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Abstract

Bayesian optimization is a powerful tool for optimizing an expensive-to-evaluate black-box
function. In particular, the effectiveness of expected improvement (EI) has been demon-
strated in a wide range of applications. However, theoretical analyses of EI are limited
compared with other theoretically established algorithms. This paper analyzes a random-
ized variant of EI, which evaluates the EI from the maximum of the posterior sample path.
We show that this posterior sampling-based random EI achieves the sublinear Bayesian
cumulative regret bounds under the assumption that the black-box function follows a Gaus-
sian process. Finally, we demonstrate the effectiveness of the proposed method through
numerical experiments.

1 Introduction

Bayesian optimization (BO) (Shahriari et al., 2016) is a powerful tool for optimizing expensive-to-evaluate
black-box functions. BO aims for optimization with fewer observations due to the expensive evaluation cost
of the objective function. For this purpose, BO sequentially queries a candidate determined by maximizing
an acquisition function (AF) based on a Bayesian model. A Gaussian process (GP) model (Rasmussen
& Williams, 2005) is typically employed in BO. BO has been applied to various fields, such as materials
informatics (Ueno et al., 2016), robotics (Berkenkamp et al., 2023), and hyperparameter tuning (Snoek
et al., 2012).

Several widely used BO algorithms are based on an improvement from a reference value, which is often set as
the current best observation. The GP-based probability of improvement (GP-PI) algorithm (Kushner, 1964)
evaluates the AF defined as the probability that a new observation exceeds the current best observation.
However, it is known that GP-PI is too exploitative depending on the reference value (Jones, 2001; Shahriari
et al., 2016). Therefore, GP-based expected improvement (GP-EI) (Mockus et al., 1978; Jones et al., 1998),
which evaluates the expectation of improvement from the current best observation, has been frequently used.
The effectiveness of GP-EI has been repeatedly demonstrated not only in the usual BO (Snoek et al., 2012;
Ament et al., 2023) but also in several extended BO settings, such as multi-fidelity BO (Huang et al., 2006),
constrained BO (Gardner et al., 2014; Gelbart et al., 2014), multi-objective BO (Emmerich et al., 2011), and
BO with large noises (Letham et al., 2019). However, since the usual GP-EI still depends on the current
best observation, which can include noise, its heuristic hyperparameter tuning approach has been discussed;
for example, see Section 2.3.2 in (Brochu et al., 2010) and (Lizotte, 2008). Hence, GP-EI is often regarded
as a heuristic method with strong empirical performance.

Other lines of study have tackled theoretical guarantees on regret (for example, Srinivas et al., 2010; Russo
& Van Roy, 2014). Seminal work (Srinivas et al., 2010) showed the cumulative regret upper bound for the
GP upper confidence bound (GP-UCB) algorithm. Russo & Van Roy (2014); Chowdhury & Gopalan (2017)
derived the cumulative regret upper bounds for the GP-based Thompson sampling algorithm (GP-TS).
Furthermore, Scarlett (2018) showed the algorithm-independent regret lower bound and a tighter regret
upper bound under several conditions. Recently, Takeno et al. (2024) showed that the variant of GP-
PI called GP-PI from the maximum of sample path (GP-PIMS) achieves a sublinear Bayesian cumulative
regret (BCR) upper bound. GP-PIMS avoids the problem of selecting the reference value by replacing it
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with the maximum of the posterior sample path, inspired by GP-TS. Furthermore, a recent study (Iwazaki,
2025) showed a tighter high-probability regret upper bound for the usual GP-UCB.

Several studies (Bull, 2011; Wang & de Freitas, 2014; Nguyen et al., 2017; Berk et al., 2019) have attempted
to obtain regret guarantees of GP-EI-based algorithms, in which the reference value is often changed from
the current best observation to, for example, the maximum of the posterior mean (Wang & de Freitas,
2014), and the maximum of the posterior sample path (Berk et al., 2019). However, as reported in existing
studies (Tran-The et al., 2022; Bedi et al., 2022; Hu et al., 2025), several analyses appear incorrect (See
Section 3 and Appendix A for more details). Other theoretical analyses in (Wang & de Freitas, 2014; Tran-
The et al., 2022) require rescaling the posterior variance, which can deteriorate the practical optimization
performance. Hence, a theoretical analysis for GP-EI-based algorithms without posterior variance rescaling
has not been established except for the noiseless case (Bull, 2011).

This paper analyzes the posterior sampling-based GP-EI algorithm inspired by GP-PIMS (Takeno et al.,
2024), which is GP-EI with the reference value set by the maximum of the posterior sample path. We refer to
this algorithm as GP-EI from the maximum of the sample path (GP-EIMS). We show that GP-EIMS achieves
the sublinear BCR under the Bayesian setting, where the objective function follows the GP. Moreover, GP-
EIMS does not require rescaling of the posterior variance. Finally, we demonstrate the effectiveness of
GP-EIMS, which stems from avoiding posterior variance rescaling, through numerical experiments.

2 Preliminary

Bayesian Optimization: We consider the black-box optimization for f : X → R formulated as

x∗ = arg max
x∈X

f(x),

where X ⊂ Rd is an input domain and d is a dimension. We assume that only observations y = f(x) + ϵ,
where ϵ is a noise, can be obtained, but are costly. Thus, our goal is to optimize f with fewer observations.
For this goal, BO sequentially performs querying an input xt and observing yt = f(xt) + ϵt, where t is an
iteration. The AF chooses queried input based on the Bayesian model, which is updated by the collected
dataset.

Gaussian Process Model: In this paper, we assume that f follows a GP with a predefined kernel
k : X × X → R, denoted as f ∼ GP(0, k). We further assume that the observation is contaminated
by Gaussian noise; that is, yt = f(xt) + ϵt, where ϵt ∼ N (0, σ2) with a positive variance σ2 > 0. Let
Dt−1 = {(xi, yi)}t−1

i=1 be the training data obtained until the beginning of t-th iteration. Then, the posterior
distribution p(f | Dt−1) is a GP again (Rasmussen & Williams, 2005), whose mean and variance can be
obtained as follows:

µt−1(x) = kt−1(x)⊤(K + σ2It−1
)−1

yt−1, (1)

σ2
t−1(x) = k(x, x)− kt−1(x)⊤(K + σ2It−1

)−1
kt−1(x), (2)

where kt−1(x) :=
(
k(x, x1), . . . , k(x, xt−1)

)⊤ ∈ Rt−1 is the kernel vector, K ∈ R(t−1)×(t−1) is the kernel ma-
trix whose (i, j)-element is k(xi, xj), It−1 ∈ R(t−1)×(t−1) is the identity matrix, and yt−1 := (y1, . . . , yt−1)⊤ ∈
Rt−1. Hereafter, we denote that a probability density function (PDF) p(·|Dt−1) = pt(·), a probability
Pr(·|Dt−1) = Prt(·), and an expectation E[·|Dt−1] = Et[·] for brevity.

Furthermore, for the case of continuous X , we assume the following smoothness condition for GP:
Assumption 2.1. Let X ⊂ [0, r]d be a compact and convex set, where r > 0. Assume that the kernel k
satisfies the following condition on the derivatives of a sample path f . There exists the constants a ≥ 1 and
b > 0 such that,

Pr (Lj > c) ≤ a exp
(
−
(c

b

)2
)

, for j ∈ [d], (3)

where Lj = supx∈X

∣∣∣ ∂f
∂xj

∣∣∣ and [d] = {1, . . . , d}.
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This assumption is commonly used (Srinivas et al., 2010; Kandasamy et al., 2018; Takeno et al., 2023; 2024)
and holds at least for the squared exponential (SE) and Matérn-ν kernels with ν > 2 (Theorem 5 in Ghosal
& Roy, 2006; Srinivas et al., 2010).

Maximum Information Gain: For regret analysis, we will use the quantity called maximum information
gain (MIG) (Srinivas et al., 2010; Vakili et al., 2021):
Definition 2.2 (Maximum information gain). Let f ∼ GP(0, k) over X ⊂ [0, r]d. Let A = {ai}T

i=1, where
ai ∈ X for all i ∈ [T ]. Let fA =

(
f(ai)

)T

i=1, ϵA =
(
ϵi

)T

i=1, where ϵi ∼ N (0, σ2) for all i ∈ [T ], and
yA = fA + ϵA ∈ RT . Then, MIG γT is defined as follows:

γT := max
A

I(yA; fA) such that |A| = T and ai ∈ X for all i ∈ [T ], (4)

where I is the Shannon mutual information.

For frequently used kernels, MIG is known to be sublinear (Srinivas et al., 2010; Vakili et al., 2021), for
example, γT = O

(
(log T )d+1) for the SE kernels and γT = O

(
T

d
2ν+d (log T ) 2ν

2ν+d
)

for the Matérn-ν kernels.

Performance Measure: We evaluate the theoretical performance of BO methods by the BCR (Russo &
Van Roy, 2014; Kandasamy et al., 2018; Takeno et al., 2023; 2024) defined as

BCRT =
T∑

t=1
E [f(x∗)− f(xt)] , (5)

where the expectation is taken with all the randomness, that is, f, (ϵi)i∈[T ], and the randomness of
the algorithm. Our goal is to show the sublinearity of the BCR since it implies that the simple re-
gret E [f(x∗)− f(x̂T )] ≤ BCRT /T → 0 as T → ∞ (Proposition 8 in Russo & Van Roy, 2018), where
x̂T := arg maxx∈X µT (x) is a recommendation point at T -th iteration.

GP-based EI algorithm: GP-EI is the widely used AF for BO (Mockus et al., 1978; Jones et al., 1998).
As the name suggests, the AF of GP-EI given Dt−1 at t-th iteration is defined as follows:

EI
(
µt−1(x), σt−1(x), ymax

t−1
)

= Et

[
max{f(x)− ymax

t−1 , 0}
]

(6)

=
{

σt−1(x)τ
(

µt−1(x)−ymax
t−1

σt−1(x)

)
if σt−1(x) > 0,

max{µt−1(x)− ymax
t−1 , 0} if σt−1(x) = 0,

(7)

where ymax
t−1 = maxi∈[t−1] yi is the current best observation, τ : R→ R+ is

τ (c) = cΦ(c) + ϕ(c), (8)

and Φ and ϕ are the cumulative distribution function and the PDF of the standard Gaussian distribution.
Mainly due to the noise included in ymax

t−1 , a regret analysis for the original GP-EI is difficult.

3 Literature Review for Regret Analysis of GP-EI

The assumption for the regret analysis in the BO literature is twofold: the Bayesian setting that f follows
GPs (Srinivas et al., 2010; Russo & Van Roy, 2014; Takeno et al., 2023; 2024) and the frequentist setting that f
belongs to the known reproducing kernel Hilbert space (RKHS) (Srinivas et al., 2010; Chowdhury & Gopalan,
2017; Janz et al., 2020; Iwazaki & Takeno, 2025). Furthermore, the analyzed regret can be categorized as
cumulative regret

∑T
t=1 f(x∗) − f(xt) and simple regret f(x∗) − f(x̂t) with some recommended input at

t-th iteration, for example, x̂t := arg maxx∈X µt(x). In addition, as we discussed above, we refer to its
expected variants as BCR and Bayesian simple regret in the Bayesian setting. Although our main analysis
concentrates on the BCR analysis in the Bayesian setting, we review the analyses of GP-EI for both regrets
in both settings.
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3.1 Regret Analysis for Noise-Free Setting

Seminal works for the regret analysis of GP-EI concentrated on a noise-free setting where observation noise
does not exist. Therefore, there is no need to care about the noise. Vazquez & Bect (2010) show that GP-EI
asymptotically converges on the optimum for both Bayesian and frequentist settings regarding the stationary
and non-degeneracy kernels, such as the Matérn kernel family. Grünewälder et al. (2010) proves that the
computationally intractable T -step look-ahead variant of GP-EI is near-optimal in the noise-free Bayesian
setting under an assumption that the prior mean function and the kernel function are Hölder-continuous.
Here, near-optimal means that a regret upper bound matches a regret lower bound except for logarithmic
factors. Bull (2011) further shows simple regret upper bounds of GP-EI and modified GP-EI algorithms
for the Matérn kernel family in the frequentist setting. In particular, the modified GP-EI is shown to be
near-optimal.

3.2 Regret Analysis with Rescaling Posterior Variance

Wang & de Freitas (2014) show the high-probability cumulative regret upper bound in the frequentist setting
for a case where additional noise contaminates observations, as with our setting. For this analysis, Wang &
de Freitas (2014) propose to use µmax

t−1 = maxx∈X µt−1(x) instead of ymax
t−1 and to scale σt−1(x) by ν

1/2
t > 0

in the AF of GP-EI as follows:

EI
(
µt−1(x), ν

1/2
t σt−1(x), µmax

t−1
)

= ν
1/2
t σt−1(x)τ

(
µt−1(x)− µmax

t−1

ν
1/2
t σt−1(x)

)
, (9)

where νt = Θ (γt). Their analysis shows O(γT

√
T )1 cumulative regret upper bound, which is sublinear, for

example, for the Gaussian kernel. However, since νt ≫ 1 in most cases, the above rescaling strengthens the
exploration behavior, and the practical effectiveness can deteriorate. As a result, in the practical scenarios,
we must tune νt as a hyperparameter. Note that although Wang & de Freitas (2014) further consider a
case where hyperparameters of GPs are unknown, we focus on a case where the hyperparameters of GPs are
specified beforehand.

Tran-The et al. (2022) analyze EI
(
µt−1(x), ν

1/2
t σt−1(x), µ̃max

t−1
)
, which avoids an optimization over (contin-

uous) X by replacing µmax
t−1 in (Wang & de Freitas, 2014) as µ̃max

t−1 = maxi∈[t−1] µt(xi), in the frequentist
setting. However, Tran-The et al. (2022) only analyze the simple regret f(x∗)− f(x̂t) = O(γT /

√
T ). There-

fore, even in the frequentist setting, the cumulative regret upper bound of the GP-EI algorithm with µ̃max
t−1

has not been shown to our knowledge. Furthermore, their algorithm suffers from the same problem as (Wang
& de Freitas, 2014), that is, the rescaling of posterior variance.

Although Wang & de Freitas (2014); Tran-The et al. (2022) discuss only the frequentist setting, their deriva-
tion can be extended to the Bayesian setting by carefully applying well-known proof techniques mainly
from (Russo & Van Roy, 2014; Kandasamy et al., 2018; Takeno et al., 2023). For completeness, we
show high probability cumulative regret upper bounds and BCR upper bounds in the Bayesian setting
of EI

(
µt−1(x), ν

1/2
t σt−1(x), µmax

t−1
)

and EI
(
µt−1(x), ν

1/2
t σt−1(x), µ̃max

t−1
)

in Appendices B.2 and B.3, respec-
tively. Since our analysis for finite input domains can apply almost similarly to the frequentist setting, the
cumulative regret incurred by EI

(
µt−1(x), ν

1/2
t σt−1(x), µ̃max

t−1
)

is O(γT

√
T ) in the frequentist setting (see

Appendix B.4 for details).

Hu et al. (2025) recently analyze the GP-EI-based algorithm combining EI
(
µt−1(x), ν

1/2
t σt−1(x), µ̃max

t−1
)

and
a candidate elimination based on a quantity EI

(
µ̃max

t−1 , ν
1/2
t σt−1(x), µt−1(x)

)
/(T − t) called evaluation cost.

However, although Remark 1 in (Hu et al., 2025) claim that their O(γT

√
T ) cumulative regret upper bound

is tighter than the existing result, O(γT

√
T ) cumulative regret upper bound has already been shown in

(Wang & de Freitas, 2014) with the reference value µmax
t−1 , as described above. Furthermore, even in the case

that the reference value is µ̃max
t−1 , the cumulative regret upper bound O(γT

√
T ) can be obtained without any

modification to the GP-EI algorithm (see Appendix B). Hence, the importance of the candidate elimination
based on the evaluation cost is ambiguous in the theorem.

1Although Theorem 1 in (Wang & de Freitas, 2014) states O(γ3/2
T

√
T ), we believe that their proof suggests O(γT

√
T ).
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3.3 Other Related Works

Several other studies analyze GP-EI without rescaling of the posterior variance based on (Nguyen et al.,
2017). Nguyen et al. (2017) claims that the cumulative regret upper bound for the usual GP-EI with ymax

t

is sublinear in the frequentist setting. However, as shortly discussed in Section 3 of (Tran-The et al., 2022),
Remark 1 of (Hu et al., 2025), and Section 1 of (Wang et al., 2025), Lemma 7 in (Nguyen et al., 2017), which
claims

∑T
t=1 σ2

t (x) = O(γT ) for all x ∈ X , is incorrect. Note that the usual upper bound by MIG is given
as
∑T

t=1 σ2
t (xt) = O(γT ) (Srinivas et al., 2010). The incorrect derivation in (Nguyen et al., 2017) is the last

equality in the proof of Lemma 7. The counter-examples are shown in Appendix A.

At least to our knowledge, Eq (8) in (Berk et al., 2019), page 37 in (Grosnit et al., 2021), Eq. (9.26) in
(Bedi et al., 2022), Lemma B.3 in (Marisu & Pun, 2023), and Lemma 2 in (Zhou et al., 2024) in the regret
analyses of GP-EI-based algorithms are also incorrect by using a similar result from Lemma 7 in (Nguyen
et al., 2017). In addition, this mistake has been used for regret analyses for other AFs, such as Lemma 6 of
(Nguyen et al., 2019), Lemma 12 in (Husain et al., 2023).

Exploration enhanced EI (E3I) (Berk et al., 2019) is the following GP-EI variants:

E3I(x) = Eg∗
t ∼pt(f(x∗))

[
σt(x)τ

(
µt(x)− g∗

t

σt(x)

)]
, (10)

where gt ∼ pt(f) is the sample path from the posterior and g∗
t = maxx∈X gt(x). The expectation regarding

g∗
t ∼ pt(f(x∗)) is approximated by Monte Carlo (MC) estimation. However, as we already discussed, their

analysis appears incorrect. We will consider GP-EIMS, a similar posterior sampling-based GP-EI algorithm
that uses only one posterior sample. In the BCR analyses of GP-EIMS, the probability matching property
between g∗

t and f(x∗), that is, the randomness caused by the algorithm relying on only one sample, plays
a key role, as with the analyses of GP-TS (Russo & Van Roy, 2014; Kandasamy et al., 2018; Takeno et al.,
2024).

Fu et al. (2024) analyze the GP-EI algorithm without the posterior variance scaling for the bilevel opti-
mization problem. However, the derivation from Eq. (D.8) to Eq. (D.9) in (Fu et al., 2024) is not ob-
vious. In Eq. (D.8) in (Fu et al., 2024), the regret upper bound has the multiplicative term 1

τ(βT )−βT

with βT = Θ(log T ). Then, τ(βT ) − βT = βT ϕ(βT )
(

1
βT
− 1−Φ(βT )

ϕ(βT )

)
= O(βT ϕ(βT )) since the mills ra-

tio 1−Φ(c)
ϕ(c) → 1

c as c → ∞ (for example, see Eq. (7) in Gasull & Utzet, 2014) and 1
c −

1−Φ(c)
ϕ(c) > 0

for all c > 0. Therefore, we can see 1
τ(βT )−βT

= Ω(1/(βT ϕ(βT )). Recalling βT = Θ(log T ), the term
1

τ(βT )−βT
= Ω(T log T / log T ), which is not sublinear.

Wang et al. (2025) tackle a theoretical analysis of the usual EI with ymax
t without the posterior variance

scaling. However, Wang et al. (2025) analyze a quantity f(x∗) − ymax
T , which is not the established regret

definition, and can be negative. Paritularly when the noise variance σ2 is large compared with f(x∗), then
f(x∗) − ymax

T can diverge to −∞ rapidly by noise. Therefore, analyzing f(x∗) − ymax
T is not suggestive in

general.

4 GP-EIMS

This section provides the algorithm and the BCR upper bounds of GP-EIMS.

4.1 Algorithm

As with GP-PIMS (Takeno et al., 2024), we use the sampled maximum defined as follows:

g∗
t = max

x∈X
gt(x), (11)
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Algorithm 1 GP-EIMS
Require: Input space X , GP prior µ = 0 and k, and initial dataset D0

1: for t = 1, . . . do
2: Fit GP to Dt−1
3: Generate a sample path gt ∼ p(f |Dt−1)
4: g∗

t ← maxx∈X gt(x)
5: xt ← arg maxx∈X EI(µt−1(x), σt−1(x), g∗

t )
6: Observe yt = f(xt) + ϵt and Dt ← Dt−1 ∪ (xt, yt)
7: end for

where gt ∼ p(f |Dt−1) is the sample path from the posterior. Then, the AF of GP-EIMS is

EI(µt−1(x), σt−1(x), g∗
t ) = Ef(x)∼pt(f(x)) [max{f(x)− g∗

t , 0}|g∗
t ] (12)

= σt−1(x)τ
(

µt−1(x)− g∗
t

σt−1(x)

)
. (13)

Note that the posterior variance σ2
t−1(x) is not rescaled. Finally, an algorithm of GP-EIMS is shown in

Algorithm 1.

4.2 Regret Analysis

First, we can obtain a general BCR upper bound for arbitrary BO algorithms, as shown in (Takeno et al.,
2024):
Lemma 4.1. Let

ηt := g∗
t − µt−1(xt)

σt−1(xt)
. (14)

Then, the BCR can be bounded from above as follows:

BCRT ≤

√√√√E

[
T∑

t=1
η2

t 1{ηt ≥ 0}
]√

C1γT , (15)

where C1 := 2/ log(1 + σ−2) and the indicator function 1{ηt ≥ 0} = 1 if ηt ≥ 0, and 0 otherwise.

For completeness, we show the proof in Appendix C.1. Hence, we can concentrate on deriving∑T
t=1 E

[
η2

t 1{ηt ≥ 0}
]

= o(T 2/γT ) based on the property of GP-EIMS so that the resulting BCR upper
bounds are sublinear.

For this purpose, the following lemma plays a key role in our analysis. For more detailed proof, see Ap-
pendix C.2.
Lemma 4.2. Fix β > 0 and U ≤ maxx∈X

{
µt−1(x) + β1/2σt−1(x)

}
. Then, the following inequality holds:

U − µt−1(xt)
σt−1(xt)

≤

√
log
(

σ2 + t− 1
σ2

)
+ β +

√
2πβ, (16)

where xt = arg maxx∈X EI(µt−1(x), σt−1(x), U).

Short proof. As with (Wang & de Freitas, 2014), by using the properties of τ(·) and the posterior variance
and the definition of xt, we can obtain

|µt−1(xt)− U | ≤

(√
log
(

σ2 + t− 1
σ2

)
− 2 log

(
τ(−β1/2)

)
− log(2π)

)
σt−1(xt). (17)
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However, since the AF is defined by U instead of maxx∈X µt−1(x) in (Wang & de Freitas, 2014), we must
further obtain an upper bound of −2 log

(
τ(−β1/2)

)
. To obtain the upper bound, we leverage the following

useful result:

Lemma 4.3 (Lemma 1 in (Jang, 2011)). Q-function 1− Φ(c) can be bounded from above as follows:

1− Φ(c) ≤ 1√
2πc

(
1− exp

(
−
√

π

2 c

))
exp

(
−c2

2

)
(18)

= 1
c

(
1− exp

(
−
√

π

2 c

))
ϕ(c), (19)

for all c > 0.

By using Lemma 4.3 and properties of Φ and ϕ, we can obtain the following inequality:

τ(−β1/2) = −β1/2Φ(−β1/2) + ϕ(−β1/2) (20)

= −β1/2
(

1− Φ(β1/2)
)

+ ϕ(β1/2) (21)

≥ −
(

1− exp
(
−
√

π

2 β1/2
))

ϕ(β1/2) + ϕ(β1/2) (22)

= exp
(
−
√

π

2 β1/2
)

ϕ(β1/2). (23)

Hence, we see that −2 log
(
τ(−β1/2)

)
≤
√

2πβ − 2 log(ϕ(β1/2)) =
√

2πβ + β + log(2π). Consequently, by
combining the results, we obtain the desired result.

By leveraging Lemmas 4.1 and 4.2, we show BCR upper bounds for discrete and continuous input domains.

4.2.1 BCR Upper Bound for Finite Input Domain

We combine the following lemma from (Srinivas et al., 2010; Takeno et al., 2023) with Lemma 4.2:
Lemma 4.4 (Lemma 4.1 in (Takeno et al., 2023)). Suppose that f is a sample path from a GP with zero
mean and a predefined kernel k, and X is finite. Pick δ ∈ (0, 1) and t ≥ 1. Then, for any given Dt−1,

Prt

(
f(x) ≤ µt−1(x) + β1/2(δ)σt−1(x),∀x ∈ X

)
≥ 1− δ, (24)

where β(δ) = 2 log(|X |/(2δ)).

Since f(x∗) | Dt−1 and g∗
t | Dt−1 are identically distributed, this lemma implies that

Pr
(

g∗
t ≤ max

x∈X
{µt−1(x) + β1/2(δ)σt−1(x)}

)
≥ 1− δ. (25)

Thus, applying Lemma 4.2 by substituting g∗
t to U , we can derive the following result:

Corollary 4.5. Assume the same condition as in Lemma 4.4. Then, by running GP-EIMS, the following
inequality holds with probability at least 1− δ:

ηt ≤

√
log
(

σ2 + t− 1
σ2

)
+ β(δ) +

√
2πβ(δ), (26)

where β(δ) = 2 log(|X |/(2δ)). Furthermore, we obtain

E
[
η2

t 1{ηt ≥ 0}
]
≤ log

(
σ2 + t− 1

σ2

)
+ C2 +

√
2πC2, (27)

where C2 = 2 + 2 log(|X |/2).
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See Appendix C.3 for the proof. The first inequality is a direct consequence of Lemmas 4.2 and 4.4. The
second inequality can be derived similarly to the proof of Lemma 3.2 in (Takeno et al., 2024).

Consequently, from Lemma 4.1 and Corollary 4.5, we can obtain the following BCR upper bound:
Theorem 4.6. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1, and X be finite.
Then, by running GP-EIMS, the BCR can be bounded from above as follows:

BCRT ≤
√

C1BT TγT , (28)

where BT = log
(

σ2+T −1
σ2

)
+ C2 +

√
2πC2, C1 := 2/ log(1 + σ−2), and C2 = 2 + 2 log(|X |/2).

See Appendix C.3 for the proof. The BCR upper bound of GP-EIMS for finite input domains is
O(
√

TγT log(T |X |)), which is sublinear at least for the SE kernels, linear kernels, and Matérn-ν kernels
with 2ν > d.

4.2.2 BCR Upper Bound for Continuous Input Domain

For continuous input domains, as with the prior works (for example, Srinivas et al., 2010; Kandasamy et al.,
2018; Takeno et al., 2023; 2024), we consider a discretized input set Xt ⊂ X , which is a finite set with each
dimension equally divided into mt ≥ 1. Thus, |Xt| = md

t . Furthermore, we define the nearest point of x in
Xt as [x]t = arg minx′∈Xt

∥x− x′∥1.

If we consider the AF, EI(µt−1(x), σt−1(x), g̃∗
t ), where g̃∗

t := maxx∈Xt gt(x), a sublinear BCR upper bound
can be derived in a similar way to the proof of Theorem 4.6. However, mt for Xt must depend on several
unknown parameters such as a and b in Assumption 2.1. Thus, mt must be tuned by users if the computation
of g̃∗

t is required in practice. Hence, using g̃∗
t means that a new tuning parameter mt is involved, which is not

preferable. Therefore, we consider a BCR upper bound for EI(µt−1(x), σt−1(x), g∗
t ), which does not require

the discretization in the actual algorithm, as with the analyses of GP-PIMS (Takeno et al., 2024).

From Lemma 4.4 and Assumption 2.1, we can obtain the following lemma by appropriately controlling mt:
Lemma 4.7. Suppose Assumption 2.1 holds. Pick δ ∈ (0, 1) and t ≥ 1. Then, the following holds:

Prt

(
∀x ∈ X , f(x) ≤ µt−1([x]t) + 2β

1/2
t (δ/2)σt−1([x]t)

)
≥ 1− δ (29)

where βt(δ) = 2d log(mt)− 2 log(2δ) and mt = max
{

2,
⌈
bdr
√

(σ2 + t− 1) log(2ad)/σ2
⌉}

.

See Appendix C.4 for the proof. As with the case of finite input domains, since f(x∗) | Dt−1 and g∗
t | Dt−1

are identically distributed, Lemmas 4.2 and 4.7 derive

E
[
η2

t 1{ηt ≥ 0}
]
≤ log

(
σ2 + t

σ2

)
+ CT +

√
2πCT , (30)

where CT = 8(d log(mT ) + 1).

Consequently, the BCR upper bound can be derived:
Theorem 4.8. Suppose Assumption 2.1 holds and f ∼ GP(0, k), where the kernel function k is normalized
as k(x, x) ≤ 1. Then, by running GP-EIMS, the BCR can be bounded from above as follows:

BCRT ≤
√

C1BT TγT , (31)

where C1 := 2/ log(1 + σ−2), BT = log
(

σ2+T −1
σ2

)
+ CT +

√
2πCT , CT = 8(d log(mT ) + 1), and mT =

max
{

2,
⌈
bdr
√

(σ2 + T − 1) log(2ad)/σ2
⌉}

.

See Appendix C.4 for the proof. As with Theorem 4.6, BCRT = O(
√

TγT log T ), which is sublinear for
widely used kernels, such as the SE kernels, linear kernels, and Matérn-ν kernels with 2ν > d.
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Figure 1: Results of simple regret for synthetic functions generated from a GP defined by the SE kernel.
The top and bottom rows show the result on the length scale of the kernel ℓ = 0.1 and ℓ = 0.2, respectively.
The left, centered, and right columns show the result on the noise standard deviation σ = 0.01, 0.1, and 1,
respectively.

5 Experiments

We performed numerical experiments using synthetic functions generated from GPs, which match the as-
sumptions for our analysis. We set X = {0.0, 0.1, . . . , 0.9}d and d = 4. Therefore, |X | = 104. We employed
the SE kernel kSE(x, x′) = exp

(
−∥x− x′∥2

2/(2ℓ2)
)
. Furthermore, we actually added observation noise

ϵ ∼ N (0, σ2). We report results changing ℓ ∈ {0.1, 0.2} and σ ∈ {0.01, 0.1, 1}. We fixed the hyperparameters
of the GP model, that is ℓ and σ, to the parameters used to generate the synthetic functions and observation
noise. We set an initial dataset to data that is closest to 2d data generated randomly as a Sobol sequence.

As baselines, we employed GP-UCB (Srinivas et al., 2010), improved randomized GP-UCB (IRGP-
UCB) (Takeno et al., 2023), which uses the random variable ζt instead of βt in GP-UCB, GP-TS (Russo &
Van Roy, 2014), max-value entropy search (MES) (Wang & Jegelka, 2017), GP-PIMS (Takeno et al., 2024),
GP-EI (Mockus et al., 1978), and GP-EI using the maximum of the posterior mean (Wang & de Freitas,
2014). We denote the method of (Wang & de Freitas, 2014) as GP-EI-µmax. We set the hyperparameters
of GP-UCB, IRGP-UCB, and GP-EI-µmax to the theoretically derived parameters for the BCR analyses.
Therefore, we set βt = 2 log(|X |t2/

√
2π +1) for GP-UCB and ζt = 2 log(|X |/2)+Zt with Zt ∼ Exp(λ = 1/2)

for IRGP-UCB (Takeno et al., 2023). Furthermore, we set νt = 2 log(|X |t2/
√

2π + 1) for GP-EI-µmax

(see Theorem B.4). The number of MC samples in MES was set to 10. We employed random Fourier
feature approximations (Rahimi & Recht, 2008) for the posterior sampling in GP-EIMS, GP-TS, MES, and
GP-PIMS.

Figures 1 and 2 show the simple regret and cumulative regret for the SE kernels. We measured optimization
performance by the simple regret f(x∗) − f(x̂t), where x̂t = arg maxx∈X µt(x), and the cumulative regret∑T

t=1 f(x∗) − f(xt). We report the mean and standard error over 16 random trials for the generation of
the initial dataset, the synthetic functions, the observation noise, and the algorithm’s randomness. The BO
methods whose theoretical analysis has not been shown are indicated by dashed lines.
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Figure 2: Results of cumulative regret for synthetic functions generated from a GP defined by the SE kernel.
The top and bottom rows show the result on the length scale of the kernel ℓ = 0.1 and ℓ = 0.2, respectively.
The left, centered, and right columns show the result on the noise standard deviation σ = 0.01, 0.1, and 1,
respectively.

GP-UCB and GP-EI-µmax consistently inferior to other methods. This is because the theoretical values of βt

and νt are too large in practice. Indeed, IRGP-UCB, which uses ζt = O(log |X |) instead of βt = O(log(|X |t)),
shows better performance than GP-UCB and GP-EI-µmax. However, IRGP-UCB slightly deteriorates when
ℓ = 0.2, particularly for the cumulative regret, since ζt is still large for the objective function with ℓ = 0.2
whose local optima are not so many. Note that if ℓ becomes small, then the objective function has large
variability and more local optima.

GP-TS shows superior performance when ℓ = 0.2. However, when ℓ = 0.1, GP-TS often deteriorates for
both simple and cumulative regret. This tendency has been reported as over-exploration of GP-TS (Takeno
et al., 2023; 2024; Shahriari et al., 2016).

MES shows superior performance in terms of cumulative regret, although its regret analysis has not been
shown, as discussed in (Takeno et al., 2022). However, the simple regret stagnates in the case of ℓ = 0.2 and
σ = 0.01, 0.1. Therefore, we can interpret that MES is slightly too exploitative in these experiments. On the
other hand, it is known that GP-PIMS can be viewed as MES using one MC sample (Takeno et al., 2024).
Superior performance of MES in terms of cumulative regret may imply the existence of a regret guarantee
of MES.

GP-EI shows superior performance for the simple regret, although its regret analysis for σ > 0 has not been
shown. However, in the experiments for the cumulative regret, GP-EI clearly deteriorates, particularly for
the case of ℓ = 0.2. Since the noisy best observation ymax

t tends to be large with larger noise ϵ, we can expect
that GP-EI tends to lean more towards exploration. Since uncertainty sampling that maximizes σt−1(x)
achieves the simple regret upper bound that converges to zero (Vakili et al., 2021), it is understandable
that GP-EI shows superior performance for the simple regret2. On the other hand, we conjecture that the
deterioration of GP-EI for the cumulative regret is due to over-exploration. Furthermore, we consider that

2Although Vakili et al. (2021) analyze in the frequentist setting, their analysis immediately suggests a simple regret upper
bound in the Bayesian setting.
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since the objective function with ℓ = 0.1 has many local optima, the aggressive exploration by larger ymax
t

results in relatively better performance compared with that of ℓ = 0.2.

GP-EIMS and GP-PIMS show superior performance consistently for both simple and cumulative regret,
particularly compared with other theoretically guaranteed methods. Both GP-EIMS and GP-PIMS are
based on the posterior sample of g∗

t and show similar results in these experiments, although GP-EIMS
chooses a larger σt−1(xt) compared with GP-PIMS, due to the formulation of the AF.

We performed the experiments for the Matérn kernels kMat(x, x′) = 21−ν

Γ(ν)

(√
2ν ∥x−x′∥

ℓ

)ν

Kν

(√
2ν ∥x−x′∥

ℓ

)
,

where Γ(·) and Kν(·) are the gamma function and the modified Bessel function, and several benchmark
functions from https://www.sfu.ca/~ssurjano/optimization.html. These experiments are shown in
Appendix E. In the experiments for the Matérn kernels, we can observe a similar tendency to the experiments
for the SE kernel. In the experiments for the benchmark functions, we confirmed that all BO methods perform
well in most cases since we employed heuristic parameter settings for GP-UCB, IRGP-UCB, and GP-EI-µmax.
On the other hand, GP-TS, GP-PIMS, and GP-EIMS show good performance without heuristic tunings,
and GP-PIMS and GP-EIMS show superior or comparable performance to GP-TS.

6 Conclusion

The regret analyses of GP-EI-based algorithms are fewer than those of theoretically established algorithms,
such as GP-UCB and GP-TS. Existing analysis by Wang & de Freitas (2014) requires increasing the posterior
variance in the actual algorithm, which can deteriorate the optimization performance. Therefore, we analyzed
the posterior sampling-based GP-EI algorithm called GP-EIMS, which does not require rescaling the posterior
variance. We derived the sublinear BCR upper bounds of the GP-EIMS algorithm in the Bayesian setting.
We finally demonstrated the practical effectiveness of GP-EIMS through numerical experiments.

Limitation and Future Work: Several future directions for this study exist. First, the posterior sampling
for continuous X or discrete X with huge |X | requires some approximation, such as random Fourier features,
in practice. Theoretical analysis incorporating such approximations (Mutny & Krause, 2018) is interesting.
Second, since we show only the BCR upper bounds, whether GP-EIMS (and GP-PIMS) achieves sublinear
high-probability cumulative regret bounds is of interest. Third, recent studies (Scarlett, 2018; Iwazaki,
2025) imply that the standard GP-UCB achieves a near-optimal regret upper bound with high probability.
Showing whether other BO methods, including GP-EIMS, achieve a near-optimal regret upper bound is
vital, as discussed in Section 4 in (Iwazaki, 2025). Lastly, our analysis for GP-EIMS concentrates on the
Bayesian setting. As with the analysis of GP-TS in the frequentist setting (Chowdhury & Gopalan, 2017),
theoretical analysis in the frequentist setting is also intriguing.

Broader Impact Statement

Our work focuses on theoretical aspects of machine learning methods, and we do not anticipate any negative
societal impact.
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A Technical Issue in (Nguyen et al., 2017)

A counter-example against Lemma 7 in (Nguyen et al., 2017) can be made easily. Let us consider the BO
algorithm that always evaluates the same point; that is, ∃x ∈ X ,∀t ∈ [T ], xt = x. Then, choosing an
input x̃ such that k(x̃, x̃) − k(x, x̃)2/k(x, x) ≥ C with some strictly positive constant C, we can confirm
σ2

t (x̃) ≥ k(x̃, x̃) − k(x, x̃)2/k(x, x) ≥ C > 0 for all t ∈ [T ]. Therefore,
∑T

t=1 σ2
t (x̃) ≥ CT = Ω(T ), which

contradicts Lemma 7 in (Nguyen et al., 2017).

Note that if Lemma 7 in (Nguyen et al., 2017) is true, any BO algorithm achieves the converged simple
regret upper bound in some settings. Suppose that

∑T
t=1 σ2

t−1(x) = O(γT ) for all x ∈ X holds. Assume X
is finite and βT is set so that for all x ∈ X , |µT (x)− f(x)| ≤ β

1/2
T σT (x) with high probability (for example,

as in Srinivas et al., 2010). Then, the following holds with high probability:

f(x∗)− f(x̂T ) ≤ µT (x∗) + β
1/2
T σT (x∗)− µT (x̂T ) + β

1/2
T σT (x̂T ) (32)

≤ 2β
1/2
T σT (x̃T ) (33)

≤ 1
T

2β
1/2
T

T∑
t=1

σt(x̃T ) (∵ ∀x ∈ X ,∀t ∈ [T ], σt(x) ≥ σT (x))

(34)

False= O

(√
βT γT

T

)
, (35)

where x̂T = arg maxx∈X µT (x), x̃T := arg maxx∈X σT (x). This result suggests that (if the equality shown
as False= is true) the simple regret upper bound converges to 0 when γT βT = o(T ) regardless of the BO
algorithm. For example, γT βT = o(T ) holds for Gaussian and Matérn-ν kernels with 2ν > d in the Bayesian
setting. This result is obviously strange.

B Regret Upper Bounds for GP-EI with Rescaling of Posterior Variance

This section shows the regret upper bounds for GP-EI with rescaling of the posterior variance in the Bayesian
setting. The derivation of the regret upper bounds comes mainly from (Wang & de Freitas, 2014) and can
be applied to the frequentist setting in almost the same way. For more details on the frequentist setting, we
discuss in Appendix B.4. We denote the cumulative regret RT :=

∑T
t=1 f(x∗)− f(xt).

B.1 Auxiliary Lemmas

First, to generalize the analysis of (Wang & de Freitas, 2014), we provide the two lemmas modified slightly
from (Wang & de Freitas, 2014).
Lemma B.1 (Modified from Lemma 9 of (Wang & de Freitas, 2014)). Pick x ∈ X and t ∈ [T ]. Suppose
that a ∈ R satisfies the following inequality holds with some β

1/2
t > 0:

|a− µt−1(x)| ≤ β
1/2
t σt−1(x). (36)

Then, the following holds with b ∈ R and ν > 0:

max
{

(a− b)+ − β
1/2
t σt−1(x), τ(−β

1/2
t /ν1/2)

τ(β1/2
t /ν1/2)

(a− b)+

}
(37)

≤ ν1/2σt−1(x)τ
(

µt−1(x)− b

ν1/2σt−1(x)

)
= EI

(
µt−1(x), ν1/2σt−1(x), b

)
(38)

≤ (a− b)+ + (β1/2
t + ν1/2)σt−1(x), (39)

where (·)+ := max{0, ·}.
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Proof. If σt−1(x) = 0, then a = µt−1(x) and EI
(
µt−1(x), ν1/2σt−1(x), b

)
= (a− b)+. Therefore, the inequal-

ities are trivial (Note that τ(·) is a monotonically increasing function). Thus, we assume that σt−1(x) > 0
hereafter. Furthermore, define the variables q and u as follows:

q = a− b

σt−1(x) , u = µt−1(x)− b

σt−1(x) . (40)

First, we derive the upper bound. From the definition,

EI
(
µt−1(x), ν1/2σt−1(x), b

)
= ν1/2σt−1(x)τ

( u

ν1/2

)
. (41)

From the assumption, |u − q| ≤ β
1/2
t . Since τ(·) is monotonically increasing and τ(c) ≤ 1 + c for c > 0, we

obtain

EI
(
µt−1(x), ν1/2σt−1(x), b

)
≤ ν1/2σt−1(x)τ

(
(q)+ + β

1/2
t

ν1/2

)
(42)

≤ ν1/2σt−1(x)
(

(q)+ + β
1/2
t

ν1/2 + 1
)

(43)

≤ (a− b)+ + (β1/2
t + ν1/2)σt−1(x). (44)

Next, we derive the lower bound. If (a− b)+ = 0, then the lower bound is trivial since the GP-EI acquisition
function is non-negative. Therefore, assume (a− b)+ > 0. Since τ(·) is monotonically increasing, we can see
that

EI
(
µt−1(x), ν1/2σt−1(x), b

)
≥ ν1/2σt−1(x)τ

(
q − β

1/2
t

ν1/2

)
(∵ q − β

1/2
t ≤ u) (45)

≥ ν1/2σt−1(x)
(

q − β
1/2
t

ν1/2

)
(∵ τ(c) = c + τ(−c) ≥ c) (46)

= (a− b)+ − β
1/2
t σt−1(x). (47)

Furthermore, since τ(·) is monotonically increasing,

EI
(
µt−1(x), ν1/2σt−1(x), b

)
= ν1/2σt−1(x)τ

(
µt−1(x)− a + a− b

ν1/2σt−1(x)

)
(48)

≥ ν1/2σt−1(x)τ
(

µt−1(x)− a

ν1/2σt−1(x)

)
(∵ a− b > 0 from assumption) (49)

≥ ν1/2σt−1(x)τ
(
−β

1/2
t

ν1/2

)
(∵ µt−1(x)− a > −β

1/2
t σt−1(x)).

(50)

Hence, we obtain EI
(

µt−1(x),ν1/2σt−1(x),b
)

ν1/2τ
(

−β
1/2
t /ν1/2

) ≥ σt−1(x). By substuting this inequality to

EI
(
µt−1(x), ν1/2σt−1(x), b

)
≥ (a− b)+ − β

1/2
t σt−1(x), we can see that

EI
(
µt−1(x), ν1/2σt−1(x), b

)
≥

ν1/2τ
(
−β

1/2
t /ν1/2

)
β

1/2
t + ν1/2τ

(
−β

1/2
t /ν1/2

) (a− b)+ (51)

=
ν1/2τ

(
−β

1/2
t /ν1/2

)
ν1/2τ

(
β

1/2
t /ν1/2

) (a− b)+. (52)
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Lemma B.2 (Modified from Lemma 10 of (Wang & de Freitas, 2014)). Assume the kernel function
k(x, x′) ≤ 1 for all x, x′ ∈ X . Let xt = arg maxx∈X EI

(
µt−1(x), ν1/2σt−1(x), b

)
with minx∈X µt−1(x) ≤ b ≤

maxx∈X µt−1(x) and some ν > 0. Then, the following inequality holds:

b− µt−1(xt) ≤
√

log(t− 1 + σ2)− log(σ2)ν1/2σt−1(xt). (53)

Proof. If b ≤ µt−1(xt), then the inequality is trivial. Thus, we assume b > µt−1(xt) hereafter. From the
assumption of b, there exists z ∈ X such that µt−1(z) ≥ b. Therefore, we obtain

ν1/2σt−1(z)τ (0) ≤ ν1/2σt−1(z)τ
(

µt−1(z)− b

ν1/2σt−1(z)

)
(54)

= EI
(
µt−1(z), ν1/2σt−1(z), b

)
(55)

≤ EI
(
µt−1(xt), ν1/2σt−1(xt), b

)
(56)

= ν1/2σt−1(xt)τ
(

µt−1(xt)− b

ν1/2σt−1(xt)

)
. (57)

Then, since we assume b > µt−1(xt) and τ(0) = 1√
2π

, we can arrange the inequality as follows:

σt−1(z)√
2π

≤ σt−1(xt)ϕ
(

µt−1(xt)− b

ν1/2σt−1(xt)

)
(∵ τ(c) < ϕ(c) for c < 0) (58)

= σt−1(xt)√
2π

exp
(
−1

2

(
µt−1(xt)− b

ν1/2σt−1(xt)

)2
)

. (59)

Hence, by applying the logarithm, we can see that

|µt−1(xt)− b| ≤

√
2 log

(
σt−1(xt)
σt−1(z)

)
ν1/2σt−1(xt) (60)

=

√
log
(

σ2
t−1(xt)

σ2
t−1(z)

)
ν1/2σt−1(xt). (61)

We know that, for all x ∈ X , the posterior variance is bounded as σ2/(σ2 + t − 1) ≤ σ2
t−1(x) ≤ 1 from

Lemma D.1 and monotone decreasing property of the posterior variance. By substituting σ2
t−1(xt) ≤ 1 and

σ2/(σ2 + t− 1) ≤ σ2
t−1(z), we can obtain the desired result.

B.2 Regret Bounds for GP-EI with Maximum Posterior Mean

In this section, although (Wang & de Freitas, 2014) use the parameters {νt}t≥1 to scale the posterior variance,
we use {βt(δ)}t≥1 instead of {νt}t≥1 for simplicity. We believe that this modification does not affect the
essential order of the resulting regret upper bound.
Theorem B.3. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1. Pick δ ∈ (0, 1).
Assume X is a finite set or Assumption 2.1 holds.

(i) When X is a finite set, set βt(δ) = 2 log(|X |t2π2/(6δ)).

(ii) When Assumption 2.1 holds, set βt(δ) = 2 log(π2t2/(3δ)) + 2d log
(⌈

bdrt2
√

log(4ad/δ)
⌉

+ 1
)

.

If xt = arg maxx∈X EI
(
µt−1(x), β

1/2
t (δ)σt−1(x), µmax

t−1
)
, where µmax

t−1 = maxx∈X µt−1(x), then the cumulative
regret is bounded from above with probability at least 1− δ as follows:

RT = O
(√

βT (δ)γT T log T
)

. (62)
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Proof. First, we provide the proof regarding case (i). In this case, from Lemma 5.1 of (Srinivas et al., 2010),
the following holds:

Pr
(
∀x ∈ X ,∀t ∈ [T ], |f(x)− µt−1(x)| ≤ β

1/2
t (δ)σt−1(x)

)
≥ 1− δ. (63)

Therefore, we assume |f(x)− µt−1(x)| ≤ β
1/2
t (δ)σt−1(x) holds for all x ∈ X and t ∈ [T ] hereafter. We can

see that the instantaneous regret rt can be bounded as follows:

rt = f(x∗)− f(xt) (64)
= f(x∗)− µmax

t−1 + µmax
t−1 − f(xt) (65)

≤ It(x∗) + µmax
t−1 − µt−1(xt) + β

1/2
t (δ)σt−1(xt), (66)

where It(x) =
(
f(x) − µmax

t−1
)

+. Regarding the term It(x∗), using Lemma B.1 with a = f(x∗), b = µmax
t−1 ,

and ν = βt(δ), we see that

It(x∗) ≤ C3EI
(
µt−1(x∗), β

1/2
t (δ)σt−1(x∗), µmax

t−1
)

(67)

≤ C3EI
(
µt−1(xt), β

1/2
t (δ)σt−1(xt), µmax

t−1
)
, (xt is the maximizer) (68)

where C3 = τ(1)
τ(−1) . Moreover, by applying Lemma B.1 again with a = µt−1(xt), b = µmax

t−1 , and ν = βt(δ),
we can obtain

It(x∗) ≤ C3

((
µt−1(xt)− µmax

t−1
)

+ + 2β
1/2
t (δ)σt−1(xt)

)
(69)

≤ 2C3β
1/2
t (δ)σt−1(xt).

(
∵ µmax

t−1 > µt−1(xt)
)
. (70)

Furthermore, the term µmax
t−1 − µt−1(xt) is bounded from above by Lemma B.2:

µmax
t−1 − µt−1(xt) ≤

√
log(t− 1 + σ2)− log(σ2)β1/2

t (δ)σt−1(xt). (71)

Hence, aggregating the results, we can obtain

rt ≤
(

2C3 +
√

log(t− 1 + σ2)− log(σ2) + 1
)

β
1/2
t (δ)σt−1(xt). (72)

Then, the cumulative regret can be bounded from above as follows:

RT =
T∑

t=1
rt (73)

≤
T∑

t=1

(
2C3 +

√
log(t− 1 + σ2)− log(σ2) + 1

)
β

1/2
t (δ)σt−1(xt) (74)

≤
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
) T∑

t=1
β

1/2
t (δ)σt−1(xt) (75)

≤
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√√√√ T∑

t=1
βt(δ)

T∑
t=1

σ2
t−1(xt) (∵ Cauchy–Schwarz inequality)

(76)

≤
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT (δ)γT . (77)

In the last inequality, we use
∑T

t=1 σ2
t−1(xt) ≤ C1γT (Srinivas et al., 2010).

For the case (ii), we consider a finite set Xt with each dimension evenly divided by τt =
⌈
bdrt2

√
log(4ad/δ)

⌉
,

such that |Xt| = τd
t . In addition, we denote [x]t = arg minx′∈Xt

∥x − x′∥1. For this Xt, using the union
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bound and Lemmas 5.5, 5.6, and 5.7 of (Srinivas et al., 2010), the following events simultaneously hold with
probability at least 1− δ,

∀t ∈ [T ], sup
x∈X
|f(x)− f([x]t)| ≤

1
t2 , (78)

∀t ∈ [T ],∀x ∈ Xt ∪ {xt},|f(x)− µt−1(x)| ≤ β
1/2
t (δ)σt−1(x), (79)

since βt(δ) ≥ 2 log
(

(|Xt|+1)π2t2

3δ

)
. Note that +1 in |Xt|+ 1 is required to guarantee the confidence bound on

xt. Therefore, we assume the above two events hold hereafter.

Since the above two events hold, the instantaneous regret can be bounded as

rt = f(x∗)− f(xt) (80)
= f(x∗)− f([x∗]t) + f([x∗]t)− µmax

t−1 + µmax
t−1 − f(xt) (81)

≤ 1
t2 +

(
f([x∗]t)− µmax

t−1
)

+ + µmax
t−1 − µt−1(xt) + β

1/2
t (δ)σt−1(xt). (82)

As with the case (i), using Lemma B.1 at [x∗]t with a = f([x∗]t), b = µmax
t−1 , and ν = βt(δ), we see that(

f([x∗]t)− µmax
t−1
)

+ ≤ C3EI
(
µt−1([x∗]t), β

1/2
t (δ)σt−1([x∗]t), µmax

t−1
)

(83)

≤ C3EI
(
µt−1(xt), β

1/2
t (δ)σt−1(xt), µmax

t−1
)
. (xt is the maximizer) (84)

Moreover, using Lemma B.1 again at xt with a = µt−1(xt), b = µmax
t−1 , and ν = βt(δ), we can obtain

f([x∗]t)− µmax
t−1 ≤ C3

((
µt−1(xt)− µmax

t−1
)

+ + 2β
1/2
t (δ)σt−1(xt)

)
(85)

≤ 2C3β
1/2
t (δ)σt−1(xt). (86)

Futhermore, using Lemma B.2,

µmax
t−1 − µt−1(xt) ≤

√
log(t− 1 + σ2)− log(σ2)β1/2

t (δ)σt−1(xt). (87)

In addition,
∑T

t=1 1/t2 ≤ π2/6. Therefore, repeating the same proof as case (i), we obtain

RT ≤
π2

6 +
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT (δ)γT . (88)

Theorem B.4. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1. Assume X is
a finite set or Assumption 2.1 holds.

(i) When X is a finite set, set βt = 2 log
(
|X |t2/

√
2π + 1

)
.

(ii) When Assumption 2.1 holds, set βt = 2d log
(⌈

bdrt2(
√

log(ad) +
√

π/2)
⌉)

+ 2 log(t2/
√

2π + 1).

If xt = arg maxx∈X EI
(
µt−1(x), β

1/2
t σt−1(x), µmax

t−1
)
, where µmax

t−1 = maxx∈X µt−1(x), then the BCR is
bounded from above as follows:

BCRT = O
(√

βT γT T log T
)

. (89)
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Proof. First, we consider the case (i).

BCRT =
T∑

t=1
E [f(x∗)− f(xt)] (90)

=
T∑

t=1
E
[
f(x∗)− Ut(x∗) + Ut(x∗)− µmax

t−1 + µmax
t−1 − µt−1(xt)

]
, (91)

≤
T∑

t=1
E
[
f(x∗)− Ut(x∗) +

(
Ut(x∗)− µmax

t−1
)

+ + µmax
t−1 − µt−1(xt)

]
(92)

=
T∑

t=1
E [f(x∗)− Ut(x∗)] +

T∑
t=1

E
[(

Ut(x∗)− µmax
t−1
)

+

]
+

T∑
t=1

E
[
µmax

t−1 − µt−1(xt)
]

, (93)

where Ut(x) = µt−1(x) + β
1/2
t σt−1(x). Then, from the same proof as Theorem B.1 of (Takeno et al., 2023),∑T

t=1 E [f(x∗)− Ut(x∗)] ≤ π2/6. Note that βt > 0 due to the ceil function.

Regarding the term
(
Ut(x∗)− µmax

t−1
)

+, we can apply Lemma B.1 at x∗ with a = Ut(x∗), b = µmax
t−1 , and

ν = βt. Therefore,

(Ut(x∗)− µt−1(xt))+ ≤ C3EI
(

µt−1(x∗), β
1/2
t σt−1(x∗), µmax

t−1

)
(94)

≤ C3EI
(

µt−1(xt), β
1/2
t σt−1(xt), µmax

t−1

)
, (95)

where C3 = τ(1)
τ(−1) . Moreover, using Lemma B.1 at xt with a = µt−1(x), b = µmax

t−1 , and ν = βt, we obtain

(Ut(x∗)− µt−1(xt))+ ≤ C3

((
µt−1(xt)− µmax

t−1
)

+ + 2β
1/2
t σt−1(xt)

)
= 2C3β

1/2
t σt−1(xt). (96)

Furthermore, regarding µmax
t−1 − µt−1(xt), using Lemma B.2,

µmax
t−1 − µt−1(xt) ≤

√
log(t− 1 + σ2)− log(σ2)β1/2

t σt−1(xt). (97)

Hence, the sum of these terms can be bounded from above as with the proofs of Theorem B.3:
T∑

t=1
E
[(

Ut(x∗)− µmax
t−1
)

+

]
+

T∑
t=1

E
[
µmax

t−1 − µt−1(xt)
]
≤
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT γT .

(98)

Consequently, we can obtain the following upper bound:

BCRT ≤
π2

6 +
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT γT . (99)

Next, for the case (ii),

BCRT =
T∑

t=1
E [f(x∗)− f(xt)] (100)

=
T∑

t=1
E
[
f(x∗)− f([x∗]t) + f([x∗]t)− Ut([x∗]t) + Ut([x∗]t)− µmax

t−1 + µmax
t−1 − µt−1(xt)

]
, (101)

≤
T∑

t=1
E [f(x∗)− f([x∗]t)] +

T∑
t=1

E [f([x∗]t)− Ut([x∗]t)] (102)

+
T∑

t=1
E
[(

Ut([x∗]t)− µmax
t−1
)

+

]
+

T∑
t=1

E
[
µmax

t−1 − µt−1(xt)
]

, (103)
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where Ut(x) = µt−1(x) + β
1/2
t σt−1(x).

We consider a finite set Xt with each dimension evenly divided by τt =
⌈
bdrt2(√log(ad) +

√
π/2

)⌉
, such

that |Xt| = τd
t . In addition, we denote [x]t = arg minx′∈Xt

∥x−x′∥1. Then, as with the proof of Theorem B.1
of (Takeno et al., 2023), we can obtain

T∑
t=1

E [f(x∗)− f([x∗]t)] ≤
π2

6 , (104)

T∑
t=1

E [f([x∗]t)− Ut([x∗]t)] ≤
π2

6 . (105)

As with the case (i), using Lemma B.1 at [x∗]t with a = Ut([x∗]t), b = µmax
t−1 , and ν = βt, we see that(

Ut([x∗]t)− µmax
t−1
)

+ ≤ C3EI
(
µt−1([x∗]t), β

1/2
t σt−1([x∗]t), µmax

t−1
)

(106)

≤ C3EI
(
µt−1(xt), β

1/2
t σt−1(xt), µmax

t−1
)
. (xt is the maximizer) (107)

Moreover, using Lemma B.1 again at xt with a = µt−1(xt), b = µmax
t−1 , and ν = βt, we can obtain(

Ut([x∗]t)− µmax
t−1
)

+ ≤ C3

((
µt−1(xt)− µmax

t−1
)

+ + 2β
1/2
t σt−1(xt)

)
(108)

≤ 2C3β
1/2
t σt−1(xt). (109)

Futhermore, using Lemma B.2,

µmax
t−1 − µt−1(xt) ≤

√
log(t− 1 + σ2)− log(σ2)β1/2

t σt−1(xt). (110)

Therefore, repeating the same proof as Theorem B.3, we obtain

BCRT ≤
π2

3 +
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT γT . (111)

B.3 Regret Bounds for GP-EI with Maximum Posterior Mean among Evaluated Points

First, we show a variant of Theorem B.3, where the reference value is changed to µ̃max
t−1 = maxi∈[t−1] µt−1(xi):

Theorem B.5. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1. Pick δ ∈ (0, 1).
Assume X is a finite set or Assumption 2.1 holds.

(i) When X is a finite set, set βt(δ) = 2 log(|X |t2π2/(6δ)).

(ii) When Assumption 2.1 holds, set βt(δ) = 2 log(π2t2/(3δ)) + 2d log
(⌈

bdrt2
√

log(4ad/δ)
⌉

+ t
)

.

If xt = arg maxx∈X EI
(
µt−1(x), β

1/2
t (δ)σt−1(x), µ̃max

t−1
)
, where µ̃max

t−1 = maxi∈[t−1] µt−1(xi) for t ≥ 1 and
µ̃max

0 = 0 for t = 1, then the cumulative regret is bounded from above with probability at least 1−δ as follows:

RT = O
(√

βT (δ)γT T log T
)

. (112)

Proof. As with the proof of Theorem B.3, we can guarantee the following events with probability at least
1− δ:

∀x ∈ X , |f(x)− µt−1(x)| ≤ β
1/2
t (δ)σt−1(x), (113)
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for the case (i), and

∀t ∈ [T ], sup
x∈X
|f(x)− f([x]t)| ≤

1
t2 , (114)

∀t ∈ [T ],∀x ∈ Xt ∪ {xi}t
i=1,|f(x)− µt−1(x)| ≤ β

1/2
t (δ)σt−1(x), (115)

(116)
for the case (ii). Note that, in the case (ii), we additionally consider the bounds on {xi}t

i=1, not only xt,
using βt(δ) = log

(
(|Xt|+t)t2π2

3δ

)
compared with the proof of Theorem B.3. In the remainder of the proof, we

assume the above events hold in each case.

By almost the same proof as Theorem B.3, in which we set a = f(xt) for a second application of Lemma B.1,
we can obtain

rt ≤ C3Ĩt(xt) +
(

2C3 +
√

log(t− 1 + σ2)− log(σ2) + 1
)

β
1/2
t (δ)σt−1(xt), for the case (i), (117)

rt ≤
1
t2 + C3Ĩt(xt) +

(
2C3 +

√
log(t− 1 + σ2)− log(σ2) + 1

)
β

1/2
t (δ)σt−1(xt), for the case (ii), (118)

where Ĩt(xt) = (f(xt) − µ̃max
t−1 )+ and C3 = τ(1)

τ(−1) . Thus, the cumulative regret is bounded from above as
follows:

RT ≤ C3

T∑
t=1

Ĩt(xt) +
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT (δ)γT , for the case (i),

(119)

RT ≤
π2

6 + C3

T∑
t=1

Ĩt(xt) +
(

2C3 +
√

log(T − 1 + σ2)− log(σ2) + 1
)√

C1TβT (δ)γT , for the case (ii).

(120)

Next, we obtain the upper bound of
∑T

t=1 Ĩt(xt) by the proof modified slightly from (Tran-The et al., 2022;
Hu et al., 2025). First, we can see that

Ĩ1(x1) ≤ (f(x1)− 0)+ ≤ β
1/2
1 (δ), (121)

where we use the inequality |f(x1)| ≤ β
1/2
1 (δ)

√
k(x1, x1) ≤ β

1/2
1 (δ) for both cases (i) and (ii). Then, define an

indicesM = {m(i) | Ĩm(i)(xm(i)) > 0, m(i) > 1} with ascending order m(1) < · · · < m(M), where M := |M|.
In addition, let m(0) = m(1) − 1 ≥ 1. If M = 0, we can easily show

∑T
t=1 Ĩt(xt) = Ĩ1(x1) ≤ β

1/2
1 (δ). On

the other hand, for the case of M ≥ 1, we can obtain
T∑

t=2
Ĩt(xt) =

M∑
i=1

f(xm(i))− µ̃max
m(i)−1 (122)

≤
M∑

i=1
f(xm(i))− µm(i)−1(xm(i−1)) (∵ Definition of µ̃max

t−1 ) (123)

≤
M∑

i=1
f(xm(i))− f(xm(i−1)) + β

1/2
m(i)(δ)σm(i)−1(xm(i−1)) (124)

≤ f(xm(M))− f(xm(0)) +
M∑

i=1
β

1/2
m(i)(δ)σm(i−1)−1(xm(i−1)) (125)

≤ 2β
1/2
1 (δ) + 2 +

T∑
t=1

β
1/2
t (δ)σt−1(xt) (126)

≤ 2β
1/2
1 (δ) + 2 +

√
C1TβT (δ)γT , (127)

where we use
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• in the second inequality it is guaranteed that ∀t ∈ [T ],∀x ∈ X , |f(x) − µt−1(x)| ≤ β
1/2
t (δ) for the

case (i), and ∀t ∈ [T ],∀x ∈ Xt ∪ {xi}t
i=1, |f(x) − µt−1(x)| ≤ β

1/2
t (δ)σt−1(x) for the case (ii) from

the assumption;

• in the third inequality, σm(i)−1(xm(i−1)) ≤ σm(i−1)−1(xm(i−1));

• in the fourth inequality, for all x ∈ X , |f(x)| ≤ β
1/2
1 for the case (i), and |f(x)| ≤ |f([x]1)|+ |f(x)−

f([x]1)| ≤ β
1/2
1 + 1 for the case (ii) from the assumption.

Consequently,
∑T

t=1 Ĩt(xt) ≤ 3β
1/2
1 (δ)+2+

√
C1TβT (δ)γT = O(

√
βT (δ)γT T ), which concludes the proof.

Theorem B.6. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1. Assume X is
a finite set or Assumption 2.1 holds.

(i) When X is a finite set, set βt = 2 log
(
|X |t2/

√
2π + 1

)
.

(ii) When Assumption 2.1 holds, set βt = 2d log
(⌈

bdrt2(
√

log(ad) +
√

π/2)
⌉)

+ 2 log(t2/
√

2π + 1).

If xt = arg maxx∈X EI
(
µt−1(x), β

1/2
t σt−1(x), µ̃max

t−1
)
, where µ̃max

t−1 = maxi∈[t−1] µt−1(xi) for t ≥ 1 and µ̃max
0 =

0 for t = 1, then the BCR is bounded from above as follows:

BCRT = O
(√

βT γT T log T
)

. (128)

Proof. By the same proof as Theorem B.4, for both cases (i) and (ii), we can see that

BCRT = C3

T∑
t=1

E
[
Ĩt(xt)

]
+ O

(√
βT γT T log T

)
. (129)

where Ĩt(x) =
(
f(x) − µ̃max

t−1
)

+ and C3 = τ(1)/τ(−1). Therefore, we here consider the upper bound of∑T
t=1 E

[
Ĩt(xt)

]
.

First, we can obtain

E
[
Ĩ1(x1)

]
= E

[(
f(x1)

)
+

]
= 2ϕ(0)

√
k(x1, x1) ≤

√
2
π

, (130)

as f(x1) ∼ N (0, k(x1, x1)). Then, define an indicesM = {m(i) | Ĩm(i)(xm(i)) > 0, m(i) > 1} with ascending
order m(1) < · · · < m(M), where M := |M|. In addition, let m(0) = m(1)− 1 ≥ 1. If M = 0, we can easily
show

∑T
t=1 Ĩt(xt) = Ĩ1(x1) ≤

√
2
π . Thus, we consider the case of M ≥ 1. For any M under M ≥ 1, we can
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obtain
T∑

t=2
Ĩt(xt) =

M∑
i=1

f(xm(i))− µ̃max
m(i)−1 (131)

≤
M∑

i=1
f(xm(i))− µm(i)−1(xm(i−1)) (132)

=
M∑

i=1
f(xm(i))− f(xm(i−1)) + f(xm(i−1))− Um(i)(xm(i−1)) + β

1/2
m(i)σm(i)−1(xm(i−1)) (133)

≤ f(xm(M))− f(xm(0)) +
M∑

i=1
f(xm(i−1))− Um(i)(xm(i−1)) +

M∑
i=1

β
1/2
m(i)σm(i−1)−1(xm(i−1)) (134)

≤ max
x∈X

f(x)− min
x∈X

f(x) +
M∑

i=1

(
f(xm(i−1))− Um(i)(xm(i−1))

)
+ +

T∑
t=1

β
1/2
t σt−1(xt) (135)

≤ max
x∈X

f(x)− min
x∈X

f(x) +
T∑

t=2

t−1∑
j=1

(f(xj)− Ut(xj))+ +
T∑

t=1
β

1/2
t σt−1(xt), (136)

where Ut(x) = µt−1(x) + β
1/2
t σt−1(x). In the above transformation;

• in the first inequality, we use the definition of µ̃max
m(i)−1;

• in the second inequality, we use σm(i)−1(xm(i−1)) ≤ σm(i−1)−1(xm(i−1)).

From Lemma D.2,

E
[
max
x∈X

f(x)− min
x∈X

f(x)
]
≤ 2
√

2 log(|X |/2) + 2, for the case (i), (137)

E
[
max
x∈X

f(x)− min
x∈X

f(x)
]
≤ 2
√

2d log
(⌈

bdr(log(ad) +
√

π/2)
⌉)

+ 2− 2 log 2 + 2, for the case (ii). (138)

In addition, as with the proof of Theorem B.1 of (Takeno et al., 2023), we can obtain

E

 T∑
t=2

t−1∑
j=1

(f(xj)− Ut(xj))+

 ≤ T∑
t=1

t−1∑
j=1

1
t2 (139)

≤
T∑

t=1

1
t

(140)

≤ 1 + log T. (141)

Furthermore, we know that
∑T

t=1 β
1/2
t σt−1(xt) ≤

√
C1βT TγT . Consequently, we can observe∑T

t=1 E
[
Ĩt(xt)

]
= O(

√
C1βT TγT ).

B.4 Discussion on Modification to Frequentist Setting

We focus on the analysis in the Bayesian setting. However, our proof approach for finite input domains
can apply to the frequentist setting since, in general, (i) supx∈X |f(x)| ≤ B with some constant B from
the assumption and (ii) the confidence bounds for f hold for all x ∈ X even if X is an infinite input
domain (for example, Srinivas et al., 2010; Chowdhury & Gopalan, 2017). Therefore, since βt is set as
O(√γT ) to make confidnce bounds in the frequntist setting, our proof suggests that GP-EI with µ̃

1/2
t achieves

O(
√

βT γT T log T ) = O(γT

√
T log T ) cumulative regret upper bound with high probability without any other

24



Under review as submission to TMLR

modification to the GP-EI algorithm like (Hu et al., 2025). To our knowledge, this has not been revealed by
the existing studies.

Note that, in the frequentist setting, an extension to the expected regret upper bound from the high-
probability regret bound is trivial under some conditions, such as supx∈X f(x) ≤ B and infx∈X f(x) ≥ −B,
which is assumed in most existing studies (for example, Srinivas et al., 2010; Chowdhury & Gopalan,
2017). If we obtain the high probability regret upper bound as RT = O(g(T ) log(1/δ)) with some increasing
sublinear function g(T ) = o(T/ log(T )), by setting δ = 1/T , we see that

E[RT ] ≤ g(T ) log(1/δ) + δ

T∑
t=1

f(x∗)− f(xt) ≤ g(T ) log(T ) + 2B, (142)

which is sublinear. Similar derivation is often performed in the literature of the bandit algorithms, for
example, discussed in (Abbasi-yadkori et al., 2011).

C Proofs for GP-EIMS

Here, we show the proofs of the main paper’s theorems, lemmas, and corollaries.

C.1 Proof of Lemma 4.1

Lemma 4.1. Let

ηt := g∗
t − µt−1(xt)

σt−1(xt)
. (143)

Then, the BCR incurred by GP-EIMS can be bounded from above as follows:

BCRT ≤

√√√√E

[
T∑

t=1
η2

t 1{ηt ≥ 0}
]√

C1γT , (144)

where C1 := 2/ log(1 + σ−2) and the indicator function 1{ηt ≥ 0} = 1 if ηt ≥ 0, and 0 otherwise.

Proof. From the tower property and linearity of expectation, we obtain

BCRT =
T∑

t=1
E [f(x∗)− f(xt)] (145)

=
T∑

t=1
E [f(x∗)− g∗

t + g∗
t − f(xt)] (146)

=
T∑

t=1
EDt−1 [Et [f(x∗)− g∗

t ] + Et [g∗
t − f(xt)]] (147)

(a)=
T∑

t=1
EDt−1 [Et [g∗

t − f(xt)]] (148)

(b)=
T∑

t=1
E [g∗

t − µt−1(xt)] . (149)

For the equality (a), we use the fact Et[f(x∗)] = Et[g∗
t ] since f(x∗) | Dt−1 and g∗

t | Dt−1 are identically
distributed. For the equality (b), we use the tower property of expectation and Et[f(xt)] = Et[µt−1(xt)],
which holds since xt defined via gt and f are independent. Then, we define the random variable ηt as follows:

ηt := g∗
t − µt−1(xt)

σt−1(xt)
. (150)

25



Under review as submission to TMLR

Therefore, since σt−1(x) > 0 due to σ2 > 0, we obtain

BCRT =
T∑

t=1
E [ηtσt−1(xt)] . (151)

Furthermore, from the linearity of expectation, we can see that

BCRT = E

[
T∑

t=1
ηtσt−1(xt)

]
(152)

≤ E

[
T∑

t=1
ηt1{ηt ≥ 0}σt−1(xt)

]
(∵ σt−1(xt) > 0) (153)

≤ E


√√√√ T∑

t=1
η2

t 1{ηt ≥ 0}
T∑

t=1
σ2

t−1(xt)

 (∵ Cauchy–Schwarz inequality ) (154)

≤ E


√√√√ T∑

t=1
η2

t 1{ηt ≥ 0}

√C1γT , (155)

≤

√√√√E

[
T∑

t=1
η2

t 1{ηt ≥ 0}
]√

C1γT , (∵ Jensen’s inequality) (156)

where C1 := 2/ log(1 + σ−2) and the indicator function 1{ηt ≥ 0} = 1 if ηt ≥ 0, and 0 otherwise. For the
third inequality, we use

∑T
t=1 σ2

t−1(xt) ≤ C1γT (Lemma 5.2 in Srinivas et al., 2010).

C.2 Proof of Lemma 4.2

Lemma 4.2. Fix β > 0 and U ≤ maxx∈X
{

µt−1(x) + β1/2σt−1(x)
}

. Then, the following inequality holds:

U − µt−1(xt)
σt−1(xt)

≤

√
log
(

σ2 + t− 1
σ2

)
+ β +

√
2πβ, (157)

where xt = arg maxx∈X EI(µt−1(x), σt−1(x), U).

Proof. Let z ∈ X be the input that satisfies U ≤ µt−1(z) + β1/2σt−1(z), that is U−µt−1(z)
σt−1(z) ≤ β1/2. If

U ≤ µt−1(xt), it is obvious due to U−µt−1(xt)
σt−1(xt) ≤ 0. Thus, assume U > µt−1(xt) hereafter. Then, from the

assumption and the monotonic increasing property of τ(c) = cΦ(c) + ϕ(c),

EI(µt−1(z), σt−1(z), U) = σt(z)τ
(

µt−1(z)− U

σt−1(z)

)
(158)

≥ σt(z)τ(−β1/2). (159)

In addition, due to the definition of xt, we can see that

EI(µt−1(z), σt−1(z), U) ≤ EI(µt−1(xt), σt−1(xt), U) (160)

Therefore, we obtain that

σt(z)τ(−β1/2) ≤ EI(µt−1(xt), σt−1(xt), U) (161)

= σt−1(xt)τ
(

µt−1(xt)− U

σt−1(xt)

)
. (162)
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From the assumption U > µt−1(xt), we can see that µt−1(xt)−U
σt−1(xt) < 0. Then, since τ(c) ≤ ϕ(c) if c < 0, we

further obtain

σt(z)τ(−β1/2) ≤ σt−1(xt)ϕ
(

µt−1(xt)− U

σt−1(xt)

)
(163)

= σt−1(xt)√
2π

exp
(
− (µt−1(xt)− U)2

2σ2
t−1(xt)

)
. (164)

Hence, by transforming and applying the logarithm and the square root, we can obtain that

|µt−1(xt)− U | ≤

√
2 log

(
σt−1(xt)√

2πσt(z)τ(−β1/2)

)
σt−1(xt). (165)

Due to the monotonicity of σt−1(x) ≥ σt(x), we see that σt−1(xt) ≤ 1. In addition, from Lemma D.1,
σ2

t−1(z) ≥ σ2

σ2+t−1 . Therefore,

|µt−1(xt)− U | ≤

(√
log
(

σ2 + t− 1
σ2

)
− 2 log

(
τ(−β1/2)

)
− log(2π)

)
σt−1(xt). (166)

Then, for τ(−β1/2), we can bound as follows:

τ(−β1/2) = −β1/2Φ(−β1/2) + ϕ(−β1/2) (167)

= −β1/2
(

1− Φ(β1/2)
)

+ ϕ(β1/2) (168)

≥ −
(

1− exp
(
−
√

π

2 β1/2
))

ϕ(β1/2) + ϕ(β1/2) (169)

= exp
(
−
√

π

2 β1/2
)

ϕ(β1/2), (170)

where we use Lemma 4.3. Thus, we obtain

−2 log
(

τ(−β1/2)
)
≤ −2

(
−
√

π

2 β1/2 − log
√

2π − β

2

)
(171)

=
√

2πβ + log(2π) + β. (172)

By combining the results, we obtain the desired result.

C.3 Proofs for Sec. 4.2.1

First, we show the proof of the following corollary:
Corollary 4.5. Assume the same condition as in Lemma 4.4. Then, by running GP-EIMS, the following
inequality holds with probability at least 1− δ:

ηt ≤

√
log
(

σ2 + t− 1
σ2

)
+ β(δ) +

√
2πβ(δ), (173)

where β(δ) = 2 log(|X |/(2δ)). Furthermore, we obtain

E
[
η2

t 1{ηt ≥ 0}
]
≤ log

(
σ2 + t− 1

σ2

)
+ C2 +

√
2πC2, (174)

where C2 = 2 + 2 log(|X |/2).
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Proof. From Lemma 4.4, we see that

Pr
(

g∗
t ≤ µt−1(zt) + β1/2(δ)σt−1(zt)

)
≥ 1− δ, (175)

where zt = arg maxx∈X gt(x). Therefore, as a direct consequence of Lemma 4.2, we obtain that

ηt ≤

√
log
(

σ2 + t− 1
σ2

)
+ β(δ) +

√
2πβ(δ), (176)

which holds with probability at least 1− δ. Furthermore, since the right-hand side is positive, the following
also holds:

Pr
(

η2
t 1{ηt ≥ 0} ≤ log

(
σ2 + t− 1

σ2

)
+ β(δ) +

√
2πβ(δ)

)
≥ 1− δ (177)

⇔F

(
log
(

σ2 + t− 1
σ2

)
+ β(δ) +

√
2πβ(δ)

)
≥ 1− δ, (178)

where F (·) is the cumulative distribution function of η2
t 1{η ≥ 0}. By applying F −1, which is the generalized

inverse function of F and monotonically increasing, we obtain that

log
(

σ2 + t− 1
σ2

)
+ β(δ) +

√
2πβ(δ) ≥ F −1(1− δ). (179)

By substituting Z ∼ Uni(0, 1) to δ and taking the expectation with respect to Z,

EZ

[
log
(

σ2 + t− 1
σ2

)
+ β(Z) +

√
2πβ(Z)

]
≥ EZ

[
F −1(1− Z)

]
= EZ

[
F −1(Z)

]
= E

[
η2

t 1{ηt ≥ 0}
]

. (180)

In the last equality, we use the fact that η2
t 1{ηt ≥ 0} and F −1(Z) are identically distributed. Furthermore,

the left-hand side can be transformed as

EZ

[
log
(

σ2 + t− 1
σ2

)
+ β(Z) +

√
2πβ(Z)

]
= log

(
σ2 + t− 1

σ2

)
+ EZ [β(Z)] + EZ [

√
2πβ(Z)] (181)

≤ log
(

σ2 + t− 1
σ2

)
+ EZ [β(Z)] +

√
2πEZ [β(Z)], (182)

where the last inequality is obtained by Jensen’s inequality. In addition, we can derive
EZ [β(Z)] = 2 log(|X |/2) + EZ [2 log(1/Z)] = 2 log(|X |/2) + 2, (183)

since log(1/Z) follows the exponential distribution. Consequently, we obtain that

E
[
η2

t 1{ηt ≥ 0}
]
≤ log

(
σ2 + t− 1

σ2

)
+ C2 +

√
2πC2, (184)

where C2 = EZ [β(Z)] = 2 log(|X |/2) + 2.

Then, we provide the detailed proof of Theorem 4.6:
Theorem 4.6. Let f ∼ GP(0, k), where the kernel function k is normalized as k(x, x) ≤ 1, and X be finite.
Then, by running GP-EIMS, the BCR can be bounded from above as follows:

BCRT ≤
√

C1BT TγT , (185)

where BT = log
(

σ2+T −1
σ2

)
+ C2 +

√
2πC2, C1 := 2/ log(1 + σ−2), and C2 = 2 + 2 log(|X |/2).

Proof. From Lemma 4.1 and Corollary 4.5, we see that

BCRT ≤

√√√√ T∑
t=1

E [η2
t 1{ηt ≥ 0}]

√
C1γT (186)

≤
√

C1BT TγT . (187)
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C.4 Proofs for Sec. 4.2.2

First we show the proof of Lemma 4.7:
Lemma 4.7. Suppose Assumption 2.1 holds. Pick δ ∈ (0, 1) and t ≥ 1. Then, the following holds:

Prt

(
∀x ∈ X , f(x) ≤ µt−1([x]t) + 2β

1/2
t (δ/2)σt−1([x]t)

)
≥ 1− δ (188)

where βt(δ) = 2d log(mt)− 2 log(2δ) and mt = max
{

2,
⌈
bdr
√

(σ2 + t− 1) log(2ad)/σ2
⌉}

.

Proof. Under Assumption 2.1, using the union bound with respect to j ∈ [d], we see

Pr
(

max
j∈[d]

Lj > L(δ)
)
≤ δ, (189)

where L(δ) := b
√

log(ad/δ). Therefore, the following inequality holds with probability at least 1− δ:

Pr (∀x ∈ X , f(x)− f([x]t) ≤ L(δ)∥x− [x]t∥1) ≥ 1− δ. (190)

Hence, by using the union bound, the following upper bound holds with probability at least 1− δ:

f(x)− µt−1([x]t) = f(x)− f([x]t) + f([x]t)− µt−1([x]t) (191)

≤ Lδ/2∥x− [x]t∥1 + β
1/2
t (δ/2)σt−1([x]t). (192)

In addition, from the construction of Xt,

∀x ∈ X , ∥x− [x]t∥1 ≤
dr

mt
. (193)

Therefore, we see that

Lδ/2∥x− [x]t∥1 ≤
Lδ/2dr

mt
(194)

= bdr
√

log(2ad/δ)
mt

(195)

≤
√

σ2

σ2 + t− 1

√
1− log(δ)

log(2ad) (∵ mt ≥ bdr
√

(σ2 + t− 1) log(2ad)/σ2) (196)

≤
√

σ2

σ2 + t− 1
√

1− 2 log(δ). (∵ log(2ad) ≥ log 2 > 0.69) (197)

On the other hand,

β
1/2
t (δ/2) =

√
2d log(mt)− 2 log(δ) (198)

≥
√

2d log(2)− 2 log(δ). (∵ mt ≥ 2) (199)

Moreover, from Lemma D.1, σ2
t−1(x) ≥ σ2/(σ2 + t− 1) for all x ∈ X . Therefore, we obtain that

Lδ/2∥x− [x]t∥1 ≤ β
1/2
t (δ/2)σt−1([x]t). (200)

Finally, we derive the desired result:

f(x)− µt−1([x]t) ≤ 2β
1/2
t (δ/2)σt−1([x]t). (201)

Next, we show the BCR upper bound for continuous input domains:
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Theorem 4.8. Suppose Assumption 2.1 holds and f ∼ GP(0, k), where the kernel function k is normalized
as k(x, x) ≤ 1. Then, by running GP-EIMS, the BCR can be bounded from above as follows:

BCRT ≤
√

C1BT TγT , (202)

where C1 := 2/ log(1 + σ−2), BT = log
(

σ2+T −1
σ2

)
+ CT +

√
2πCT , CT = 8(d log(mT ) + 1), and mT =

max
{

2,
⌈
bdr
√

(σ2 + T − 1) log(2ad)/σ2
⌉}

.

Proof. As with the proof of Corollary 4.5, using Lemmas 4.2 and 4.7, we can derive that

E
[
η2

t 1{ηt ≥ 0}
]
≤ log

(
σ2 + t− 1

σ2

)
+ Ct +

√
2πCt, (203)

where Ct = 8(d log(mt) + 1). Then, as with the proof of Theorem 4.6, we can obtain that

BCRT ≤

√√√√ T∑
t=1

E [η2
t 1{ηt > 0}]

√
C1γT (204)

≤
√

C1BT TγT . (205)

D Auxiliary Lemmas

Lemma D.1 (Lemma 4.2 in (Takeno et al., 2024)). Let k be a kernel s.t. k(x, x) ≤ 1. Then, the posterior
variance is lower bounded as,

σ2
t (x) ≥ σ2

σ2 + t
, (206)

for all x ∈ X and for all t ≥ 0.
Lemma D.2. Let f ∼ GP(0, k), where k is a kernel s.t. k(x, x) ≤ 1. If X is finite, E[maxx∈X f(x)] =
E[minx∈X f(x)] ≤

√
2 log (|X |/2) + 2. If Assumption 2.1 holds, E[maxx∈X f(x)] = E[minx∈X f(x)] ≤√

2d log (⌈bdr(log(ad) +
√

π/2)⌉) + 2− 2 log 2 + 1.

Proof. First, since f follows a centered GP, E[maxx∈X f(x)] = E[minx∈X f(x)]. For a finite input domain
X , from Lemma 4.2 of (Takeno et al., 2023), we can obtain

E
[
max
x∈X

f(x)
]
≤ E[ζ1/2] ≤

√
E[ζ] =

√
2 log (|X |/2) + 2, (207)

where ζ = 2 log(|X |/2) + 2Z and Z ∼ Exp(λ = 1).

For an infinite input domain, we consider a finite set Xt with each dimension evenly divided by τt =
⌈bdr(log(ad) +

√
π/2)⌉, such that |Xt| = τd

t . In addition, we denote [x]t = arg minx′∈Xt
∥x−x′∥1. Then, by

Lemma H.2 of (Takeno et al., 2023), we see that

E [f(x∗)− f([x∗]t)] ≤ 1. (208)

Furthermore, as with the case of a finite input domain,

E
[

max
x∈Xt

f(x)
]
≤
√

2 log (|Xt|/2) + 2 =
√

2d log
(⌈

bdr(log(ad) +
√

π/2)
⌉)

+ 2− 2 log 2, (209)

which concludes the proof.
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Figure 3: Results of simple regret for synthetic functions generated from GP defined by the Matérn kernel
with ν = 5/2. The top and bottom rows show the result on the length scale of the kernel ℓ = 0.1 and
ℓ = 0.2, respectively. The left, centered, and right columns show the result on the noise standard deviation
σ = 0.01, 0.1, and 1, respectively.
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Figure 4: Results of cumulative regret for synthetic functions generated from GP defined by the Matérn
kernel with ν = 5/2. The top and bottom rows show the result on the length scale of the kernel ℓ = 0.1 and
ℓ = 0.2, respectively. The left, centered, and right columns show the result on the noise standard deviation
σ = 0.01, 0.1, and 1, respectively.
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Figure 5: Results of simple regret for the benchmark functions. The BO methods with the theoretical
guarantee, that is, GP-EIMS, GP-PIMS, and GP-TS, are indicated by solid lines.

E Additional Experiments

E.1 Synthetic Function Experiments with Matérn Kernel

Figures 3 and 4 show the simple regret and cumulative regret for the Matérn kernel with ν = 5/2. The
experimental settings are the same as those in the main paper, except for the kernel function. Also in these
experiments, we can observe a similar tendency to the results of the SE kernel function.

E.2 Benchmark Function Experiments

Figure 5 shows the results of the simple regret for several benchmark functions. We employed the SE
kernel function with automatic relevance determination (Rasmussen & Williams, 2005). We performed
hyperparameter selection for the GP model every five iterations. In these experiments, we did not add actual
noise. Since arg maxx∈X µt(x) is unstable due to the hyperparameter selection, we define the simple regret
using x̂t = arg maxx∈X {µt(x) − 2σt(x)}. We employed the heuristic hyperparameters for the AFs of GP-
UCB, IRGP-UCB, and GP-EI-µmax as βt = 0.2d log(2t) as with (Kandasamy et al., 2016), νt = 0.2d log(2t),
and ζt = max{0.2d log(2t) − 2, 0} + Zt, where Zt ∼ Exp(λ = 1/2). Therefore, GP-UCB, IRGP-UCB, and
GP-EI-µmax are no longer theoretically guaranteed and indicated by dashed lines. Other settings are the
same as those of the synthetic function experiments.

Except for the Ackley and Shekel functions, almost all BO methods perform well. For the Ackley func-
tion, GP-UCB, IRGP-UCB, and GP-EI show superior performance. This is because these BO methods are
more exploitative than other BO methods in this experiment, and exploitative AFs work well for the Ackley
function. However, for the Shekel function, more explorative GP-PIMS and GP-EIMS show superior perfor-
mance. Therefore, we believe that these differences in performance come from the exploitation-exploration
tradeoff. On the other hand, regarding the BO methods with the theoretical guarantee without heuristic
tunings, we consider that GP-PIMS and GP-EIMS are superior or comparable to GP-TS.
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