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Figure 1: Virtual try-on typically deforms clothing to fit the person’s body, which is then combined with the person image to
obtain try-on results. Compared with existing TPS-based methods (e.g., VITON-HD [5]) and appearance flow based methods
(e.g., HR-VTON [28]), our method excels in capturing the clothing shape conforming to the person’s body.

Abstract
Image-based virtual try-on aims to seamlessly fit in-shop clothing
to a person image while maintaining pose consistency. Existing
methods commonly employ the thin plate spline (TPS) transforma-
tion or appearance flow to deform in-shop clothing for aligning
with the person’s body. Despite their promising performance, these
methods often lack precise control over fine details, leading to in-
consistencies in shape between clothing and the person’s body as
well as distortions in exposed limb regions. To tackle these chal-
lenges, we propose a novel shape-guided clothing warping method
for virtual try-on, dubbed SCW-VTON, which incorporates global
shape constraints and additional limb textures to enhance the real-
ism and consistency of the warped clothing and try-on results. To
integrate global shape constraints for clothing warping, we devise
a dual-path clothing warping module comprising a shape path and
a flow path. The former path captures the clothing shape aligned
with the person’s body, while the latter path leverages the mapping
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between the pre- and post-deformation of the clothing shape to
guide the estimation of appearance flow. Furthermore, to alleviate
distortions in limb regions of try-on results, we integrate detailed
limb guidance by developing a limb reconstruction network based
on masked image modeling. Through the utilization of SCW-VTON,
we are able to generate try-on results with enhanced clothing shape
consistency and precise control over details. Extensive experiments
demonstrate the superiority of our approach over state-of-the-art
methods both qualitatively and quantitatively.
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1 Introduction
In recent years, the e-commerce industry has experienced rapid de-
velopment, leading to an increasing number of consumers purchas-
ing clothing online. To provide online customers with a shopping
experience that rivals in-store try-on, significant attention has been
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devoted to exploring the virtual try-on technology. Virtual try-on
can be broadly categorized into 3D-based [12, 34, 36, 42, 43, 47]
and image-based methods [7–10, 14, 15, 18, 22, 24, 30, 45, 48–51,
54, 55, 57, 59, 60], with the latter garnering more interest due to its
lightweight data and wider applicability. This study will specifically
delve into image-based virtual try-on.

Among the key processing steps in image-based virtual try-on,
clothing warping stands out as particularly challenging. Its objec-
tive is to deform the target clothing to align with the person’s
body, which is vital for maintaining consistency between the cloth-
ing shape and the person’s posture. Early methods [15, 33, 45, 55]
adopt the thin plate spline (TPS) transformation [3] to achieve
this deformation. However, these TPS-based methods, constrained
by limited degrees of freedom, prove inadequate when significant
geometric deformations are needed [6, 14], such as the misaligned
clothing generated by VITON-HD [5] in Figure 1. To overcome
this limitation, recent studies [1, 6, 14, 31, 53] introduce appearance
flow [61] as a solution, which provides dense pixel-level predictions
for deforming from the source clothing to the target one, thereby
enhancing the accuracy of the resulting warped clothing. While
these methods have demonstrated promising performance in vir-
tual try-on, a notable limitation remains in their current inability
to exert precise control over the details of the obtained warped
clothing. Firstly, the lack of the appropriate constraint on shape
during pixel-level prediction may lead to inconsistencies in the
shape of the warped clothing compared to the person’s body. For
instance, as shown in the HR-VTON [28] column of Figure 1, the
generated clothing edges appear torn and inconsistent. Secondly,
distortions may occur partially in the try-on result, especially in
the limb regions not covered by clothing. This is attributed to the
absence of detailed information guidance for these parts, as existing
methods often use the person image with masked clothing and limb
regions as the input for try-on synthesis.

In this study, we direct our attention towards addressing these
underexplored challenges. We present SCW-VTON, a shape-guided
clothing warping method for virtual try-on, which incorporates
global shape constraints and additional limb texture references to
enhance the realism of generated warped clothing and try-on re-
sults. Initially, we leverage global shape constraints to facilitate
the clothing warping phase, alleviating discrepancies between the
warped clothing shape and the person’s body.We design a dual-path
clothing warping module comprising a shape path and a flow path.
The shape path first predicts the shape of the target clothing, facili-
tating the subsequent exploration of the mapping between the pre-
and post-deformation clothing shapes using a set of shape-guided
cross-attention blocks. The acquired mapping is then integrated
into a flow path as global shape constraints to steer the estimation
of appearance flow. This flow is subsequently applied to in-shop
clothing to create the target warped clothing. It is worth mention-
ing that introducing additional global shape constraints frees our
method from reliance on the original input shape, which implies
that our method is also capable of transferring textures from a
shapeless texture map to the person image while preserving their
distribution. Furthermore, we employ a co-training strategy for the
two paths during training, which positively affects the weight up-
date of the flow estimation model and further enhances the stability

and accuracy of appearance flow. In the subsequent process of try-
on synthesis, to alleviate distortions in limb regions, we develop an
additional limb reconstruction network based on the masked image
modeling method. Specifically, we first derive a limb map from
the source person image. Then, we employ an autoencoder to take
the masked partial limb component as input to learn latent limb
representations, from which we reconstruct realistic limb textures
at specific locations. Through the combination of shape-guided
appearance flow and reconstructed limb textures, our approach can
ultimately produce try-on results with enhanced clothing shape
consistency and precise control over details.

The contributions of this paper are summarized as follows:
• We introduce a shape-guided clothing warping method for
virtual try-on that incorporates global shape constraints on
clothing deformation, resulting in realistic warped clothing
that conforms accurately to the person’s body.

• We design a limb reconstruction network to provide precise
guidance on generating limb regions of the try-on result, ef-
fectively addressing issues such as performance degradation
and distortions during the try-on synthesis process.

• Extensive experiments demonstrate the superior performance
of our proposed SCW-VTON compared to existing state-of-
the-art methods for virtual try-on.

2 Related Work
2.1 Appearance Flow
Appearance flow is applied to predict a 2D vector field and warp
the source image to the target based on the similarity in appear-
ance, which is proposed by Zhou et al. [61] to solve the problem
of novel view synthesis. In recent years, appearance flow has been
widely applied in various fields of computer vision. In image in-
painting tasks [39, 52], appearance flow is used to propagate pixels
from source to missing regions, enhancing realism in generated
contents. Additionally, appearance flow also enables human pose
transfer [4, 29, 38, 58], synthesizing novel poses by warping the
feature representations of the human body. Besides, virtual try-
on has attracted widespread attention in recent years and many
methods [1, 10, 14, 16] introduce the appearance flow to deform the
in-shop clothing to achieve the alignment with the person’s body.

2.2 Image-based Virtual Try-on
Clothing Warping. Clothing Warping is typically a key process-
ing step of most image-based virtual try-on methods. Early meth-
ods [15, 33, 45, 55] primarily achieve this through thin-plate spline
(TPS) transformation. However, TPS-based methods are unable
to accurately handle large geometric deformation due to the lim-
ited degrees of freedom. Therefore, ClothFlow [14] proposes an
appearance flow based method to perform clothing warping with
pixel-level displacements. Then, Zflow [6] adopts gated appearance
flow to further stabilize the deformation. SAL-VTON [53] links the
clothing with the person’s body with semantically associated land-
marks and proposes the local flow to alleviate the misalignment.
However, considering the potential drastic deformation caused by
appearance flow, we introduce extra global shape constraints based
on a cross-attention mechanism, which warrants a more stable flow
and makes the warped clothing match a consistent shape.
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Figure 2: The overview of SCW-VTON. (a) Warped clothing 𝐶𝑤 is produced through a dual-path architecture, where the
cross-attention features 𝐹𝑎𝑡𝑡 are created as global shape constraints to assist in estimating appearance flow. (b) Based on a
semantic-replacement strategy, a target semantic layout 𝑆𝑡 that describes the person wearing target clothing is predicted. (c) A
pre-trained autoencoder produces the reconstructed limb map 𝐿𝑟 from latent limb representations 𝑟 , which is then combined
with the occluded person image 𝐼𝑜𝑐𝑐 and warped clothing 𝐶𝑤 to produce the final try-on result 𝐼𝑡𝑟𝑦 with a diffusion model.

Try-on Synthesis. Another important step is try-on synthesis,
which refers to synthesizing the target clothing and the person
image to produce the try-on result. Benefiting from the powerful
generation capability of the diffusion model [20, 40], some existing
methods [2, 11, 26, 35, 62] introduce it as the final component of try-
on synthesis. DCI-VTON [11] treats virtual try-on as an inpainting
task and incorporates the diffusion model to refine a coarse result.
LaDI-VTON [35] employs textual inversion technique in virtual
try-on and proposes EMASC modules to enhance synthesis quality.
StableVITON [26] proposes a zero cross-attention block used in the
pre-trained diffusion decoder to learn the semantic correspondence
between the clothing and the person for achieving better detail
preservation. However, most methods require the synthesis net-
work to reconstruct limb textures in the absence of corresponding
reference cues from the person image, leading to the degradation
of performance and distortions in try-on results. We attempt to
alleviate this problem by creating an additional limb reconstruction
network based on masked image modeling.

3 Proposed Method
As shown in Figure 2, SCW-VTON consists of three modules: 1)
a dual-path clothing warping module, 2) a semantic-replacement

layout estimation module, and 3) a limb-weighted try-on synthe-
sis module. The dual-path clothing warping module produces the
warped clothing 𝐶𝑤 and the warped clothing mask𝑀𝑤 while the
semantic-replacement layout estimation module generates the tar-
get semantic layout 𝑆𝑡 . Based on these acquired results, the limb-
weighted try-on synthesis module ultimately generates the try-on
result 𝐼𝑡𝑟𝑦 through a diffusion model.

3.1 Dual-path Clothing Warping
Figure 2 (a) shows the schematic of the dual-path clothing warping
module, which can be divided into a shape path, shape-guided
cross-attention blocks, and a flow path. We begin by introducing
the shape characteristics, which will be used in the shape path and
shape-guided cross-attention blocks.
Shape Characteristics. The first consideration is how to obtain
the shape characteristics of clothing pre- and post-deformation, as
this is essential for constructing the mapping between them. In
this section, we design a color normalization strategy to obtain the
shape characteristics of clothing before deformation firstly, which
explicitly normalizes each color channel of in-shop clothing 𝐶 to
discard its raw color while keeping the overall gradient difference.
Specifically, as shown in Figure 3, we first calculate the average
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Figure 3: Shape-guided cross-attention blocks of SCW-VTON.

color value 𝜉𝑘 for each channel 𝑘 of in-shop clothing 𝐶 . Then we
subtract 𝜉𝑘 from each pixel value within the clothing regions of 𝐶 .
Finally, we add in-shop clothing mask 𝑀 to the subtracted result
and get the normalized clothing 𝐶 , which can reflect the shape
characteristics of in-shop clothing more intuitively while excluding
interfering information. The above process can be expressed as:

𝜉𝑘 =

∑𝐻𝐶

𝑖=0
∑𝑊𝐶

𝑗=0 (𝐶
𝑘,𝑖, 𝑗 ⊙ 𝑀𝑖, 𝑗 )∑𝐻𝐶

𝑖=0
∑𝑊𝐶

𝑗=0𝑀
𝑖, 𝑗

, (1)

𝐶𝑘 = T (𝐶𝑘 − 𝜉𝑘 +𝑀), (2)
where ⊙ is the element-wise multiplication, 𝑖 and 𝑗 is the position
of a sample pixel, 𝐻𝐶 and𝑊𝐶 are the height and width of𝐶 , respec-
tively. T (·) is a truncated function ensuring the output value falls
within the range of zero and one.
Shape Path. The subsequent goal is to obtain the shape character-
istics of clothing after deformation, which are then used to match
the normalized clothing 𝐶 . We first adopt a CNN-based encoder
to extract human pose features 𝐹𝑝𝑜𝑠𝑒 from the skeleton map 𝑃𝑠
and dense pose estimation 𝑃𝑑 , where 𝑃𝑠 is obtained by connecting
9 key points of the person’s body and 𝑃𝑑 is from [13]. Although
𝐹𝑝𝑜𝑠𝑒 already contains basic information that matches the person’s
body, it is also essential to ensure that the design and style of the
generated clothing are consistent with the in-shop clothing 𝐶 . In-
spired by [23], we adopt a multilayer perceptron (MLP) to embed
in-shop clothing 𝐶 into the latent space as a global style code 𝑠 ,
which is used to calculate a set of affine transformation parameters
in style blocks to adjust the pose features 𝐹𝑝𝑜𝑠𝑒 and get the stylized
shared features 𝐹𝑠𝑡𝑦𝑙𝑒 for the shape decoder and the subsequent
flow decoder. This process can be formulated as:

𝐹
𝑘,𝑖, 𝑗

𝑠𝑡𝑦𝑙𝑒
= 𝛾𝑘,𝑖, 𝑗 (𝑠)

𝐹
𝑘,𝑖, 𝑗
𝑝𝑜𝑠𝑒 − 𝜇𝑘

𝜎𝑘
+ 𝛿𝑘,𝑖, 𝑗 (𝑠), (3)

where 𝐹𝑘,𝑖, 𝑗
𝑠𝑡𝑦𝑙𝑒

is a particular sample of 𝐹𝑠𝑡𝑦𝑙𝑒 at location (𝑘, 𝑖, 𝑗), 𝛾 (·)
and 𝛿 (·) are the convolution operations that convert the input into
affine parameters, 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation
of pose features 𝐹𝑘𝑝𝑜𝑠𝑒 , respectively. 𝜇𝑘 is calculated as:

𝜇𝑘 =
1

𝐻𝐹𝑊𝐹

𝐻𝐹∑︁
𝑖=0

𝑊𝐹∑︁
𝑗=0

𝐹
𝑘,𝑖, 𝑗
𝑝𝑜𝑠𝑒 , (4)
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Figure 4: Compared to the binarymask𝑀𝑤 , our shape-guided
clothing map 𝐶𝑠 contains detailed shape characteristics of
clothing such as the basic appearance, shadows, andwrinkles.

where 𝐻𝐹 and𝑊𝐹 are the height and width of 𝐹𝑝𝑜𝑠𝑒 , respectively.
𝜎𝑘 is calculated as:

𝜎𝑘 =

√√√√
1

𝐻𝐹𝑊𝐹

𝐻𝐹∑︁
𝑖=0

𝑊𝐹∑︁
𝑗=0

(𝐹𝑘,𝑖, 𝑗𝑝𝑜𝑠𝑒 − 𝜇𝑘 )2 . (5)

Then, we adopt a shape decoder to up-sample the shared features
𝐹𝑠𝑡𝑦𝑙𝑒 and generate a shape-guided clothing map 𝐶𝑠 , where we
employ our color normalization strategy again to get the ground
truth of 𝐶𝑠 in the training phase (please refer to Section 3.4 for
more details). Note that 𝐶𝑠 is not the binary mask of the warped
clothing, as shown in Figure 4, compared to the binary mask𝑀𝑤

obtained by directly applying flow to the in-shop clothing mask
𝑀 , 𝐶𝑠 encompasses detailed shape characteristics of clothing after
deformation such as the basic appearance, shadows, and wrinkles.
Shape-guided Cross-attention Blocks. After obtaining the nor-
malized clothing 𝐶 and the shape-guided clothing map 𝐶𝑠 that
respectively reflect the shape characteristics of clothing before and
after deformation, we adopt cross-attention blocks to explore the
mapping between them, which is subsequently used to constrain
the estimation of appearance flow. As shown in Figure 3, 𝐶𝑠 and 𝐶
are fed into three separate encoders to get 𝑄 ,𝐾 ,𝑉 , respectively:

𝑄 = 𝐹𝑙𝑎(𝐸𝑞 (𝐶𝑠 )), 𝐾 = 𝐹𝑙𝑎(𝐸𝑘 (𝐶)),𝑉 = 𝐹𝑙𝑎(𝐸𝑣 (𝐶)), (6)

where 𝐸𝑞 , 𝐸𝑘 , 𝐸𝑣 are encoders to get the corresponding components
of the cross-attention mechanism, and 𝐹𝑙𝑎(·) is the flattening oper-
ation for extracted feature maps. Next, for the 𝑖-th cross-attention
block, its output can be represented as:

𝑓 𝑖𝑎𝑡𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐴𝑖𝑞 (𝐾𝐴𝑖𝑘 )

𝑇

√
𝑑

)𝑉𝐴𝑖𝑣, (7)

where 𝐴𝑞 , 𝐴𝑘 , 𝐴𝑣 represent linear layers, and 𝑑 is the dimension of
𝐾𝐴𝑖

𝑘
. Finally, all the outputs of cross-attention blocks are integrated

to form the cross-attention features 𝐹𝑎𝑡𝑡 .
Flow Path. The essence of appearance flow is the pixel-wise dis-
placement, which does not involve the degradation of image quality
caused by down-sampling, so awarped result applied by appearance
flow has the ability to retain detailed textures. However, directly
estimating appearance flow without global shape constraints may
lead to unnatural drastic deformations. Therefore, instead of di-
rectly decoding the shared features 𝐹𝑠𝑡𝑦𝑙𝑒 to get the appearance
flow, we introduce 𝐹𝑎𝑡𝑡 as extra global shape constraints to perform
the shape-guided warping. Specifically, the inputs to the flow de-
coder consist of two parts: one is the shared features 𝐹𝑠𝑡𝑦𝑙𝑒 , and the
other is the cross-attention features 𝐹𝑎𝑡𝑡 . They are concatenated
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Try-on Result w/o 𝑳𝑳𝒓𝒓 and 𝑳𝑳𝒘𝒘 Reconstructed Limb Map 𝑳𝑳𝒓𝒓 Try-on Result w/ 𝑳𝑳𝒓𝒓 and 𝑳𝑳𝒘𝒘Limb Weight Map 𝑳𝑳𝒘𝒘

Figure 5: Comparsion of the try-on result w/o and w/ the
reconstructed limb map 𝐿𝑟 and the limb weight map 𝐿𝑤 .

and fed into the flow encoder together to perform pixel-wise regres-
sion and estimate the appearance flow. Note that at the training
stage, the weight parameters of the shape decoder and the flow
decoder are updated simultaneously. This enables the flow decoder
to collaborate with the shape decoder seamlessly and implicitly,
thereby predicting the appearance flow with a more consistent
shape. Finally, the appearance flow is applied to the in-shop cloth-
ing𝐶 and the in-shop clothing mask𝑀 , getting the warped clothing
𝐶𝑤 and the corresponding warped clothing mask𝑀𝑤 .

3.2 Semantic-replacement Layout Estimation
Given the warped clothing mask𝑀𝑤 , the skeleton map 𝑃𝑠 , and the
source semantic layout 𝑆𝑠 , the goal of the semantic-replacement
layout estimation module is to produce the target semantic layout
𝑆𝑡 , which describes the person wearing new clothing. 𝑆𝑡 is utilized
to provide the location information for limb reconstruction in the
following process of try-on synthesis.

Since it is almost unavailable to acquire the training data about
a person wearing two different clothing in a fixed pose, it is a
necessary and common practice to acquire person representations
that discard the person’s original clothing information to train the
network in a self-supervised way. We use a semantic-replacement
strategy to perform the above discarding during predicting 𝑆𝑡 . As
shown in Figure 2 (b), the source semantic layout 𝑆𝑠 is separated
into a multi-channel binary parsing map and each channel corre-
sponds to clothing or a part of the person’s body. We utilize the
warped clothing mask𝑀𝑤 and a portion of the skeleton map 𝑃𝑠 to
replace the original clothing and limb channels to get the target
semantic guidance 𝑆𝑟𝑒𝑝 , which ensures semantic continuity and
pose consistency while preventing negative interference with the
network training caused by the person’s original clothing. Subse-
quently, we use a UNet [41] model as the semantic layout estimator,
which takes 𝑆𝑟𝑒𝑝 as the input and predicts the target semantic lay-
out 𝑆𝑡 . More detailed descriptions of this module can be found in
the supplementary material.

3.3 Limb-weighted Try-on Synthesis
After obtaining the warped clothing 𝐶𝑤 and the target semantic
layout 𝑆𝑡 , our final goal is to generate the try-on result. However,
during this process, reconstructing limb textures is a challenging
task, as the lack of sufficient reference information may lead to
inconsistency between the distribution of the reconstructed result
and the original image.
Limb Reconstruction. Therefore, we propose a separate limb
reconstruction network, which focuses on learning compact la-
tent representations of the person’s limbs through masked image

modeling, aiming to enhance the realism and consistency of the
reconstructed limb textures with the original data. As depicted in
Figure 2 (c), we first extract the source limb map 𝐿𝑠 from the person
image 𝐼 . Inspired by [17], we randomly mask 𝐿𝑠 by 20%∼75% and
obtain the masked limb map before an autoencoder. On the one
hand, data pairs with the asymmetric input and output are created
in the training stage, enhancing the ability of the autoencoder to
reconstruct limb textures. On the other hand, random masking en-
courages the network to learn more compact limb representations.
Note that the mask operation is only set in the training phase, while
during testing, the autoencoder directly takes 𝐿𝑠 as input. Besides,
the target semantic layout 𝑆𝑡 is another input of the autoencoder,
which is used to provide location information for limb reconstruc-
tion. The autoencoder is pre-trained individually and is capable of
outputting the reconstructed limb map 𝐿𝑟 and the limb weight map
𝐿𝑤 , where the latter is a correlation weight to adaptively modify
the limb regions that may be prone to performance degradation
and distortions (as shown in Figure 5).
Try-on Synthesis. Based on 𝐿𝑤 , 𝐿𝑟 is then combined with the
occluded person image 𝐼𝑜𝑐𝑐 (obtained by occluding the clothing and
limb regions of 𝐼 ) and the warped clothing 𝐶𝑤 to get the combined
representation 𝐼𝑐𝑜𝑚 . Inspired by [11], we adopt the pre-trained
diffusion model as the final try-on synthesis network, utilizing
the combined representation 𝐼𝑐𝑜𝑚 as the input to produce the try-
on result 𝐼𝑡𝑟𝑦 . Besides, a pre-trained CLIP [37] image encoder is
employed to extract additional conditions, which are injected into
the Denoising UNet through the cross-attention mechanism to
guide the generation of the diffusion model.

3.4 Training Objectives
Dual-path Clothing Warping. To train the dual-path clothing
warping module, we first adopt the reconstruction loss to constrain
the pixel-wise value of 𝐶𝑠 and 𝐶𝑤 , which is formulated as:

𝑙𝑟𝑒𝑐 = ∥𝐶𝑠 −𝐶𝑔𝑡 ∥1 + ∥𝐶𝑤 −𝐶𝑔𝑡 ∥1, (8)

where 𝐶𝑔𝑡 is the ground truth of the warped clothing 𝐶𝑤 , it is ex-
tracted from the person image 𝐼 . 𝐶𝑔𝑡 is obtained by applying the
color normalization strategy to 𝐶𝑔𝑡 . Besides, we adopt the percep-
tual loss proposed in [25] to calculate the distance of the features
extracted by the VGG-19 [44] network:

𝑙𝑝𝑒𝑟 =

5∑︁
𝑖=1

(∥𝜙𝑖 (𝐶𝑠 ) − 𝜙𝑖 (𝐶𝑔𝑡 )∥1 + ∥𝜙𝑖 (𝐶𝑤) − 𝜙𝑖 (𝐶𝑔𝑡 )∥1), (9)

where 𝜙𝑖 (·) denotes the feature maps of the 𝑖-th layer in the pre-
trained perception network. Furthermore, we adopt a mask loss to
constrain the warped clothing mask𝑀𝑤 , which is formulated as:

𝑙𝑚𝑎𝑠𝑘 = ∥𝑀𝑤 −𝑀𝑔𝑡 ∥1, (10)

where 𝑀𝑔𝑡 is the mask of 𝐶𝑔𝑡 . Overall, the loss of the dual-path
clothing warping module is represented as:

𝑙𝑤𝑎𝑟𝑝 = 𝑙𝑟𝑒𝑐 + 𝜆𝑝𝑒𝑟 𝑙𝑝𝑒𝑟 + 𝑙𝑚𝑎𝑠𝑘 , (11)

where 𝜆𝑝𝑒𝑟 is used to balance the weights of these losses.
Semantic-replacement Layout Estimation. We use a weighted
cross-entropy loss to supervise the training process of the semantic
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Figure 6: Qualitative results of baseline methods and our SCW-VTON on the VITON [15] dataset.

layout estimator, which is expressed as:

𝑙𝑠𝑒𝑚 = − 1
𝑛

𝑛∑︁
𝑖=0

𝑐∑︁
𝑗=0

𝑤 𝑗𝑆
𝑖, 𝑗
𝑠 𝑙𝑜𝑔(𝑆𝑖, 𝑗𝑡 ), (12)

where𝑛 denotes the number of samples, 𝑐 is the number of channels
of 𝑆𝑠 and 𝑆𝑡 , and𝑤 𝑗 is the loss weight in the 𝑗-th class channel.
Limb-weighted Try-on Synthesis. Finally, following [11], the
loss of the limb-weighted try-on synthesis 𝑙𝑠𝑦𝑛 is designed in two
parts, which can be represented as:

𝑙𝑠𝑦𝑛 = 𝜆𝑣𝑔𝑔𝑙𝑣𝑔𝑔 + 𝑙𝑙𝑑𝑚 . (13)

𝑙𝑣𝑔𝑔 is similar to 𝑙𝑝𝑒𝑟 :

𝑙𝑣𝑔𝑔 =

5∑︁
𝑖=1

∥𝜙𝑖 (𝐼𝑡𝑟𝑦) − 𝜙𝑖 (𝐼 )∥1, (14)

and 𝑙𝑙𝑑𝑚 is formulated as:

𝑙𝑙𝑑𝑚 = ∥𝜖 − 𝜖𝜃 (𝜏 (E(𝐼𝑐𝑜𝑚)), E(𝐼𝑐𝑜𝑚),𝑚,𝐶𝐿𝐼𝑃 (𝐶), 𝑡)∥22, (15)

where E is a pre-trained encoder belonging to the diffusion model,
which embeds the images from image space to latent space. 𝜏 (·) is
the operation of adding noise,𝑚 is the mask used to occlude the
person image 𝐼 , and 𝑡 is the timestamp.

4 Experiment
4.1 Datasets
We conduct main experiments on the public virtual try-on bench-
mark dataset VITON [15], which contains 14,221 data pairs for
training and 2,032 data pairs for testing. Also, we carry out the com-
parative experiments under the higher resolution on the VITON-
HD [5] dataset, which contains 11,647 data pairs for training and
2,032 data pairs for testing.

4.2 Implementation Details
We train three modules of SCW-VTON independently. For the dual-
path clothing warping module and the semantic layout estimation
module, they are both trained for 30 epochs and optimized by
Adam [27] with 𝛽1=0.5 and 𝛽2=0.999. The learning rate is fixed at
0.0001 in the first half of training and then linearly decays to zero
in the remaining steps. We set the hyper-parameters as 𝜆𝑝𝑒𝑟 = 5,
𝑤0 = 𝑤1 = 𝑤2 = 𝑤6 = 1, and 𝑤3 = 𝑤4 = 𝑤5 = 3. For the limb-
weighted try-on synthesis module, following [11], we use AdamW
[32] optimizer with the learning rate of 0.00001 to train this module
for 50 epochs, and the hyper-parameters 𝜆𝑣𝑔𝑔 is set to 0.0001.

4.3 Qualitative Results
We first compare our SCW-VTONwith existing virtual try-on meth-
ods ACGPN [55], SDAFN [1], RMGN [31], and DOC-VTON [56]
on the VITON [15] dataset qualitatively. In Figure 6, we divide
the comparison into two groups, where the left group focuses on
the clothing and the right group focuses on the person’s limbs.
On the one hand, most baseline methods struggle to handle cloth-
ing with dense and complex textures. Take the first row of the
left group in Figure 6 as an example, the logo after deformation
presents a large range of distortions in the results of RMGN [31]
and DOC-VTON [56], while the results obtained by ACGPN [55]
and SDAFN [1] appear blurry. In comparison, benefiting from the
proposed shape constraints on clothing warping, the global shape
and pose consistency of clothing is warranted in our results, leading
to remarkable realism. On the other hand, it is also challenging to
fit in-shop clothing into a person image with a complex pose, which
mainly involves limb occlusion and rotation. The right group of
Figure 6 showcases the inferior performance of baseline methods in
these difficult cases. For instance, in the first row of the right group,
ACGPN [55] and SDAFN [1] generate distorted and unnatural limbs,
while RMGN [31] and DOC-VTON [56] disrupt the continuity of
limb textures. Compared to baseline methods, we achieve more
reasonable effects, which are attributed to the consistent clothing
shape and realistic limb textures acquired by our method. Qualita-
tive experiments on the VITON-HD [5] dataset are conducted in
Figure 7, where the results of HR-VTON [28], SAL-VTON [53], DCI-
VTON [11], StableVITON [26], and our SCW-VTON are represented.
Similarly, most baseline methods struggle to align clothing with
the person’s body while maintaining the integrity of the clothing
design. For example, in the first row on the left side of Figure 7,
most baseline methods fail to accurately estimate the correct posi-
tion of the waistband, and even lose the texture information of the
waistband after the clothing deformation. In contrast, our method
can preserve the waistband intact and deform it to the appropriate
position according to the person’s posture. These results validate
the robust performance of our method even with an increased res-
olution. Additional qualitative experimental results are provided in
the supplementary material.

4.4 Quantitative Results
We conduct quantitative experiments both in paired data setting and
unpaired data setting, denoting that a person wears original cloth-
ing and new clothing after try-on, respectively. We use Structural
Similarity (SSIM) [46] and Peak Signal to Noise Ratio (PSNR) [21] as
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Figure 7: Qualitative results generated by baseline methods and our SCW-VTON on the VITON-HD [5] dataset.

Table 1: Quantitative comparisons on the VITON [15] and VITON-HD [5] datasets. The percentage results in the last column
are displayed as a/b, with a and b representing the preference for the baseline method and our method, respectively.

Method Dataset Warped Clothing Try-on Results User StudySSIM (↑) PSNR (↑) FID (↓) SSIM (↑) PSNR (↑)
ACGPN [55]

VITON

0.8711 22.38 12.77 0.8454 23.12 12.83% / 87.17%
PL-VTON [16] 0.8434 19.94 11.68 0.8507 24.73 18.67% / 81.33%
SDAFN [1] - - 10.83 0.8399 23.49 31.33% / 68.67%
RMGN [31] 0.8588 21.28 10.52 0.8633 24.95 29.83% / 70.17%
DOC-VTON [56] 0.8531 19.05 9.43 0.8323 22.07 33.02% / 66.98%
SCW-VTON (ours) 0.8839 23.31 8.89 0.8897 26.78 references
VITON-HD [5]

VITON-HD

0.8641 18.29 14.05 0.8497 21.19 23.08% / 76.92%
HR-VTON [28] 0.8622 18.41 11.69 0.8657 22.38 29.28% / 70.72%
SAL-VTON [53] - - 9.64 0.8798 23.29 36.72% / 63.28%
GP-VTON [49] 0.8905 21.76 9.52 0.8735 23.31 36.08% / 63.92%
LaDI-VTON [35] 0.8897 21.88 9.57 0.8638 22.52 31.80% / 68.20%
DCI-VTON [11] 0.8841 21.15 9.67 0.8749 23.07 35.20% / 64.80%
StableVITON [26] - - 9.45 0.8678 23.48 39.32% / 60.68%
SCW-VTON (ours) 0.8971 22.47 8.96 0.8829 23.98 references

metrics for the paired data setting and Fréchet Inception Distance
(FID) [19] for the unpaired data setting. To perform a more com-
prehensive evaluation, we compute metrics both for the process
of clothing warping and overall try-on. Table 1 summarizes the
quantitative results of our method and baseline methods on two
datasets, which indicates that our SCW-VTON outperforms all the
baseline methods in SSIM, PSNR, and FID, both in terms of the
warped clothing and try-on result.

4.5 User Study
We conduct a user studywith 30 recruited volunteers to evaluate the
visual effect of our method, where SCW-VTON is compared with
each baseline method in an A/B manner. Specifically, 200 in-shop
clothing images and 200 person images are randomly selected from
the testing set in each comparison, which are used to output the
try-on results by SCW-VTON and another baseline method to form
200 pairwise result groups. The volunteers are asked to consider
the rationality of two try-on results from each group carefully and
choose the better one. The results are summarized in the last column
Table 1, it is evident that our SCW-VTON always provides a better
visual experience in each A/B comparison.

4.6 Ablation Studies
Global Shape Constraints. To assess the impact of the cross-
attention features 𝐹𝑎𝑡𝑡 as global shape constraints, we design a
variant SCW-VTON∗ that removes shape-guided cross-attention
blocks, where the flow decoder only takes the shared features 𝐹𝑠𝑡𝑦𝑙𝑒
as the input. We first compare the variant and our full model in
Figure 8 (a). It is evident that SCW-VTON∗ is difficult to align well
with the person’s body, especially at the edge of clothing, while
SCW-VTON estimates the clothing shape more accurately, and
effectively addresses the problem of drastic deformation occurring
in the variant. Quantitative results of SCW-VTON and SCW-VTON∗

are reported in Table 2, which shows that SCW-VTON outperforms
the variant across all metrics. The supplementary material provides
more analysis and results on the global shape constraints.
Co-training.We design a variant SCW-VTON★ to verify the effect
of the co-training in the dual-path clothing warping module. For
this variant, we only remove the co-training strategy implemented
in the shape decoder and the flow decoder, while keeping all other
components consistent with the full model. SCW-VTON and SCW-
VTON★ are quantitatively compared in Table 2, while Figure 8 (a)
illustrates their differences in visual effects. It can be seen that
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Figure 8: Qualitative results of ablation studies. (a) The variant SCW-VTON∗ removes shape-guided cross-attention blocks, while
SCW-VTON★ only removes the co-training strategy. (b) SCW-VTON† produces try-on results without the limb reconstruction
network. The curve graphs on the right represent the pixel value distribution of corresponding samples in the limb regions.

Table 2: Quantitative results of ablation studies on the VITON [15] dataset.

Method Config Warped Clothing Try-on Results
SSIM (↑) PSNR (↑) FID (↓) SSIM (↑) PSNR (↑)

SCW-VTON∗ w/o global shape constraints 0.8423 19.95 10.16 0.8639 25.35
SCW-VTON★ w/o co-training strategy 0.8792 22.18 9.44 0.8723 26.31
SCW-VTON† w/o limb reconstruction network - - 9.24 0.8740 25.75
SCW-VTON (ours) full model 0.8839 23.31 8.89 0.8897 26.78

Pe
rs

on
 Im

ag
e

Tr
y-

on
 R

es
ul

t
Te

xt
ur

e
M

ap

Figure 9: Examples of try-on results by our SCW-VTON based
on the pure texture map input.

although some misalignment issues in SCW-VTON∗ are alleviated
in SCW-VTON★, SCW-VTON★ lacks realism in detailed regions
compared to SCW-VTON. The supplementary material provides
more analysis and results on the co-training strategy.
Limb Reconstruction Network. Finally, we propose a variant
SCW-VTON† to evaluate the role of the limb reconstruction net-
work in the process of try-on synthesis. We ablate the autoencoder
that outputs the reconstructed limb map 𝐿𝑟 , so the final try-on
result is generated only based on the combined representation 𝐼𝑐𝑜𝑚
without additional limb texture references. We compute the quan-
titative metrics for SCW-VTON†, which is also shown in Table 2.
In addition, the qualitative comparison between this variant and

SCW-VTON is presented in Figure 8 (b), which illustrates that SCW-
VTON can effectively solve the problems of performance degrada-
tion and distortions in SCW-VTON†, and make the distribution of
reconstructed limb textures more consistent with the ground truth.

4.7 Potential Application
Besides the classic virtual try-on, we also try to explore other ap-
plications of our method. By introducing extra global shape con-
straints, our method is liberated from the restriction of generating
try-on results solely based on specific input clothing shapes. For
example, as shown in Figure 9, we can seamlessly transfer textures
from a shapeless texture map to the person’s body while preserv-
ing the original distribution. This versatility highlights that our
method extends beyond conventional virtual try-on applications,
potentially sparking innovative ideas for novel computer vision
tasks in the fashion and clothing domain.

5 Conclusion
In this paper, we propose SCW-VTON, a novel shape-guided cloth-
ing warping method for virtual try-on. Based on a dual-path cloth-
ing warping module, our method incorporates additional global
shape constraints on clothing deformation, resulting in realistic
warped clothing that conforms accurately to the person’s body.
Besides, we design a limb reconstruction network based on masked
image modeling to learn the compact latent limb representations
and generate additional limb textures to refine the details in these
regions through adaptive weighting. With the implementation of
SCW-VTON, we produce try-on results with improved clothing
shape consistency and precise control over details. Extensive ex-
periments are conducted to demonstrate the superiority of our
SCW-VTON over existing state-of-the-art methods.
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