p
rnk log

�(nk)

Lemma 1. The Hellinger Distance from Definition 1 is symmetrical in its arguments P
i
✓ and P

i
.

Proof. It is easy to show that,

d2(Pi
✓,P

i) = EXi(1� e
� [fi

✓(Xi)�fi(Xi)]2

8�2
✏) (10)

= EXi(1� e
� [fi(Xi)�fi

✓(Xi)]2

8�2
✏) (11)

= d2(Pi,Pi
✓) (12)

PROOF. OF THEOREM 1

Theorem 1. The difference in the upper bound incurred in the overall generalization error of

CORESET-PFEDBAYES as compared w.r.t that of PFEDBAYES is always upper bounded by a closed

form positive function that depends on the coreset weights and coreset size- =(w, nk). generaliza-

tion error in the original full data setup

"
1

N

NX

i=1

Z

⇥
d2(Pi

✓,P
i)q̂i(✓)d✓

#

u.b.

�

"
1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,P
i)q̂i(✓;w)d✓

#

u.b.

 =(w, nk)

Proof. Let us define log ⌘(P i
✓, P

i) = ln(P i
✓, P

i)/⇣ + nd2(P i
✓, P

i).

Using Theorem 3.1 of Pati et al. (2018) with probability at most e�Cnk"
2
nk , where C is a constant,

with high probability for CORESET-PFEDBAYES we have

Z

⇥
⌘(Pi

✓,w,Pi)z⇤(✓)d✓  eCnk"
2
nk (13)

Similarly with high probability at most e�Cn"2n for the vanilla PFEDBAYES

Z

⇥
⌘(Pi

✓,P
i)z⇤(✓)d✓  eCn"2n (14)

Using Lemma A.1 from Zhang et al. (2022b) we know that for any probability measure µ and any
measurable function h with eh 2 L1(µ),

log

Z
eh(⌘)µ(d⌘) = sup

⇢

Z
h(⌘)⇢(d⌘)� DKL(⇢kµ)

�

15

Published as a conference paper at ICLR 2024

Further, we let ln
�
P i, P i

✓

�
is the log-likelihood ratio of P i and P i

✓

ln
�
P i, P i

✓

�
= log

P
i
�
Di�

Pi
✓

�
Di� .

Hence,

nd2(P i
✓, P

i) = ln(P
i
✓, P

i)/⇣ � log ⌘(P i
✓, P

i)

= ln(P
i, P i

✓)/⇣ � log ⌘(P i, P i
✓) since d2(P i

✓, P
i) = d2(P i, P i

✓) from Lemma 1

This follows from 9

Similarly, for the weighted likelihood based Hellinger Distance,

nkd
2(P i

✓,w, P i) = ln(P
i
✓,w, P i)/⇣ � log ⌘(P i

✓,w, P i) (15)

By using Lemma A.1 with h(⌘) = log ⌘
�
P i
✓, P

i
�
, µ = z?(✓) and ⇢ = q̂i(✓), we obtain

Z

⇥
d2
�
P i
✓, P

i
�
q̂i(✓)d✓ 

1

n


1

⇣

Z

⇥
ln
�
P i, P i

✓

�
q̂i(✓)d✓ + DKL

�
q̂i(✓)kz?(✓)

�
+ log

Z

⇥
⌘
�
P i
✓, P

i
�
z?(✓)d✓

�


1

n


1

⇣

Z

⇥
ln
�
P i, P i

✓

�
q̂i(✓)d✓ + DKL

�
q̂i(✓)kz?(✓)

��
+ C"2n

Z

⇥
d2(Pi

✓,w,Pi) ˆqi(✓,w)d✓ 
1

nk


1

⇣

Z

⇥
ln
�
P i, P i

✓,w

� ˆqi(✓;w)d✓ + DKL

⇣
ˆqi(✓;w)kz?(✓)

⌘�
+ C"2nk

Utilising analysis under Supplementary in (Bai et al., 2020), there exists an upper bound for the term

Z

⇥
ln
�
P i, P i

✓

�
q̂i(✓)d✓  C

00
(nrn + n⇠in) (16)

Lemma 2 from (Zhang et al., 2022b) provides the upper bound for the KL divergence term

DKL

�
q̂i(✓)kz?(✓)

�
 C

0
(nrn) (17)

16

Published as a conference paper at ICLR 2024

Therefore we can write the following expression that captures the weighted Hellinger distance dis-
placement given in our coreset framework CORESET-PFEDBAYES as compared to PFEDBAYES

1

N

NX

i=1

Z

⇥
d2(Pi

✓,P
i) ˆqi(✓)d✓ �

1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,Pi) ˆqi(✓,w)d✓


1

N

NX

i=1

1

n


1

⇣

Z

⇥
ln
�
P i, P i

✓

�
q̂i(✓)d✓ + DKL

�
q̂i(✓)kz?(✓)

��
+ C"2n�

1

N

NX

i=1

1

nk


1

⇣

Z

⇥
ln
�
P i, P i

✓,w

� ˆqi(✓;w)d✓ + DKL

⇣
ˆqi(✓;w)kz?(✓)

⌘�
� C"2nk

Using Eq:(17) and Eq:(16)

 C"2n � C"2nk
+ n

✓
C

0
⇣rn +

C
00

N

NX

i=1

⇠in

◆
� nk

✓
C

0
⇣rnk +

C
00

N

NX

i=1

⇠ink

◆

 C("2n � "2nk
) + ⇣C

0
(nrn � nkrnk) +

C
00

N

NX

i=1

(n⇠in � nk⇠
i
nk
)

= C ("2n � "2nk
)

| {z }
Estimation error

Type I Drift

+⇣C
0
(nrn � nkrnk)| {z }

Estimation error
Type II Drift

+
C

00

N

NX

i=1

(n⇠in � nk⇠
i
nk
)

| {z }
Approximation Error Drift

= =(w, nk)| {z }
�0

Where =(w, nk) = C("2n � "2nk
) + ⇣C

0
(nrn � nkrnk) +

C
00

N

PN
i=1(n⇠

i
n � nk⇠ink

) where each of
the coefficients of the closed form function are constants related to s0,�,⇤, L,M, ⇣ and nk

Using Lemma 2, 3 and with suitable assumptions on the Approximation drift error such that we see
that each of the individual error terms are positive, there by indicating =(w, nk) � 0

Lemma 2. The Estimation error Type II Drift is a positive quantity i.e. nrn > nkrnk .

Proof. By Definition,

rn = ((L+ 1)T/n) logM + (T/n) log
⇣
s0
p
n/T

⌘

and

rnk = ((L+ 1)T/nk) logM + (T/nk) log
⇣
s0
p

nk/T
⌘

Hence

rn
rnk

=
nk

n
⇥

((L+ 1)T) logM + (T) log
⇣
s0
p

n/T
⌘

((L+ 1)T) logM + (T) log
⇣
s0
p
nk/T

⌘

rn
rnk

=
nk

n
⇥

(L+ 1) logM + log
⇣
s0/

p
T
⌘
+ log (

p
n)

(L+ 1) logM + log
⇣
s0/

p
T
⌘
+ log

�p
nk

�

Considering (L+ 1) logM + log
⇣
s0/

p
T
⌘

as a constant G we have

17

Published as a conference paper at ICLR 2024

rn
rnk

=
nk

n
⇥

G+ log(
p
n)

G+ log(
p
nk)

Thus,

nrn
nkrnk

=
G+ log(

p
n)

G+ log(
p
nk)

It is clear since log(•) is an increasing function for n > nk we have nrn > nkrnk .

Lemma 3. The Estimation error Type I Drift is a positive quantity i.e. "2n > "2nk
.

Proof. From the definition under Assumption 3

"nk = nk
� 1

2

r
(L+ 1)T logM + T log

⇣
s0
p
nk/T

⌘
log�(nk) =

p
rnk log

�(nk)

Hence "2nk
= rnk log

2�(nk). Similarly, "2n = rn log
2�(n)

"2n
"2nk

=
rn log

2�(n)

rnk log
2�(nk)

=
nrn

log2�(n)
n

nkrnk

log2�(nk)
nk

From Lemma 2 we know that nrn > nkrnk , hence

"2n
"2nk

>
log2�(n)

n
log2�(nk)

nk

> 1

This follows due to the increasing nature of the function.

PROOF. OF THEOREM 2

Theorem 2. The convergence rate of the generalization error under L2
norm of

CORESET-PFEDBAYES is minimax optimal up to a logarithmic term (in order nk) for bounded

functions (�-Hölder-smooth functions) {f i
}
N
i=1, {f i

✓}
N
i=1 and {f i

✓,w}
N
i=1 where C2, C3 and �0 are

constants and ⇤ being the intrinsic dimension of each client’s data:

CF

N

NX

i=1

Z

✓

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂i(✓;w)d✓  C2n

� 2�
2�+⇤

k log2�
0
(nk).

and

infn
kfi

✓,wk1
F

oN

i=1
{kfik1F}

N

i=1

CF

N

NX

i=1

Z

✓

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓;w)d✓ � C3n
� 2�

2�+⇤

k

where nk denotes the coreset size per client dataset and n denotes the original per client dataset

size and
d2(P i

✓,w,P i)
kfi

✓,w(Xi)�fi(Xi)k
2

L2

�

1�exp

✓
� 4F2

8�2
✏

◆

4F 2 , CF .

18

Published as a conference paper at ICLR 2024

We present the choice of T for a typical class of functions. We already assumed that
�
f i

are �-
Hölder-smooth functions (Definition 4. (Nakada & Imaizumi, 2020)) and the intrinsic dimension of
data is ⇤.

From our above theorem result from Theorem: 1 we say the following:

1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,Pi)q̂i(✓;w)d✓  C"2nk
+ C 0rnk +

C
00

N⇣

NX

i=1

⇠ink
(18)

Utilising Corollary 6 in (Nakada & Imaizumi, 2020) , the approximation error is upper-bounded as
follows

��f i
✓,w � f i

��
1  C0T

� �
⇤

where C0 > 0 is a constant related to s0,� and ⇤

Thus from the above definitions 2 and 3, we have the following

⇠in, ⇠
i
nk

 C0T
� 2�

⇤ , i = 1, . . . , N

Utilising the above upper bound in 18 and substituting T = C1n
⇤

2�+⇤ , we get

1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,Pi)q̂i(✓;w)d✓  C"2nk
+ C 0rnk +

C
00

N⇣

NX

i=1

C0T
� 2�

⇤

 Crnk log
2�(nk) + C 0rnk +

C
00

N⇣

NX

i=1

C0T
� 2�

⇤ * "2nk
= rnk log

2�(nk)

 C2n
� 2�

2�+⇤

k log2�
0
(nk)

⇥
substituting T in rnk

⇤

where �0 > � > 1, and C1, C2 > 0 are constants related to s0,�,⇤, L,M, ⇣ and nk.

Similar to Theorem 1.1 from (Bai et al., 2020) and Theorem 1 from (Zhang et al., 2022b) norm, we
can write the following

CF

N

NX

i=1

Z

⇥

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓,w)d✓


1

N

NX

i=1

Z

⇥
d2
�
P i
✓,w, P i

�
q̂i(✓;w)d✓

 C2n
� 2�

2�+⇤

k log2�
0
(nk).

Now, using the minimax lower bound under L2 norm in Theorem 8 of (Nakada & Imaizumi, 2020),
we see that for coreset regime the same formulation holds similar to our original setting as shown in
(Zhang et al., 2022b)

infn
kfi

✓,wk1
F

oN

i=1
{kfik1F}

N

i=1

CF

N

NX

i=1

Z

✓

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓;w)d✓ � C3n
� 2�

2�+⇤

k

where C3 > 0 is a constant.

Combining the above two equations, the convergence rate of the generalization error of the coreset
weighted objective is minimax optimal upto a logarithmic term for bounded functions {f i

✓,w}
N
i=1

and {f i
✓}

N
i=1.

19

Published as a conference paper at ICLR 2024

PROOF. OF THEOREM 3

Theorem 3. The lower bound (l.b.) incurred for the deviation for the weighted coreset

CORESET-PFEDBAYES (5) generalization error is always higher than the lower bound of that for

the original PFEDBAYES objective (1) with a delta difference (Error I - Error II) as O(n
� 2�

2�+⇤

k)
"

NX

i=1

Z

⇥

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂i(✓,w)d✓

| {z }
Coreset weighted objective Generalization Error (Error I)

#

l.b.

>

"
NX

i=1

Z

⇥

��f i
✓

�
Xi

�
� f i

�
Xi

���2
L2 q̂i(✓)d✓

| {z }
Vanilla objective Generalization Error (Error II)

#

l.b.

Proof. As we know nk < n hence C3n
� 2�

2�+⇤

k > C3n
� 2�

2�+⇤ (* C3 is a constant independent of n
or nk), which therefore means that inequality holds in the lower bound (l.b.) of the two expressions
(shown by the previous proposition 2).

"
NX

i=1

Z

✓

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓,w)d✓

#

l.b.

>

"
NX

i=1

Z

✓

��f i
✓

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓)d✓

#

l.b.

Let us denote �l.b
deviation as follows

�l.b
deviation =

"
NX

i=1

Z

✓

��f i
✓,w

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓,w)d✓

#

l.b.

�

"
NX

i=1

Z

✓

��f i
✓

�
Xi

�
� f i

�
Xi

���2
L2 q̂

i(✓)d✓

#

l.b.

And the �l.b.
deviation term is given by

✓
C3n

� 2�
2�+⇤

k � C3n
� 2�

2�+⇤

◆
⇡ O(n

� 2�
2�+⇤

k).

PROOF. OF THEOREM 4

Theorem 4. The lower bound incurred in the overall generalization error across all N clients of

CORESET-PFEDBAYES is always higher compared to that of the generalization error in the original

full data setup

"
1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,P
i)q̂i(✓;w)d✓

#

l.b.

�

"
1

N

NX

i=1

Z

⇥
d2(Pi

✓,P
i)q̂i(✓)d✓

#

l.b.

Proof. It is easy to show since from Theorem 3, we know the lower bounds for the individual terms
and also since n > nk holds, hence we can rewrite as follows:

1

N

NX

i=1

Z

⇥
d2(Pi

✓,w,Pi) ˆqi(✓,w)d✓ �
1

N

NX

i=1

Z

⇥
d2(Pi

✓,P
i) ˆqi(✓)d✓

� C3n
� 2�

2�+⇤

k � C3n
� 2�

2�+⇤

� 0

The implication of this proof states that the overall error incurred due to coreset weighted deviation
is always more than that of the original deviation which can be measured approximately in order of
nk, the coreset sample size.

Proposition 1. The gradient of the first term in Equation 7 i.e.

rwDKL(q̂i(✓;w)||q̂i(✓))

is given by the following expression

20

Published as a conference paper at ICLR 2024

Z

⇥
rw q̂i(✓;w)


log q̂i(✓;w) + 1� log q̂i(✓)

�
d✓

where

rw q̂i(✓;w) = q̂i(✓;w)
%i(✓i,m;w)g

0

m(w) + gm(w)rw
QT

k 6=m %i(✓i,k;w) and qi(✓;w) =
QT

m=1 %
i(✓i,m;w)

Proof.

rwDKL(q̂i(✓;w)||q̂i(✓))

= rwEq̂i(✓;w)


log q̂i(✓;w)� log q̂i(✓)

�

= rw

Z

⇥
q̂i(✓;w) log q̂i(✓;w)d✓ �

Z

⇥
q̂i(✓;w) log q̂i(✓)d✓

�

=

Z

⇥
rw

✓
q̂i(✓;w) log q̂i(✓;w)

◆
d✓ �

Z

⇥
rw

✓
q̂i(✓;w) log q̂i(✓)

◆
d✓

�

=

Z

⇥

✓
log ˆqi(✓;w)rw q̂i(✓;w) +rw q̂i(✓;w)

◆
d✓ �

Z

⇥
log q̂i(✓)rw q̂i(✓;w)d✓

�

=

Z

⇥
rw q̂i(✓;w)


log q̂i(✓;w) + 1� log q̂i(✓)

�
d✓

(19)

In order to compute the gradient rw q̂i(✓;w), the following objective can be utilized.

Let z⇤(✓) be the optimal variable solution to Equation (5).

rqi(✓)F
w
i (z⇤)

����
ˆqi(✓;w)

= 0

=) rqi(✓)

Z

⇥
� logP✓,w(Di)qi(✓)d✓

| {z }
First Part

����
ˆqi(✓;w)

+ ⇣rqi(✓)DKL(q
i(✓)||z⇤(✓))

| {z }
Second Part

����
ˆqi(✓;w)

= 0

For the first part,

rqi(✓)

Z

⇥
� logP✓,w(Di)qi(✓)d✓

����
ˆqi(✓;w)

=

Z

⇥
rqi(✓)


� logP✓,w(Di)qi(✓)

�
d✓

����
ˆqi(✓;w)

=

Z

⇥


�qi(✓)rqi(✓) logP✓,w(Di) + logP✓,w(Di)

�
d✓

| {z }
Modified First part

����
ˆqi(✓;w)

(20)

By the assumption that the distribution qi(✓) satisfies mean-field decomposition i.e.

qi(✓) =
TY

m=1

N (✓i,m,�2
n)

=
TY

m=1

%i(✓i,m)

(21)

21

Published as a conference paper at ICLR 2024

Let us denote Mw = P✓,w(Di).

Therefore, we extract out the following portion from (20): rqi(✓) logP✓,w(Di)

rqi(✓) logP✓,w(Di) = rqi(✓) logMw (22)

We now consider the individual partial differentials here

@

@%i(✓i,m)
logMw =

1

Mw

@Mw

@w

@w

@%i(✓i,m)
(23)

Thus, we can rewrite (20) from the perspective of individual components of qi(✓) as follows:

Z

⇥


�qi(✓)

1

Mw

@Mw

@w

@w

@%i(✓i,m)
+ logP✓,w(Di)

�
d✓

����
ˆqi(✓;w)

=

Z

⇥


�qi(✓)

1

P✓,w(Di)

@P✓,w(Di)

@w

@w

@%i(✓i,m)
+ logP✓,w(Di)

�
d✓

| {z }
Modified First part

����
ˆqi(✓;w)

(24)

Now, we can rewrite the second part as follows:

⇣rqi(✓)DKL(q
i(✓)||z⇤(✓))

����
ˆqi(✓;w)

= ⇣rqi(✓)

Z

⇥
qi(✓) log qi(✓)� qi(✓) log(z⇤(✓))d✓

�����
ˆqi(✓;w)

= ⇣

Z

⇥
rqi(✓)


qi(✓) log qi(✓)� qi(✓) log(z⇤(✓))

�
d✓

����
ˆqi(✓;w)

= ⇣

Z

⇥

✓
log qi(✓) + 1� log(z⇤(✓))

◆
d✓

| {z }
Modified Second Part

����
ˆqi(✓;w)

(25)

Combining both the first and second part we get

Z

⇥


� ˆqi(✓;w)

1

P✓,w(Di)

@P✓,w(Di)

@w

@w

@%i(✓i,m)
+ logP✓,w(Di)

�
d✓

+⇣

Z

⇥

✓
log ˆqi(✓;w) + 1� log(z⇤(✓))

◆
d✓ = 0

=) ⇣

Z

⇥

✓
log ˆqi(✓;w) + 1� log(z⇤(✓)) + logP✓,w(Di)

◆
d✓

=

Z

⇥

✓
ˆqi(✓;w)

1

P✓,w(Di)

@P✓,w(Di)

@w

@w

@%i(✓i,m)

◆
d✓

(26)

Let us assume without loss of generality that each of the individual components of the optimal
coreset weighted client distribution ˆqi(✓;w) can be denoted as some function g(w). More, specifi-
cally,

22

Published as a conference paper at ICLR 2024

%i(✓i,j ;w) = gj(w)

rw%
i(✓i,j ;w) = g

0

j(w)
(27)

Thus we can reuse the above expression to simplify (26)

g
0

m(w) =

R
⇥

✓
ˆqi(✓;w) 1

P✓,w(Di)
@P✓,w(Di)

@w

◆
d✓

⇣
R
⇥

✓
log ˆqi(✓;w) + 1� log(z⇤(✓)) + logP✓,w(Di)

◆
d✓

(28)

We now go back to utilizing the above derived expression in our main Eq. (19) to replace
rw

ˆqi(✓;w)

rw
ˆqi(✓;w)

= rw

TY

k=1

%i(✓i,k;w)

= rw

TY

k=1

gk(w)

=
TY

k 6=m

gk(w)rwgm(w) + gm(w)rw

TY

k 6=m

gk(w)

=
TY

k 6=m

gk(w)g
0

m(w) + gm(w)rw

TY

k 6=m

gk(w)

=
ˆqi(✓;w)

%i(✓i,m;w)
g

0

m(w) + gm(w)rw

TY

k 6=m

%i(✓i,k;w)

(29)

Thus, we now have a closed form solution to computing the gradient of the KL divergence
D(ˆqi(✓;w)|| ˆqi(✓)) w.r.t the coreset weight parameters w.
Proposition 2. The gradient of the second term in Equation 8 w.r.t w i.e.

rw||P✓(Di)� P✓,w(Di)||2⇡̂,2

is given by the following expression

�2PT
�

✓
P � P�w

◆

where P =
Pn

j=1 ĝj and P� = [ĝ1, ĝ2, . . . , ĝn]

Proof. First, we reformulate the given expression in terms

��P✓(Di)� P✓,w(Di)
��2
⇡̂,2

= E✓⇠⇡̂[(P✓(Di)� P✓,w(Di))2]

23

Published as a conference paper at ICLR 2024

We define gj = P✓(Di
j)� E✓⇠⇡̂P✓(Di

j)

As a result the equivalent optimization problem becomes minimizing
���
Pn

j=1 gj �
Pn

j=1 wjgj
���
2

⇡̂,2

Further, using Monte Carlo approximation, given S samples {✓j}Sj=1, ✓j ⇠ ⇡̂, the L2(⇡̂)-norm can
be approximated as follows

������

nX

j=1

ĝj �
nX

j=1

wj ĝj

������

2

2

where

ĝj = 1p
S

⇥
P✓1(Di

j) �
¯

P(Di
j),P✓2(Di

j) �
¯

P(Di
j), . . . ,P✓S (Di

j) �
¯

P(Di
j)
⇤

and ¯
P(Di

j) =
1
S

PS
k=1 P✓k(Di

j)

We can write the above problem in matrix notation as follows

f(w) := kP � P�wk
2
2

where P =
Pn

j=1 ĝj and P� = [ĝ1, ĝ2, . . . , ĝn]

Thus we have the gradient w.r.t w as follows:

rwf(w) = �2PT
�

✓
P � P�w

◆
(30)

10 EXPERIMENTS

All the experiments have been done using the following configuration: Nvidia RTX A4000(16GB)
and Apple M2 Pro 10 cores and 16GB memory.

10.1 PROPOSAL FOR A MODIFIED OBJECTIVE IN EQUATION 8

{wi
⇤
} , argmin

w
DKL(q̂i(✓,w)||q̂i(✓)) +

��P✓(Di)� P✓,wi(Di)
��2
⇡̂,2

||wi||0  k (31)

We discuss here the utility of our proposed modified client side objective function via an ablation
study where we want to gauge the inclusion of the first term in our objective function as just inlcud-
ing the coreset loss.

Through experimental analysis, we find that just including the coreset loss optimization results in
early saturation, possibly hinting towards getting stuck in local minima, but however inclusion the
KL Divergence loss and forcing the coreset weighted local distribution of the client and the normal
local distribution of the client to be similar leads to better stability in the training loss and better
convergence.

10.2 COMMUNICATION COMPLEXITY ANALYSIS FOR DIFFERENT CORESET SIZES

Here we showcase an analysis for different coreset sample size for different datasets and how it af-
fects on the final accuracy and the total number of communication rounds in the Federated Learning
setting. This showcases cost-effectiveness of our approach where by using only a small number of
communication rounds our proposed approach is able to attain near-optimal performance as per the
table below. In addition Fig: 5 substantiates the cost-effectiveness of our approach.

24

Published as a conference paper at ICLR 2024

Figure 4: Ablation Study on using KL divergence between two local distribution w.r.t just using
coreset weights

Table 3: Comparative results of test accuracies across different coreset sample complexity

Method (Percentage = sampling fraction) MNIST FashionMNIST CIFAR
Test Accuracy Communication Rounds Test Accuracy Communication Rounds Test Accuracy Communication Rounds

PFEDBAYES (Full) 98.79 194 93.01 215 83.46 266
RANDOMSUBSET (50%) 80.2 135 87.12 172 48.31 183

CORESET-PFEDBAYES (k = 50%) 92.48 98 89.55 93 69.66 112
CORESET-PFEDBAYES (k = 30%) 90.17 84 88.16 72 59.12 70
CORESET-PFEDBAYES (k = 15%) 88.75 62 85.15 38 55.66 32
CORESET-PFEDBAYES (k = 10%) 85.43 32 82.64 24 48.25 16

(a) We report test accuracies across different sample complexity for datasets like MNIST, CIFAR, Fashion-
MNIST. Full indicates training on full dataset and 50% is on using half the data size after randomly
sampling 50% of the training set.

Figure 5: Communication Rounds across Different Sample Size - Convergence analysis

10.3 COMPUTING LIKELIHOOD OBJECTIVE USING AIHT

Here, we showcase how we utilised the Accelerated Iterative Hard Thresholding algorithm (A-IHT)
for computing the likelihood.

10.4 MEDICAL DATASET EXPERIMENT DETAILS

Owing to the rise of Federated Learning based approaches in the medical setting due to privacy-
preserving features, we chose to perform our experiments on 3 medical datasets in addition to our
main experiments.

For our Federated Learning setup, we considered the setting where we have only 2 clients and one
global server.

For each of the 3 datasets in the medical dataset setting, we consider each client has X-ray images
of symptomatic type A/ type B and Normal images . We perform a classification task at each client.

10.5 BASLINE COMPARISONS: DIVERSITY BASED SUBMODULAR OPTIMIZATION
FUNCTIONS

For our second set of experiments, we chose different diversity based submodular optimization
functions, specifically the following functions whose definition have been provided here

25

Published as a conference paper at ICLR 2024

Definition 4. Log-determinant Function is a diversity-based submodular function. It is non-

monotone in nature. Let L denote a positive semidefinite kernel matrix and LS denote the subset of

rows and columns indexed by set S. Log-determinant function f is specified as:

f(S) = logdet(LS) (32)

The log-det function models diversity and is closely related to a determinantal point process.
Definition 5. Disparity Sum Function characterizes diversity by considering the sum of distances

between every pair of points in a subset S. For any two points i, j 2 S, let dij denote the distance

between them.

f(S) =
X

i,j2S

dij (33)

The aim is to select a subset S such that f(S) is maximized. Disparity sum is not a submodular

function.

Definition 6. Disparity Min Function characterizes diversity by considering the minimum distance

between any two non-similar points in a subset S.

f(S) = min
i,j2S,i 6=j

dij (34)

The aim is to select a subset S such that f(S) is maximized. Disparity min is not a submodular

function.

For the above experiments we utilise the Submodlib library
3 for our implementation Kaushal et al.

(2022).

10.6 EXPERIMENT CONFIGURATION

10.6.1 MNIST EXPERIMENT CONFIGURATION

For both CORESET-PFEDBAYES and corresponding baseline PFEDBAYES, we use a fully con-
nected DNN model with 3 layers [784,100,10] on MNIST dataset.

Learning rate hyperparameters: As per Zhang et al. (2022b)’s proposal i.e. PFEDBAYES the
learning rates for personalized (client model) and global model (⌘1, ⌘2) are set to 0.001 since these
choices result in the best setting for PFEDBAYES. To compare against the stable best hyperparame-
ters of PFEDBAYES, we also fix the same for our proposal CORESET-PFEDBAYES.

Personalization Hyperparameter: The ⇣ parameter adjusts the degree of personalization in the
case of clients. Again for a fair comparison against our baseline PFEDBAYES, we fix the ⇣ parameter
for our proposal CORESET-PFEDBAYES to the best setting given by the baseline. In Zhang et al.
(2022b) the authors tune ⇣ 2 {0.5, 1, 5, 10, 20} and find that ⇣ = 10 results in the best setting. We,
therefore, fix the personalization parameter ⇣ = 10.

10.6.2 MEDICAL DATASETS EXPERIMENT CONFIGURATION

We discuss here the detailed configuration and models used for our further experiments.

Here we specifically consider the setting where we only have 2 clients and a single global server.
Each of the 2 clients are assigned with data from only 2 classes along with a shared class for classi-
fication purpose.

For example, client 1 has class A and Normal (shared class) images while client 2 has class B and
the remaining Normal images.

COVID-19 Radiography Database: Client 1 has COVID-19 x-ray images while client 2 has lung
opacity x-ray images. Normal X-ray images are shared across both clients. Fig. 6 depicts the dataset
distribution. For random subset selection, we randomly choose � = 0.1 fraction of samples on the
client side. For diversity-based subset selection, we first convert each of the 299⇥299 images into
a [512⇥1] vector embeddings using a ResNet architecture. Diversity functions are then applied to

3 Submodlib decile library

26

Published as a conference paper at ICLR 2024

Figure 6: Data distribution for Medical Datasets

these embeddings to retrieve a final subset of diverse and representative embeddings. Eventually,
we decode back to the original space using the chosen representative indices.

APTOS 2019 Blindness Detection: Unlike the COVID-19 radiography dataset, the APTOS dataset
has 3 RGB channels and a higher resolution. We rescale the dimension of images to 299x299 for
maintaining uniformity across all datasets. The same model configuration is followed as in the
COVID-19 radiography dataset.

OCTMNIST: The OCTMnist dataset is a large dataset with single-channel images of a higher res-
olution. We have resized the images to 299⇥299 resolution for our experiments. The Normal class
has above 50,000 train images itself, with the other two classes having close to 10,000 train images.
Due to this class imbalance, we have randomly selected 8,000 images from each class for our exper-
iments. Post which we again use a ResNet architecture to reduce the feature dimensions, which we
then feed into the CORESET-PFEDBAYES pipeline.

Baseline : Independent Learning In this scenario, each of the 2 clients solve the classification
problem independently without any involvement of a server as opposed to federated learning. Thus
there is no sharing of model weights to a common server as compared to the federated setting.

Baseline : Independent Learning on other client’s test data In this scenario, similar to the inde-
pendent learning setup, we report the metrics for a particular client not only on its own test data but
also on the other client’s test data by training on the individual client’s own training data.

For all the experiments for the medical dataset analysis across all the baselines, we report the class-
wise accuracy in Table 2.

Definition 7. Submodular Functions are set functions which exhibit diminishing returns. Let V
denote the ground-set of n data points {x1, x2, . . . xn} where xi 2 Rd

. More formally, V =
{xi}

n
i=1. Let A ✓ B where A,B ⇢ V and v 2 V. A submodular function f : 2V 7! R satisfies

the diminishing returns property as follows:

f(A [v)� f(A) � f(B [v)� f(B) (35)

10.7 ALGORITHM FOR ACCELERATED IHT

We first present the accelerated IHT algorithm as proposed in Zhang et al. (2021) in Algorithm 10.7.

27

Published as a conference paper at ICLR 2024

Algorithm 2 Accelerated IHT (A-IHT) for Bayesian Coreset Optimization
Input Objective f(w) = ky � �wk22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp (zt)
4: S = supp

�
⇧Nk\Z (rf (zt))

�
[Z where |S|  3k

5: ert = rf (zt)|S

6: µt = argminµ f
⇣
zt � µert

⌘
=

kr̃tk
2

2

2k�r̃tk
2

2

7: wt+1 = ⇧Ck\Rn
+
(zt � µtrf (zt))

8: ⌧t+1 = argmin⌧ f (wt+1 + ⌧ (wt+1 � wt))

= hy��wt+1,�(wt+1�wt)i
2k�(wt+1�wt)k2

2

9: zt+1 = wt+1 + ⌧t+1 (wt+1 � wt)
10: t = t+ 1
11: until Stop criteria met
12: return wt

The algorithm Accelerated IHT above is proposed by Zhang et al. (2021). We share a high level
view of the algorithm include some of the important features.

Step Size Selection The authors propose that given the quadratic objective of the coreset optimiza-

tion, they perform exact line search to obtain the best step size per iteration. kr̃tk
2

2

2k�r̃tk
2

2

Momentum The authors propose adaptive momentum acceleration as is evident from line 8 of the
pseudocode. At the end during the next update, Nesterov Accelerated Gradient is applied as shown
in line 9.

11 CODE

We share our code on GitHub at Link

28

https://github.com/prateekiiest/coresetFedML

	Proofs
	Experiments
	Proposal for a modified objective in Equation 8
	Communication Complexity Analysis For Different Coreset Sizes
	Computing likelihood objective using AIHT
	Medical Dataset experiment details
	Basline Comparisons: Diversity based Submodular Optimization Functions
	Experiment Configuration
	MNIST experiment configuration
	Medical Datasets experiment configuration

	Algorithm for Accelerated IHT

	Code

