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ABSTRACT

Proximal policy optimization (PPO) has gained popularity in reinforcement learn-
ing (RL). Its PPO-Clip variant is one the most frequently implemented algorithms
and is one of the first-to-try algorithms in RL tasks. This variant uses a clipped
surrogate objective function not typically found in other algorithms. Many works
have demonstrated the practical performance of PPO-Clip, but the theoretical un-
derstanding of it is limited to specific settings. In this work, we provide a compre-
hensive analysis that shows the stationary point convergence of PPO-Clip and the
convergence rate thereof. Our analysis is new and overcomes many challenges,
including the non-smooth nature of the clip operator, the potentially unbounded
score function, and the involvement of the ratio of two stochastic policies. Our
results and techniques might share new insights into PPO-Clip.

1 INTRODUCTION

Proximal policy gradient (PPO) is one of the most popular algorithms in reinforcement learning
(RL) (Schulman et al., 2017). For many RL tasks, one would try PPO as their first attempt, for its
generality and stability among different environments as well as the easiness of implementation. As
of September 2023, it returns over 5,500 results on GitHub.com, if one searches “PPO”. This demon-
strates enthusiasm for reproducing the algorithm, applying it to different problems, and extending it
to many variants.

PPO stems from policy gradient, which is proposed by Williams (1992) as one of the seminal works
in RL. The idea is to utilize the policy in a previous step as an off-policy reference, and restrain
the new policy to be within a small discrepancy of the old policy. In this way, the policy does not
suddenly deviate from its previous iterations by too much. The idea is well-compatible with modern
deep learning models, such as advantage function estimation and policy parametrization.

There are two primary variants of PPO introduced by Schulman et al. (2017). For the sake of
convenience, we call them PPO-Penalty and PPO-Clip. PPO-Penalty approximately solves a KL-
constrained update, but penalizes the KL-divergence in the objective function instead of making it a
hard constraint. The penalty coefficient is then automatically adapted over the course of the training
so that it scales appropriately. PPO-Clip does not have a KL-divergence term in the objective and
does not have a constraint either. Instead, it relies on a clipping operator in the objective function to
remove incentives for the new policy to get too far away from the old policy. This use of a clipped
surrogate objective function is not typical in optimization algorithms. In this work, we focus on
PPO-Clip.

In contrast to the empirical success of PPO-Clip, theoretical analysis of it is limited. Huang et al.
(2021) and Yao et al. (2022) have made substantial attempts to discuss the convergence of PPO-Clip
under the tabular and the over-parameterized neural network settings. The basic idea is to categorize
PPO-Clip as a hinge loss problem in classification. This analysis relies on the local convexity of
the optimization objective, with which typical techniques for hinge loss apply. Liu et al. (2019)
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employed the classic proof based on the neural tangent kernel (NTK) condition to establish the
global convergence of over-parameterized neural networks. Their analysis is for a variant of PPO
which no longer involves the ratio of the current policy and the old policy.

In fact, analyzing the original PPO-Clip involves many challenges. First, the algorithm uses the ratio
of two stochastic policies, which is a unique structure that has no off-the-shelf recursive inequality
available to characterize it. Second, the clip operator is non-smooth, which necessitates the use of
divide-and-conquer of probabilistic events. In comparison, treating the clip operation as a hinge loss
does not provide more help when the problem is general and not locally convex. Third, the score
function of the policy is unbounded. A typical example is the commonly used neural network policy.
Without bounded score function, strong conditions such as the gradient dominance lemma are no
longer available, and existing techniques in analysis of policy gradient will not apply. In addition,
the unbounded score function could make the ratio of two policies arbitrarily large, even in the late
stages of the optimization process.

In this work, we investigate the vanilla version of PPO-Clip with a minimum set of conditions. We
formulate PPO-Clip into a general two-scale iterative process, where the old policy πold is synchro-
nized every T steps (T could be 1, which makes it single-scale). We show that this process will
converge to a stationary point of the learning objective, up to a bias term that depends only on the
biases incurred by the Markovian sampling and the advantage estimation. When the biases are zero,
such as when we use Monte-Carlo methods, PPO-Clip converges almost surely. We further provide
the convergence rate of the gradient norm in terms of average-iterate convergence and subsequence
convergence. Technically, our analyses are based on key lemmas that characterize the probabili-
ties of the clip events and thereof the recursion of the learning process. This new tool might share
insights into analyzing PPO and might be of independent interest.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

We consider a canonical discounted Markov decision process (MDP) setting with finite state space
and action space. In this work, an MDP is denoted as M = (S,A, P, r, γ), where S and A are finite
state and action spaces, P : S × A → ∆(S) denotes the transition kernel, r : S × A → R is the
reward function, and γ ∈ (0, 1) is the discount factor. Let s0 be the initial state.

The goal of reinforcement learning is to learn a policy π that takes s ∈ S and outputs a dis-
tribution π(·|s) over the action space, to maximize the expected cumulative discounted reward.
For every policy π, define the action value function Qπ : S × A → R as Qπ(s, a) :=

Eπ,P

(∑∞
h=0 γ

hr(sh, ah)

∣∣∣∣s0 = s, a0 = a

)
. Here, Eπ,P (·) denotes the expectation under subse-

quent actions and states that follow π and P . When the context is clear we write this into Eπ(·)
instead. Define the state-value function V π : S → R as V π(s) := Ea∼π(·|s)[Q

π(s, a)] and the ad-
vantage function Aπ : S ×A → R as Aπ(s, a) := Qπ(s, a)−V π(s), respectively. In this paper, we
consider the case where the policy is parametrized by a parameter θ ∈ Rd. Define, as the objective
function of our optimization,

V (θ) := V πθ (s0) = Eπθ

(
+∞∑
h=0

γhr(sh, ah)

∣∣∣∣s0
)
.

Denote V ∗ := maxθ∈Rd V (θ) as a global maximum of V (θ).

2.2 POLICY GRADIENT

When both π and V are parametrized by θ, it is natural to consider gradient ascent methods to
optimize the objective function, i.e., θn+1,1 = θn,1+ ϵn∇V (θn,1), where ϵn > 0 is the learning rate
(step size). The gradient term ∇V (θ) can be estimated via ∇V (θ) = Eπθ

(
∇ lnπθn(a|s)Ãπθ (s, a)

)
,

where Ãπθ is an estimation of the advantage function Aπθ (Williams, 1992; Sutton & Barto, 2018).
The policy gradient (PG) estimation is unbiased whenever Ã is an unbiased estimation of A, for
example, the Monte-Carlo estimation.
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Policy gradient have received a significant line of research and improvement, and together with the
emergence of deep neural networks, receives empirical success in many areas (Konda & Tsitsiklis,
2000; Kakade, 2001; Schulman et al., 2017; 2015; Lillicrap et al., 2015; Schulman et al., 2017). In
theory, the global convergence of PG is investigated under the gradient dominance condition (Zhang
et al., 2020; 2021; Yuan et al., 2020; Xu et al., 2020; Huang et al., 2020; Fazel et al., 2018; Fatkhullin
et al., 2023) and soft-max policy condition (Agarwal et al., 2021; Mei et al., 2020). Stationary point
convergence of PG under general policies are proved by Zhang et al. (2020); Fazel et al. (2018).
Wang et al. (2019) study the convergence of neural policy gradient methods. While our setting is
quite different to PG, we obtain some insights from these lines of theoretical works.

2.3 PROXIMAL POLICY OPTIMIZATION WITH CLIPPED SURROGATE OBJECTIVE

The proximal policy optimization algorithm has different variants (Schulman et al., 2017; Huang
et al., 2022; Hsu et al., 2020; Zhang et al., 2019; 2022). In this work, we are particularly interested
in investigating its variant with a clipped surrogate objective which is introduced in the original
PPO work. We denote this variant as PPO-Clip in our manuscript. The surrogate objective function

is defined as LCPI(θ) = Eπθold

(
πθ(a|s)
πθold (a|s)

Ãπθold (s,a)

)
, where πθold denotes the policy at a previous

iteration, Ãπθ is an estimation of the advantage function Aπθ . The surrogate objective function with
the clip operator is defined as LCLIP = Eπθold

(
min

{
πθ(a|s)
πθold (a|s)

, clip
(

πθ(a|s)
πθold (a|s)

)}
Ãπθold

(s, a)
)
. The

first term in the minimum operator is LCPI . The second term, clip
(

πθ(a|s)
πθold (a|s)

)
Ãπθold

(s, a), modifies
the surrogate objective by clipping the probability ratio to the interval [1 − δ0, 1 + δ0], for some
absolute constant δ0. PPO-Clip takes the minimum of the clipped and unclipped objective and the
final objective is a lower bound on the unclipped objective.

In the original PPO work, PPO-Clip considers πθold to be the policy used in the immediate previous
iteration. In the current iteration, the algorithm aims to find a parameter θ that maximizes the clipped
surrogate objective, using some estimation Ẽπθold

of the expectation Eπθold
over the Markovian sam-

pling. Namely,

maximizeθ∈Rd Ẽπθold

(
min

{
πθ(a|s)
πθold(a|s)

, clip
(

πθ(a|s)
πθold(a|s)

)}
Ãπθold

(s, a)

)
. (1)

This maximization alone could involve multiple steps of updates on θ, forming a double-loop struc-
ture of the PPO algorithm. The off-policy nature of the surrogate objective specifically fits into this
type of double-loop structure. In practice, such a structure is implemented simply by running the
optimizer multiple times (e.g., optimizer.step() in PyTorch) for each policy gradient update.

3 SETTING AND RESULTS

In this section, we aim to prove the global convergence of PPO-Clip to a stationary point. Namely,
the gradient of the value function V (θ) should converge to zero whenever the estimation bias is zero
(Theorem 3.1 and 3.2). We further extend this result to the convergence rate of average-iteration
convergence and subsequence convergence (Theorem 3.3).

3.1 FORMULATION

Now we are ready to formulate the PPO-Clip variant that we investigate in this paper. In this work,
we specifically implement the optimization process within one step of policy gradient, namely Equa-
tion (1), as T steps of gradient ascent. The algorithm therefore runs in a two-scale manner, where
the index n of policy gradient iteration will be considered asymptotically large, and the index k of
the maximization in (1) is considered to be within 1, . . . , T , for some small constant T . Notice that
all our results hold for T = 1 as well. We formulate PPO-Clip as below.
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PPO-Clip:

θn,k+1 = θn,k + ϵn,k∇θn,k

(
Ẽπθn,1

(
min

{
clip
(
πθn,k

(a|s)
πθn,1

(a|s)

)
,
πθn,k

(a|s)
πθn,1

(a|s)

}
· Ãπθn,1

(s, a)

))
,

(k = 1, 2, ..., T − 1),

θn+1,1 = θn,T ,
(2)

where Ẽπθn,1
is an estimate of Eπθn,1

, and Ãπθ
(s, a) is the estimated value of the advantage function.

As we have mentioned in the preliminary section on PPO, the value of A and the expectation un-
der Markovian sampling Eπθn,1

need to be estimated. Both the estimations can be obtained in an
unbiased way using Monte-Carlo sampling, provided that the sampling goes through until the termi-
nation of the episode. Practically, PPO is rarely implemented in a pure Monte-Carlo way. Methods
such as the actor-critic algorithm use biased estimations to trade for other properties such as sample
complexity and generalization. Nevertheless, this biasedness can be formulated by the sampling
bias term.

Define the functionals

E◦
πθ
(·) := Es0∼ρ, ah∼πθ(·|sh)

sh+1∼P(·|sh,ah)

(
· ×Aπθ

(s, a)
)
, Ẽ

◦
πθ
(·) := Ẽs0∼ρ, ah∼πθ(·|sh)

sh+1∼P(·|sh,ah)

(
· ×Ãπθ

(s, a)
)
.

If Ãπθ
is bounded, for which we will assume in Assumption 3.2, both of the functionals are

bounded linear functionals in S × A → R. Therefore, (E◦
πθ

−Ẽ
◦
πθ
)(·) is also a bounded linear

functional. The norm of this functional then exists and we denote the norm as
∥∥(E◦

πθ
−Ẽ

◦
πθ
)(·)
∥∥ =

max∥f∥=1

∣∣(E◦
πθ

−Ẽ
◦
πθ
)(f)

∣∣, where ∥f∥ := max(s,a)∈S×A |f(s, a)|. Subsequently, denote the up-
per bound of the norm of this functional as∥∥(E◦

πθ
−Ẽ

◦
πθ
)(·)
∥∥ ≤ ϕn. (3)

When Monte-Carlo sampling is used to estimate the expectation Ẽ of the Markovian sampling and
the advantage function Ã, the term ϕn = 0. In this work, we will provide general results that depend
on the value of ϕn.

To facilitate the analysis, define the σ-filtration F1 := σ(θ1,1), Fn := σ(σ(θn−1,1), ξn−1) (n ≥ 2),

where the random variable {ξn} represents the stochasticity in the sampling of Ẽ and the estimation
Ã in step n of the outer iterate.

3.2 ASSUMPTIONS

We first present the assumption regarding the policy parameterization of πθ(s|a). This assumption
can be realized by setting the policy to be within certain function classes such as neural networks.
Assumption 3.1. There is a constant L such that for any s, a, the policy πθ(a|s) is L-smooth
regarding θ, i.e., ∥∇πθ1(a|s)−∇πθ2(a|s)∥ ≤ L∥θ1 − θ2∥ ∀ θ1, θ2.

In comparison, a stronger assumption was used in some previous works on policy gradient (Zhang
et al., 2020; 2021; Yuan et al., 2020; Xu et al., 2020; Huang et al., 2020). In the assumption, the
score function ∇ ln(πθ(s|a)) has to be bounded and Lipschitz continuous, i.e., ∥∇ ln(πθ1(s|a)) −
∇ ln(πθ2(s|a))∥ ≤ M1∥θ1 − θ2∥, for all s, a, for some M1. This assumption does not hold for
neural networks in general. As a counterexample, let the action space be {0, 1} and let θ = (x, y).
Let πx,y(0|s) = e−xT ys

/
(1 + e−xT ys), πx,y(1|s) = 1

/
(1 + e−xT ys), (∀ s). When ∥θ∥ → +∞, it

is evident that ∥∇ ln(πθ1,θ2(a|s))∥ → +∞ in this case. Nevertheless, our conditions in Assumption
3.1 hold under this example.

Our analyses also need a uniform upper bound for the reward function for each state and action. This
condition is very commonly used in the field of reinforcement learning (Zhang et al., 2021; 2020;
Yuan et al., 2020; Xu et al., 2020; Agarwal et al., 2021).
Assumption 3.2. There exists an upper bound r̂ > 0, such that for any s, a, the reward is bounded
by |r(s, a)| ≤ r̂.
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It follows immediately this assumption that |Aπ(s, a)| ≤ Rmax := 2r̂/(1 − γ). In this manuscript,
whenever A is estimated (denoted as Ã), we truncate the value of that estimate such that |Ãπ(s, a)| ≤
Rmax = 2r̂/(1− γ).

Now we describe the conditions of the learning rate of PPO-Clip. In this work, we require the
learning rate to satisfy the Robbins-Monro condition, in order to prove the global convergence of
PPO-Clip to a stationary point. The condition agrees with many commonly used learning rates of
PPO in practice.

Assumption 3.3. The learning rate {ϵn,k}+∞,T−1
n=1,k=1 satisfies

∑+∞
n=1

∑T−1
k=1 ϵn,k = +∞,∑+∞

n=1

∑T−1
k=1 ϵ2n,k < +∞.

In the case we only need to prove subsequence convergence or average-iterate mean-square Conver-
gence, Assumption 3.3 can be relaxed into Assumption 3.4.

Assumption 3.4. The learning rate {ϵn,k}+∞,T−1
n=1,k=1 satisfies

∑+∞
n=1

∑T−1
k=1 ϵn,k = +∞,∑T−1

k=1 ϵn,k → 0.

Under Assumption 3.3, we can use the classical martingale method to prove convergence, which
can yield strong last-iterate convergence. However, this approach is not applicable to the case under
Assumption 3.4. Under Assumption 3.4, we are unable to construct a sup-martingale by the value
of V (θn). Instead, we will need to decompose {∇V (θn)} into multiple sub-processes using first
entrance times. Then a respective sup-martingale was constructed on each sub-process, and the
compounding effect of these sub-processes is analyzed.

Assumptions on the learning rate can of course be satisfied by our choice of the learning rate. We
remark that both the assumptions host a wide range of learning rate choices used in practice in
reinforcement learning.

3.3 RESULTS

In investigating the convergence of stochastic optimization, it is common to construct a recursive
inequality for the optimization objective. Taking policy gradient as an example, one may construct
a recursive inequality using Taylor’s expansion as

E
(
V ∗ − V (θn+1)

∣∣Fn

)
≤ V ∗ − V (θn)− ϵn∇̂V (θn)

T∇V (θn) +
Lϵ2n
2

∥∇̂V (θn)∥2,

where ϵn is the learning rate, ∇̂V is a estimation of ∇V , V ∗ is the maximum value of the value
function V (θ), and L represents the Lipschitz coefficient of ∇V (θ).

Due to the difference between the policy gradient and PPO-Clip, the update rule now is not by a
direct estimate of the policy gradient ∇V (θ). In this case, to obtain a recursive inequality similar
to the above one, we estimate the error between the PPO-Clip update target and ∇V (θ). The aim
is to bound this error term and mitigate its effect in the following analyses. However, it is not
straightforward to estimate this error as one needs to estimate the distribution of the random variable
πθ(a|s)/πθold(a|s), which was not available in the literature to the best of our knowledge. From this
perspective, the analysis of PPO-Clip might be more challenging compared to the analysis of policy
gradient.

To be specific, our idea is to prove that the event B := {πθ(a|s)/πθold(a|s) ∈ (0, 1 − δ0) ∪ (1 +

δ0,+∞)} is a subset of the event C := {
√

πθold(a|s) ≤ kθ}, for some scale kθ. Then we relax
the set of (s, a) pairs that satisfy the clip condition to those that satisfy the event C. Subsequently,
conditionally under the event C holds, we can estimate the error terms (denoted as X and Y in the
analysis) accurately. This idea generates the following lemma.
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Lemma 3.1. If Assumption 3.1 and 3.2 hold, then for the sequence {θn,k}+∞,T
n=1,k=1 formed by PPO-

Clip (2), there is

V ∗ − V (θn+1,1)− (V ∗ − V (θn,1)) ≤−
( T−1∑

k=1

ϵn,k

)
∥∇V (θn,1)∥2

+ 4
√

1 + δ0R
2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
∥∇V (θn,1)∥2

+ 2
√
|A|L

(
ϕn +O

( T−1∑
k=1

ϵn,k

))
·
( T−1∑

k=1

ϵn,k

)
+ ζn,

where

L :=
|A|RmaxL

(1− γ)2
+

(1 + γ)|A|Rmax ·
√
2L

(1− γ)3
,

and {ζn,Fn+1}+∞
n=1 is a martingale-difference sequence.

This lemma is our key lemma. It derives a recursive inequity that is similar to that of policy gradient.
We now provide the insights into finding this lemma, while deferring the full proof to the appendix.

Step 1: We first aim to simplify the gradient in PPO using a divide-and-conquer approach. Let

Bn,k :=

{
1− δ0 <

πθn,k
(a|s)

πθn,1
(a|s)

< 1 + δ0

}
be the set of (s, a) pairs that do not satisfy the clip operation. We obtain the following equations.

∇θn,k

(
Ẽπθn,1

(
min

{
clip
(
πθn,k

(a|s)
πθn,1

(a|s)

)
,
πθn,k

(a|s)
πθn,1

(a|s)

}
· Ãπθn,1

(s, a)

))

= Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,k
(a|s)

πθn,1
(a|s)

· Ãπθn,1
(s, a)

)

= Ẽπθn,1

(
∇πθn,1

(a|s)
πθn,1(a|s)

· Ãπθn,1
(s, a)

)
− Ẽπθn−1

(
1
Ω/B

(s,a)
n,k

∇πθn,1
(a|s)

πθn,1(a|s)
· Ãπθn,1

(s, a)

)

+ Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,k
(a|s)−∇πθn,1(a|s)
πθn,1

(a|s)
· Ãπθn,1

(s, a)

)

:= Ẽπθn,1

(
∇πθn,1(a|s)
πθn,1

(a|s)
· Ãπθn,1

(s, a)

)
+Xn,k + Yn,k.

Here, Xn,k and Yn,k are defined as the last two terms, i.e. the error terms, on the right-hand side of
the second equation.

Step 2: Note that the first term of the last equation is the policy gradient of the value function at
θn,1, which can be handled effectively. Therefore, we aim to bound Xn,k and Yn,k to ensure that the
difference between the gradient of PPO and the policy gradient of the value function at θn,1 is not
significant.

For Xn,k, we observe Ω/Bn,k ⊂ Ω/Cn,k (see appendix for its proof), where

Cn,k :=

{√
πθn,1

(a|s) > (
√
2L+ λ0) ·

(
k−1∑
i=1

ϵn−1,i

)
· Ẽπθn−1,1

( √
2L(1 + δ0)√
πθn−1,1

(a|s)
·
∣∣Ãπθn−1,1

(s, a)
∣∣)}

and λ0 := min

{ √
2L

− ln(1−δ0)
,

√
2L

ln(1+δ0)

}
. As such, the indicator function 1Bn,k

can be bounded by

1Cn,k
. By further noticing the L-smooth condition, we have ∥∇πθn,k

(a|s)∥ ≤
√
2Lπθn,k

(a|s) (see
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Lemma A.1 for a proof), which leads to

E
(
∥Xn,k∥

∣∣Fn−1

)
≤ 2L

√
1 + δ0R

3
max|A|

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

(
1√

πθn−1,1
(a|s)

)
+
√
|A|Rmaxϕn,

where Rmax := r̂/(1− γ) is defined as an upper bound on the value function.

For Yn, our main objective is to bound ∇πθn,k
(a|s) − ∇πθn,1

(a|s). According to the L-smooth
condition, we have ∥∇πθn,k

(a|s)−∇πθn,1(a|s)∥ ≤ L∥θn,k − θn,1∥. It therefore suffices to control
∥θn,k − θn,1∥. In fact, we could obtain

∥θn,k+1 − θn,k∥ ≤ ϵn,kẼπθn,1

(√
2L(1 + δ0)√
πθn,1

(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣),

and the proof of this inequality is presented in Lemma A.2. The bound of Yn is then

E
(
∥Yn∥

∣∣Fn−1

)
≤ L

√
2L(1 + δ0)R

3
max|A|

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

(
1√

πθn−1,1
(a|s)

)
+
√
|A|Rmaxϕn.

Step 3: In this step, we construct a recursive equation for the value function V (θn,1). Using Taylor’s
expansion, we obtain

V ∗ − V (θn+1,1)− (V ∗ − V (θn,1))

≤ ∇V (θn−1)
⊤(θn+1,1 − θn,1) +

(
∇V (θn,1)−∇V (θn−1)

)⊤
(θn+1,1 − θn,1)

+ L∥θn+1,1 − θn,1∥2,

where L := |A|RmaxL
(1−γ)2 + (1+γ)|A|Rmax·

√
2L

(1−γ)3 represents the Lipschitz coefficient of ∇V (θ). By substi-
tuting the expressions for Xn,k and Yn,k from the previous step into the equation, there is

V ∗ − V (θn+1,1)− (V ∗ − V (θn,1)) ≤ −
( T−1∑

k=1

ϵn,k

)
∥∇V (θn,1)∥2

+ 4
√

1 + δ0R
2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
∥∇V (θn,1)∥2

+ 2
√

|A|L

(
ϕn +O

( T−1∑
k=1

ϵn,k

))
·
( T−1∑

k=1

ϵn,k

)
.

Armed with the lemma, we are now ready to discuss the convergence of the PPO-Clip algorithm.
Our first theorem asserts its global convergence to a stationary point, up to the estimation bias ϕn

involved in the Markovian sampling and the advantage estimation.

The idea of the proof is to discuss the magnitude of ∥∇V (θn,1)∥2. Let ϕ′
n := ϕn+O

(∑T−1
k=1 ϵn,k

)
.

When ∥∇V (θn,1)∥2 > 8
√
|A|ϕ′

n, the fixed bias term 2
√
|A|Lϕ′

n

(∑T−1
k=1 ϵn,k

)
can be immediately

offset by
(∑T−1

k=1 ϵn,k
)
∥∇V (θn−1)∥2. When ∥∇V (θn,1)∥2 ≤ 8

√
|A|Lϕ′

n, the desired result is
straightforwardly satisfied.

Theorem 3.1. If Assumption 3.1, 3.2, 3.4 hold, then for the sequence {θn,k}+∞,T
n=1,k=1 formed by

PPO-Clip (2), there is

lim inf
n→+∞

∥∇V (θn,1)∥2 ≤ 8L
√

|A| lim sup
n→+∞

ϕn a.s..

7
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Proof. Let ϕ′
n := ϕn +O

(∑T−1
k=1 ϵn,k

)
. We construct the following events.

Ai,n :=
{
{∥∇V (θi,1)∥2 > max{8

√
|A| sup

t≥i
ϕ′
t, δ}}, {∥∇V (θi+1,1)∥2 > 8

√
|A| sup

t≥i+1
ϕ′
tϕ

′
i+1},

..., {∥∇V (θn,1)∥2 > max{8
√
|A| sup

t≥i
ϕ′
t, δ}},

Ai,i := {∥∇V (θi,1)∥2 > max{8
√
|A| sup

t≥i
ϕ′
t, δ}},

Ai,+∞ :=
{
{∥∇V (θi,1)∥2 > max{8

√
|A| sup

t≥i
ϕ′
t, δ}}, {∥∇V (θi+1,1)∥2 > 8

√
|A| sup

t≥i+1
ϕ′
t},

..., {∥∇V (θn,1)∥2 > max{8
√

|A| sup
t≥n

ϕ′
t, δ}, ...}.

where V̂ := V ∗ − V and δ is a positive constant. Asymptotically, we can obtain the existence of a
N0 such that for n > N0, there is( T−1∑

k=1

ϵn+1,k

)
E ∥∇V (θn,1)∥2 > 8

√
1 + δR2

max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
E ∥∇V (θn,1)∥2.

Note that here N0 only depends on the parameters δ, Rmax, |A|, L and the learning rate ϵn,k itself.
Then through Equation (14) in the proof of Lemma 3.1, when ∀ i > T0, n ≥ i, X ∈ Fi, there is

1X∩Ai,n
V̂ (θn+1,1)− 1X∩Ai,n

V̂ (θn,1) ≤ −1

4

( T−1∑
k=1

ϵn,k

)
· 1X∩Ai,n

∥∇V (θn,1)∥2 + 1X∩Ai,n
ζn.

Notice 1X∩Ai,n V̂ (θn+1,1) ≥ 1X∩Ai,n+1 V̂ (θn+1,1). Then,

1X∩Ai,n+1
V̂ (θn+1,1)− 1X∩Ai,n

V̂ (θn,1) ≤ −1

4

( T−1∑
k=1

ϵn,k

)
· 1X∩Ai,n

∥∇V (θn,1)∥2 + 1X∩Ai,n
ζn.

By summing up the above expression from i to t, we obtain

δ

4

t∑
n=i

( T−1∑
k=1

ϵn,k

)
E(1X∩Ai,n

) ≤ +∞.

Combining the condition
∑t

n=i

(∑T−1
k=1 ϵn,k

)
= +∞, and the fact the sequence {E(1X∩Ai,n

)}+∞
n=i

has a limit, we have
lim

n→+∞
E(1X∩Ai,n

) = 0,

which implies E(1X∩Ai,+∞) = 0. According to the arbitrariness of δ, i and X , we get
lim infn→+∞ ∥∇V (θn,1)∥2 ≤ 8L

√
|A| lim supn→+∞ ϕn a.s..

This theorem essentially provides us the guarantee that PPO-Clip makes the gradient norm of the
value function subsequence converge almost surely to zero within an O(lim supn→+∞ ϕn) neigh-
borhood. In practice, the size of this neighborhood is determined by the advantage network. The
more accurate is the advantage function estimation, the smaller is this neighborhood. When the
advantage function is estimated unbiasedly, like through Monte-Carlo sampling, the convergence is
exact.

In fact, when ϕn = 0, we further improve this result by replacing Assumption 3.4 with Assumption
3.3, which is strictly weaker.

Theorem 3.2. If Assumption 3.1, 3.2, 3.3 hold and there exists a t > 0, such that ϕn = 0 (∀ n > t),

then for the sequence {θn,k}+∞,T
n=1,k=1 formed by PPO-Clip (2), there are

lim
n→+∞

∥∇V (θn)∥ = 0 a.s., and lim
n→+∞

E ∥∇V (θn)∥2 = 0.

8
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This theorem indicates that PPO-Clip has the same convergence property as the best current results
available for policy gradient (Zhang et al., 2020). The proof of this theorem is by Lemma 3.1 and
classic martingale methods in stochastic approximation (Robbins & Monro, 1951). We defer the
proof to Appendix A.3.

Now we proceed to present the results regarding the convergence rate. Unlike existing research
on the convergence of the policy gradient algorithm which acquired the last-iterate convergence
rate (Zhang et al., 2020; 2021; Yuan et al., 2020; Xu et al., 2020; Huang et al., 2020), i.e.,
E ∥∇V (θn)∥2 = O(·), we provide the convergence rate in terms of the average iterate, i.e.,
1/(
∑T

k=1 ϵk)
∑T

k=1 ϵk E ∥∇V (θk)∥2 = O(·).
We remark that this difference is due to the conditions of the analysis. In general, for stochastic
gradient descent algorithms, in order to provide convergence rate in terms of the last-iterate sense, it
is necessary to establish a local or global inequality that connects ∇V and V. In the study of SGD-
type algorithms, examples of such inequalities are P-L conditions and K-L conditions. In the study
of the PG algorithm, assumptions like bounded score functions, Fisher non-degenerate assumption,
and transfer error bounded conditions are often used, which then imply the gradient dominance
condition, i.e., ∥∇V (θ)∥ ≥ V ∗−V (θ)+ ϵbias. This condition is similar to the K-L condition. As we
have not imposed any such additional conditions, the convergence rate in terms of the average-iterate
convergence is the best we could have obtained.
Theorem 3.3. If Assumption 3.1, 3.2, 3.4 hold, then for the sequence {θn,k}+∞,T

n=1,k=1 formed by PPO
(2), there is

min
m=1,2,...,n

{
E ∥∇V (θt,1)∥2

}
= O

(∑n
t=1 ϵ̃

2
t∑n

t=1 ϵ̃t

)
+O

(
lim sup
n→+∞

ϕn

)
,

and
1∑n

t=1 ϵ̃t

n∑
t=1

ϵ̃t E ∥∇V (θt,1)∥2 = O

(∑n
t=1 ϵ̃

2
t∑n

t=1 ϵ̃t

)
+O

(
lim sup
n→+∞

ϕn

)
,

where ϵ̃t :=
∑T−1

k=1 ϵt,k.

Proof. By Lemma 3.1, we have

E(V ∗ − V (θn+1,1))− E(V ∗ − V (θn,1)) ≤ −
( T−1∑

k=1

ϵn,k

)
E ∥∇V (θn,1)∥2

+ 4
√

1 + δ0R
2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)2

E ∥∇V (θn,1)∥2

+ 2
√

|A|L
( T−1∑

k=1

ϵn,k

)
ϕn +O

(( T−1∑
k=1

ϵn,k

)2
)
,

where ϵ̃t :=
∑T−1

k=1 ϵt,k. Then, we obtain

min
m=1,2,...,n

{
E ∥∇V (θt,1)∥2

}
≤ 1∑n

t=1 ϵ̃t

n∑
t=1

ϵ̃t E ∥∇V (θt,1)∥2 ≤ O

(∑n
t=1 ϵ̃

2
t∑n

t=1 ϵ̃t

)
+O

(
lim sup
n→+∞

ϕn

)
.

The convergence rate under the notion of best-iterate convergence and average-iterate convergence
follow, respectively.

Our analyses might provide some insights that PPO could be more efficient than PG, in some
scenarios. To compare them, we set the learning rate in PPO-Clip as ϵn,k = ϵn (∀ 1 ≤ k ≤
T ), and the learning rate in PG as ϵn. The convergence rate of PPO-Clip is O

(T ∑n
t=1 ϵ2n∑n

t=1 ϵt

)
+

O(lim supn→+∞ ϕn),, while the convergence rate of PG is O
(∑n

t=1 ϵ2n∑n
t=1 ϵt

)
+ O(lim supn→+∞ ϕn).

One could observe that both the convergence rates are in the same order, up to a factor of T , which
is the number of steps of off policy updates using πold. In this way, while PG requires continuous
sampling to obtain on policy data, PPO-Clip use one sample for T steps. Improving the sample
efficiency is critical in many reinforcement learning tasks, and when sampling is the bottleneck,
PPO-Clip could have an edge over PG.

9
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4 CONCLUSION AND FUTURE WORKS

We investigate PPO-Clip, one of the most popular RL algorithms yet to be fully understood in
theory. We show that PPO-Clip converges to stationary points up to a bias term, and when the biases
in Markovian sampling and in advantage estimation are zero this bias term is also zero. We further
proved the convergence rate of average-iterate convergence and subsequence convergence.

We used a minimum set of conditions in our analysis. The conditions on step sizes and policy
parametrization could be satisfied by the choices of step sizes and policy class. The condition on
bounded reward function is rather common and mild in RL analysis. The relaxation of conditions
incurs several technical challenges to overcome, which motivates us to introduce our key lemma,
Lemma 3.1. Our lemma derives the recursive property of the optimization process under the pres-
ence of the clipped ratio of two stochastic policies, and could be of independent interest for analysis
on other optimization algorithms.

It remains unknown to us if the optimality of PPO-Clip could be deduced under the current con-
ditions, but it would be important for future works to further characterize the optimality of the
stationary points that PPO-Clip converges to. Another direction is to investigate other conditions on
the policy, such that it is general enough to include neural networks but provides improved results
on the convergence and the optimality.
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A APPENDIX

A.1 AUXILIARY LEMMAS

Lemma A.1. If Assumption 3.1 holds, we have∥∥∇πθ(a|s)
∥∥ ≤

√
2L ·min{πθ(a|s), 1− πθ(a|s)} (∀ s, a).

Proof. By applying Lemma 10 of Jin et al. (2022), we get∥∥∇πθ(a|s)
∥∥ ≤

√
2L(πθ(a|s)− inf

θ′∈Rd
πθ′(a|s)) ≤

√
2Lπθ(a|s). (4)

Then we construct a function f (s,a)(θ) := 1 − πθ(a|s). By its definition we have ∇f (s,a)(θ) =
−∇πθ(a|s). By Assumption 3.1, we have for any θ1, θ2, such that∥∥∇f (s,a)(θ1)−∇f (s,a)(θ2)

∥∥ =
∥∥πθ1(a|s)− πθ2(a|s)

∥∥ ≤ L∥θ1 − θ2∥.

Similarly, we obtain∥∥∇f (s,a)(θ)
∥∥ ≤

√
2Lf (s,a)(θ)− inf

θ′∈Rd
f (s,a)(θ′) ≤

√
2Lf (s,a)(θ),

that is ∥∥πθ(a|s)
∥∥ ≤

√
2L(1− πθ(a|s)). (5)

Combining Equation (4) and Equation (5) yields the desired inequality.

Lemma A.2. If Assumption 3.1 holds, then for the sequence {θn,k}+∞,T
n=1,k=1 formed by PPO (2),

there is ∀ n > 0, ∀ 0 < k < T,

∥θn,k+1 − θn,k∥ ≤ ϵn,kẼπθn,1

(√
2L(1 + δ0)√
πθn,1

(a|s)
·
∣∣Ãπθn−1

(s, a)
∣∣).

Proof. By the update process of PPO in Equation (2), we have

∥θn,k+1 − θn,k∥ = ϵn,k

∥∥∥∥∥∇θn,k

(
Ẽπθn,1

(
clip
(
πθn,k

(a|s)
πθn,1

(a|s)

)
· Ãπθn,1

(s, a)

))∥∥∥∥∥.
Define events

Bn,k :=

{
1− δ0 <

πθn,k
(a|s)

πθn,1
(a|s)

< 1 + δ0

}
,

and its indicator function as 1
B

(s,a)
n,k

. Then,

ϵn,k

∥∥∥∥∥Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,1
(a|s)

πθn,1(a|s)
· Ãπθn,1

(s, a)

)∥∥∥∥∥
≤ ϵn,kẼπθn,1

(
1
B

(s,a)
n,k

∥∇πθn,1
(a|s)∥

πθn,1(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣). (6)

By Lemma A.1,

∥∇πθn,1
(a|s)∥ ≤

√
2Lπθn,1

(a|s).

This implies

∥θn,k+1 − θn,k∥ ≤ ϵn,kẼπθn,1

(√
2L(1 + δ0)√
πθn,1

(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣).

The lemma follows.
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A.2 PROOF OF LEMMA 3.1

Proof. We continue to use the events B(s,a)
n,k and the indicator function 1

B
(s,a)
n,k

defined in the proof

of Lemma A.2. Using these notations, we rewrite the gradient term in PPO as

∇θn,k

(
Ẽπθn,1

(
clip
(
πθn,k

(a|s)
πθn,1

(a|s)

)
· Ãπθn,1

(s, a)

))
= Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,k
(a|s)

πθn,1
(a|s)

· Ãπθn,1
(s, a)

)

= Ẽπθn,1

(
∇πθn,1

(a|s)
πθn,1

(a|s)
· Ãπθn,1

(s, a)

)
− Ẽπθn−1

(
1
Ω/B

(s,a)
n,k

∇πθn,1
(a|s)

πθn,1
(a|s)

· Ãπθn,1
(s, a)

)

+ Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,k
(a|s)−∇πθn,1

(a|s)
πθn,1(a|s)

· Ãπθn,1
(s, a)

)

:= Ẽπθn,1

(
∇πθn,1(a|s)
πθn,1

(a|s)
· Ãπθn,1

(s, a)

)
+Xn,k + Yn,k.

(7)
Inspecting the norm of the term Xn in Equation (7) yields

∥Xn,K∥ =

∥∥∥∥∥− Ẽπθn,1

(
1
Ω/B

(s,a)
n,k

∇πθn,1
(a|s)

πθn,1
(a|s)

· Ãπθn,1
(s, a)

)∥∥∥∥∥
≤ Ẽπθn,1

(
1
Ω/B

(s,a)
n,k

∥∇πθn,1(a|s)∥
πθn,1

(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣). (8)

Now we aim to estimate the indicator 1
Ω/B

(s,a)
n,k

. Through the mean value theorem and Lemma A.1,

we have

πθn,k
(a|s)

πθn,1(a|s)
= elnπθn,k

(a|s)−lnπθn,1
(a|s) = exp

{(
∇θ̃n,k

πθ̃n,k
(a|s)

πθ̃n,k
(a|s)

)⊤

(θn,k − θn,1)

}

∈

(
exp

{
−

∥∇θ̃n,k
πθ̃n,k

(a|s)∥
πθ̃n,k

(a|s)
∥θn,k − θn,1∥

}
, exp

{∥∇θ̃n,k
πθ̃n,k

(a|s)∥
πθ̃n,k

(a|s)
∥θn,k − θn,1∥

})

⊂

(
exp

{
−

√
2L√

πθ̃n,k
(a|s)

· ∥θn,k − θn,1∥
}
, exp

{ √
2L√

πθ̃n,k
(a|s)

· ∥θn,k − θn,1∥
})

,

(9)
where θ̃n,k is a point between θn,k and θn,1. We construct another event

C
(s,a)
n,k,λ :=

{√
πθn,1(a|s) > (

√
2L+λ)·

(
k−1∑
i=1

ϵn−1,i

)
·Ẽπθn−1,1

( √
2L(1 + δ0)√
πθn−1,1

(a|s)
·
∣∣Ãπθn−1,1

(s, a)
∣∣)},

where λ > 0 is a coefficient to be determined. It is worth noting that the event C(s,a)
n,k,λ belongs to the

σ−field Fn−1, which is used in the subsequent proof. Then,√
πθ̃n,k

(a|s) =
√
πθn,1

(a|s) +
√

πθ̃n,k
(a|s)−

√
πθn,1

(a|s)

≥
√
πθn,1

(a|s)−
∣∣∣√πθ̃n,k

(a|s)−
√
πθn,1

(a|s)
∣∣∣.

By inspecting the function
√
πθ(a|s), we obtain∥∥∇√πθ(a|s)

∥∥ =
∥∇πθ(a|s)∥√

πθ(a|s)
≤

√
2L.

That means∣∣∣√πθ̃n,k
(a|s)−

√
πθn,1(a|s)

∣∣∣ ≤ √
2L · ∥θ̃n,k − θn,1∥ ≤

√
2L · ∥θn,k − θn,1∥.
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Therefore, whenever C(s,a)
n,k,λ happens, through Lemma A.2, there is√

πθ̃n,k
(a|s) ≥

√
πθn,1(a|s)−

√
2L · ∥θ̃n,k − θn,1∥

> (
√
2L+ λ) ·

(
k−1∑
i=1

ϵn−1,i

)
· Ẽπθn−1,1

( √
2L(1 + δ0)√
πθn−1,1(a|s)

·
∣∣Ãπθn−1,1

(s, a)
∣∣)−

√
2L · ∥θn,1 − θn−1∥

≥ (
√
2L+ λ) · ∥θn,k − θn,1∥ −

√
2L · ∥θn,1 − θn−1∥

= λ · ∥θn,k − θn,1∥.

Substituting the above inequity into Equation (9), we have that whenever C(s,a)
n,k,λ happens, there is

πθn,k
(a|s)

πθn,1
(a|s)

∈
(
e−

√
2L
λ , e

√
2L
λ

)
.

Now we choose

λ = λ0 := min

{ √
2L

− ln(1− δ0)
,

√
2L

ln(1 + δ0)

}
,

which implies
πθn,k

(a|s)
πθn,1

(a|s)
∈
(
e−

√
2L

λ0 , e
√

2L
λ0

)
⊂ (1− δ0, 1 + δ0),

which then implies that B
(s,a)
n,k happens. As C

(s,a)
n,k,λ0

⊂ B
(s,a)
n,k , we have Ω/B

(s,a)
n,k ⊂

Ω/C
(s,a)
n,k,λ0

, 1
Ω/B

(s,a)
n,k

≤ 1
Ω/C

(s,a)
n,k,λ0

. Substituting it into Equation (8) yields

∥Xn,k∥ ≤ Ẽπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

·
∥∇πθn,1(a|s)∥
πθn,1

(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣).

We will now calculate the conditional expectation of ∥Xn,k∥ on Fn−1. Noting 1
Ω/C

(s,a)
n,k,λ0

∈ Fn−1,

we have

E
(
∥Xn,k∥

∣∣Fn−1

)
≤ E

(
Ẽπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

∥∇πθn,1(a|s)∥
πθn,1

(a|s)
∣∣Ãπθn,1

(s, a)
∣∣)∣∣∣∣∣Fn−1

)

≤ Eπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

·
∥∇πθn,1

(a|s)∥
πθn,1

(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣)+

√
|A|Rmaxϕn.

Noting

Eπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

·
∥∇πθn,1

(a|s)∥
πθn,1(a|s)

·
∣∣Ãπθn,1

(s, a)
∣∣)

≤
√
2LEπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

· 1√
πθn,1(a|s)

·
∣∣Ãπθn,1

(s, a)
∣∣)

≤ |A|
√
2LRmax Es∼πθn,1

(
1
Ω/C

(s,a)
n,k,λ0

·
√
πθn,1

(a|s)

)

≤
√
2L(

√
2L+ λ0)

√
1 + δ0R

3
max|A|

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

(
1√

πθn−1,1
(a|s)

)
,

we get

E
(
∥Xn,k∥

∣∣Fn−1

)
≤ E

(
Ẽπθn,1

(
1
Ω/C

(s,a)
n,k,λ0

∥∇πθn,1
(a|s)∥

πθn,1(a|s)
∣∣Ãπθn,1

(s, a)
∣∣)∣∣∣∣∣Fn−1

)

≤
√
2L(

√
2L+ λ0)

√
1 + δ0R

3
max|A|

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

(
1√

πθn−1,1
(a|s)

)
+
√
|A|Rmaxϕn.

(10)
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Now we inspect the norm of the term Yn in Equation (7). We have

∥Yn,k∥ =

∥∥∥∥∥Ẽπθn,1

(
1
B

(s,a)
n,k

∇πθn,k
(a|s)−∇πθn,1

(a|s)
πθn,1

(a|s)
· Ãπθn,1

(s, a)

)∥∥∥∥∥
≤ Ẽπθn,1

(
∥∇πθn,k

(a|s)−∇πθn,1
(a|s)∥

πθn,1(a|s)
·
∣∣Ãπθn,1

(s, a)
∣∣)

≤ Ẽπθn,1

(
L

πθn−1(a|s)
·

(
k∑

t=1

∥θn,t − θn,1∥

)
·
∣∣Ãπθn,1

(s, a)
∣∣)

≤ R3
maxL

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

( √
2L(1 + δ0)√
πθn−1,1(a|s)

)
· Ẽπθn,1

(
1

πθn,1(a|s)

)
.

Because

Ẽπθn−1,1

( √
2L(1 + δ0)√
πθn−1,1

(a|s)

)
∈ Fn−1,

we have

E
(
∥Yn∥

∣∣Fn−1

)
≤L
√

2L(1 + δ0)R
3
max|A|

(
k−1∑
i=1

ϵn,i

)
Ẽπθn−1,1

(
1√

πθn−1,1
(a|s)

)
+
√
|A|Rmaxϕn.

(11)

By the Lipschitz continuity of ∇π, for any θ1, θ2 ∈ Rb, there is

∥∇V (θ1)−∇V (θ2)∥ ≤

(
|A|RmaxL

(1− γ)2
+

(1 + γ)|A|Rmax ·
√
2L

(1− γ)3

)
· ∥θ1 − θ2∥.

For notational convenience, we assign above coefficient as L := |A|RmaxL
(1−γ)2 + (1+γ)|A|Rmax·

√
2L

(1−γ)3 . Then
the discrete difference V ∗ − V (θn+1,1)− (V ∗ − V (θn,1)) of V (θn,1) can be expanded as

V ∗ − V (θn+1,1)− (V ∗ − V (θn,1)) ≤ ∇V (θn,1)
⊤(θn+1,1 − θn,1) + L∥θn+1,1 − θn,1∥2

= ∇V (θn−1)
⊤(θn+1,1 − θn,1) +

(
∇V (θn,1)−∇V (θn−1)

)⊤
(θn+1,1 − θn,1)

+ L∥θn+1,1 − θn,1∥2.

(12)

We substitute Equation (2) and Equation (7) into Equation (12) and obtain

V (θn+1,1)− V (θn,1) ≤−
( T−1∑

k=1

ϵn,k

)
∇V (θn−1,1)

⊤Ẽπθn,1

(
∇πθn,1

(a|s)
πθn,1(a|s)

· Ãπθn,1
(s, a)

)

−∇V (θn−1)
⊤

T−1∑
k=1

ϵn,kXn,k −∇V (θn−1)
⊤

T−1∑
k=1

ϵn,kYn,k

+ L∥θn,1 − θn−1,1∥ · ∥θn+1,1 − θn,1∥+ L∥θn+1,1 − θn,1∥2.

(13)

Then substituting Equation (10) and Equation (11) into Equation (13) will acquire

V ∗ − V (θn+1,1)− (V ∗ − V (θn,1)) ≤ −
( T−1∑

k=1

ϵn,k

)
∥∇V (θn,1)∥2

+ 4
√

1 + δ0R
2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
∥∇V (θn,1)∥2

+ 2
√

|A|L

(
ϕn +O

( T−1∑
k=1

ϵn,k

))
·
( T−1∑

k=1

ϵn,k

)
.

(14)

The lemma follows.
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A.3 PROOF OF THEOREM 3.2

Proof. Through Lemma 3.1, we know ∀ n > t, there is

E(V ∗ − V (θn+1,1))− E((V ∗ − V (θn,1))) ≤ −
( T−1∑

k=1

ϵn,k

)
E ∥∇V (θn,1)∥2

+ 4
√

1 + δ0R
2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
E ∥∇V (θn,1)∥2

+ 2
√

|A|L ·O

(
T−1∑
k=1

ϵ2n,k

)
.

(15)

By inspecting the asymptotic order, we conclude the existence of an N0 such that for n > N0, we
have( T−1∑

k=1

ϵn+1,k

)
E ∥∇V (θn,1)∥2 > 8

√
1 + δ0R

2
max

√
|A|L

( T−1∑
k=1

ϵn,k

)( T−1∑
k=1

ϵn+1,k

)
E ∥∇V (θn,1)∥2.

Note that here N0 depends only on the parameters δ0, Rmax, |A|, L and the learning rate ϵn,k.
Substituting the above inequity into (15), we know that when n > i0 := max{N0, t}, there is

E(V ∗ − V (θn+1,1))− E((V ∗ − V (θn,1))) ≤ −1

2

( T−1∑
k=1

ϵn,k

)
E ∥∇V (θn,1)∥2

+ 2
√
|A|L ·O

(
T−1∑
k=1

ϵ2n,k

)
.

(16)

Summing over Equation (16) from i0 to t, and noticing the condition
∑+∞

n=1

(∑T−1
k=1 ϵ2n,k

)
< +∞,

we obtain
1

2

t∑
n=i0

( T−1∑
k=1

ϵn,k

)
E ∥∇V (θn,1)∥2 < +∞,

which implies

1

2

t∑
n=i0

( T−1∑
k=1

ϵn,k

)
∥∇V (θn,1)∥2 < +∞ a.s.. (17)

The condition
∑+∞

n=1

(∑T−1
k=1 ϵn,k

)
= +∞ implies lim infn→+∞ ∥∇V (θn,1)∥ = 0 a.s., which

means that for any δ > 0, there exists a subsequence {qn}+∞
n=1 such that ∥∇g(θqn)∥ < δ. We

find all the boundary points in the sequence {qn}+∞
n=1 and denote them as {pn}+∞

n=1. They satisfy
∥∇V (θp2k−1,1)∥ ≤ δ, ∥∇V (θp2k−1+1,1)∥ > δ, ∥∇V (θp2k−1,1)∥ > δ, ∥∇V (θp2k,1)∥ ≤ δ. If
{pn}+∞

n=1 contains at most finitely many elements, there exists an n0 > 0, such that for any n > n0,
∥∇V (θ)∥ < δ. If {pn}+∞

n=1 has infinitely many elements, we find

sup
p2k−1<n≤p2k

∥∇V (θn,1)∥ ≤
p2k−1∑

n=p2k−1

∣∣∥∇V (θn+1,1)∥−∥∇V (θn,1)∥
∣∣ ≤ L

p2k−1∑
n=p2k−1

∥θn+1,1−θn,1∥.

By substituting the expression of PPO-Clip (2) into the above inequality, and combining Lemma
A.2, we obtain

sup
p2k−1<n≤p2k

∥∇V (θn,1)∥ ≤ L
√
2|A|L(1 + δ0)

p2k−1∑
n=p2k−1

T∑
k=1

ϵn,k

≤
LRmax

√
2|A|L(1 + δ0)

δ

p2k−1∑
n=p2k−1

( T∑
k=1

ϵn,k

)
∥∇V (θn,1)∥2.
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According to Equation (17), there exists n1 > 0, such that for any p2k−1 > n1,

L
√

2|A|L(1 + δ0)

δ

p2k−1∑
n=p2k−1

( T∑
k=1

ϵn,k

)
∥∇V (θn,1)∥2 < δ.

Subsequently, for any n > max{i0, n1}, there is

∥∇V (θn,1)∥ ≤ ∥∇V (θp2k−1,1)∥+ sup
p2k−1<n≤p2k

∥∇V (θn,1)∥ < 2δ,

which indicates that for any n > max{i0, n0, n1}, there is ∥∇V (θn,1)∥ < 2δ. By the arbitrariness
of δ, we have

lim
n→+∞

∥∇V (θn,1)∥ = 0 a.s..

Therefore, for any θn,1, we have ∥∇V (θn,1)∥2 < R2
max2|A|L(1 + δ0). Through the Lebesgue’s

dominated convergence theorem, we obtain

lim
n→+∞

E ∥∇V (θn,1)∥2 = 0

as we desired.
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