
A Policy Gradient for Sub-task Tree

A.1 Recursive evolution

Formally, assume an initial pair (s0, g) sampled, which defined the root of the tree. Next, a policy
π(sT/2|s0, g) is used to predict the sub-goal sT/2 segmenting (s0, g) into (s0, sT/2) and (sT/2, g).
Recursively each segment is again partitioned by π. Then results in Eq. (7):

Pr
πp

(g0:T |g0 = s0, gT = g) ,

Pr
πp

(
g0:T2

∣∣∣g0, gT
2

)
Pr
πp

(
gT

2 :T

∣∣∣gT
2
, g
)
πp

(
gT

2

∣∣∣ s0, g) .
For example consider a sub-task tree with K= 3, given a (s0, g) pair, the sub-tasks will be s1, ..., s7.
Then, we have:

k=1, the trajectory of planned sub-goals.
s10 = s0,

g11 = πp(s0, g|s0, g),

g12 = g.

Then, the whole planned sub-goals trajectory in layer k= 1, τk=1 =
{
s0, g

1
1 , g

1
2 = g

}
.

k=2, in this case, t ∈ [1, 22 = 4].
s20 = s10 = s0, g21 = πp(s0, g

1
1 |s0, g),

g22 = g11 , g23 = πp(g
1
1 , g

1
2 |s0, g),

g24 = g.

Then, the whole planned sub-goals trajectory in layer k= 2, τk=2 =
{
s0, g

2
1 , g

2
2 = g11 , g

2
3 , g

2
4 = g

}
.

k=3, in this case, t ∈ [1, 23 = 8].
s30 = s20 = s0, g31 = πp(s0, g

2
1 |s0, g), g32 = g21 ,

g33 = πp(g
2
1 , g

2
2 |s0, g), g34 = g22 , g35 = πp(g

2
2 , g

2
3 |s0, g),

g36 = g23 , g37 = πp(g
2
3 , g

2
4 |s0, g), g38 = g.

Then, the whole planned sub-goals trajectory in layer k= 3, τk=3 ={
s0, g

3
1 , g

3
2 = g12 , g

3
3 , g

3
4 = g22 , g

3
5 , g

3
6 = g23 , g

3
7 , g

3
8 = g

}
.

A.2 Proof of Eq. (10)

Proposition 1. Assuming a planning policy πp with parameters θ, we now prove a policy gradient
for computing∇Jπp , and K = kmax, T = 2K . Then the cost of trajectory can be written as:

∇ logPr[g0:T |g0 = s0, gT = g] =

K∑
k=1

2k∑
t=1

∇ log πp

(
gk(2t+1)·2K−k

∣∣∣ gkt·2K−k+1 , g
k
(t+1)·2K−k+1

)
.

Proof. First, we express Pr [g0:T ] as,
Pr[g0:T |g0 = s0, gT = g] = ρ(gt, gt+1)·

K∏
k=1

2k∏
t=1

πp

(
gk(2t+1)·2K−k

∣∣∣ gkt·2K−k+1 , g
k
(t+1)·2K−k+1

)
.

14



Now, by taking log we have,
logPr[g0:T |g0 = s0, gT = g] = log ρ(gt, gt+1)+

K∑
k=1

2k∑
t=1

log πp

(
gk(2t+1)·2K−k

∣∣∣ gkt·2K−k+1 , g
k
(t+1)·2K−k+1

)
.

The proposition 1 above shows that the gradient of a trajectory does not depend on the initial
distribution. This allows us to derive a policy gradient proposition:

Proposition 2. Let planning policy πθ be a stochastic policy, and T = 2k. Then,

∇Jπp = Eg0:T∼πp
[
c(g0:T ) · ∇ log Pr

πp
(g0:T |s0, g)

]
.

To obtain∇Jπp which is parameterized by θ we write the Eq. (10) as ax explicit expectation and use
∇xf(x) = f(x) · ∇xf(x).

∇θJπp =
∑
τ

c(τ) · ∇θ Pr
ρ(πp)

[τ ]

=
∑
τ

c(τ) · Prρ(πp)[τ ] · ∇θ log Prρ(πp)[τ ]

= Eρ(πp) [c(τ)∇θ log Pr[τ ]]

The policy gradient theorem allows estimating∇J(πθ) from on policy data collected using πp.

B Maze Environment Details

We design three benchmark environments in our experiment (as shown in Figure 5). For the first
three. We generated the maze maps with the recursive backtracker algorithm using the following
implementation:RLAgent. Three environments differ in the choice of robots:

Workspace planning (2d): The robot is abstracted with a point mass moving in the plane. Without
higher dimensions, this problem reduces to planning in the workspace.

Rigid body navigation (3d): A rigid body robot, abstracted as a thin rectangle, is used here. This
robot can rotate and move freely without any constraints in the free space.

3-link snake (5d): The robot is a 5 DoF snake with two joints.To prevent links from folding, we
restrict the angles to the range of [−π/4, π/4]

(a) (b) (c)

Figure 5: Three different agents in Maze environment. (a) 2d workspace, (b) Rigid body, (c) 3-link
snake. The deep brown agent shows when the agent is around the initial state. The light brown agent
shows the actual RL agent navigation trajectory. Yellow point and blue point represent for the initial
state s0 and goal state g respectively.

C Hyperparameter Settings

We list the hyerparameters of SAC in Maze environment and continuous control environment in
table 1 and table 2 respectively.

15

https://github.com/lileee/gated-path-planning-networks/blob/master/generate_dataset.py


Table 1: Hyperparameter of SAC in Maze environments

Parameter Value

optimizer Adam
Timesteps 1.8×106

learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 200

nonlinearity ReLU
target smoothing coefficient (τ ) 0.005

target update interval 1
gradient steps 1

Table 2: Hyperparameter of SAC in continuous control environments

Parameter Value

optimizer Adam
Timesteps 3×106

learning rate 5 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256

nonlinearity ReLU
target smoothing coefficient (τ ) 0.005

target update interval 1
gradient steps 1

16


