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Figure 1: Infrastructure-side projection model. The left side is a zoom-in of the right side. As can
be seen on the right side, O in the figure is the optical center of the camera, the ray OZ denotes the
optical axis (z-axis), point C represents the center point of the obstacle, P represents the intersection
point between the vertical line from the center point C to the ground and the ground plane, H denotes
the 3D distance of PC, and h is the pixel distance from the center point C to the ground in the
imaging plane, θ is the pitch angle of the camera, z denotes the depth of center point C, f represents
the focal length and δ is the included angle between the line connecting the point P to the optical
center O and OZ.

1 Detailed calculation process of the normalized depth

Our aim is to work out how to express the depth z and further derive the normalized depth. First,
since the image plane is parallel to the AB (AB is the virtual auxiliary plane set by us), we can get:

H ′

h
=

z

f
(1)

where H ′ = AC. Here, f is a known quantity and h is easily obtained from visual features, so we
only need to obtain H ′. From point P to straight line AB draw an auxiliary vertical line and intersect
AB at point E, that is, PE is perpendicular to AB. We can get:

H ′ = AC = CE −AE (2)

Since:
CE = PC ∗ cos∠ACP (3)

∗Equal contribution.
†Corresponding author.
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AE = PE ∗ tan∠APE = PC ∗ sin∠ACP ∗ tan∠APE (4)

H = PC (5)

We have:
H ′ = H cos∠ACP −H sin∠ACP ∗ tan∠APE (6)

According to the parallel relationship, we can get: ∠ACP = θ, ∠APE = δ. Thus:

H ′ = H cos θ −H sin θ ∗ tan δ = H ∗ (cos θ − sin θ ∗ tan δ) (7)

Substitute it into equation (1) and we get:

z =
H

h
∗ (cos θ − sin θ ∗ tan δ) ∗ f (8)

2 More detailed results on three benchmarks

2.1 Detailed results on KITTI

Method Reference Extra Data AP3D(IOU = 0.7|R40) APBEV (IOU = 0.7|R40)
Easy Mod. Hard Easy Mod. Hard

MonoPSR [7] CVPR 2019 LIDAR 10.76 7.25 5.85 18.33 12.58 9.91
PatchNet [14] ECCV 2020 Depth 15.68 11.12 10.17 22.97 16.86 14.97
D4LCN[5] CVPR 2020 Depth 16.65 11.72 9.51 22.51 16.02 12.55
MonoRUn [3] CVPR 2021 LIDAR 19.65 12.30 10.58 27.94 17.34 15.24
CaDDN [18] CVPR 2021 LIDAR 19.17 13.41 11.46 27.94 18.91 17.19
DFR-Net [29] ICCV 2021 Depth 19.40 13.63 10.35 28.17 19.17 14.84
AutoShape [12] ICCV 2021 CAD 22.47 14.17 11.36 30.66 20.08 15.59
DID-M3D [17] ECCV 2022 Depth 24.40 16.29 13.75 32.95 22.76 19.83
DD3D [16] ICCV 2021 Depth 23.22 16.34 14.20 30.98 22.56 20.03
MoGDE [27] NeurIPS 2022 Odometry 27.07 17.88 15.66 38.38 25.60 22.91
M3D-RPN [1] ICCV 2019 None 14.76 9.71 7.42 21.02 13.67 10.23
SMOKE [11] CVPR 2020 None 14.03 9.76 7.84 20.83 14.49 12.75
MonoPair [4] CVPR2020 None 13.04 9.99 8.65 19.28 14.83 12.89
MonoDLE [15] CVPR2021 None 17.23 12.26 10.29 24.79 18.89 16.00
PCT [21] NeurIPS 2021 None 21.00 13.37 11.31 29.65 19.03 15.92
MonoFlex [26] CVPR 2021 None 19.94 13.89 12.07 28.23 19.75 16.89
MonoEdge [28] WACV 2023 None 21.08 14.47 12.73 28.80 20.35 17.57
GUPNet [13] ICCV 2021 None 22.26 15.02 13.12 30.29 21.19 18.20
MonoDTR [6] CVPR 2022 None 21.99 15.39 12.73 28.59 20.38 17.14
MonoCon [22] AAAI 2022 None 22.50 16.46 13.95 31.12 22.10 19.00
MonoUNI(Ours) - None 24.75 16.73 13.49 33.28 23.05 19.39

Table 1: Monocular 3D detection performance of Car category on KITTI test set. All results
are evaluated on KITTI testing server. Same as KITTI leaderboard, methods are ranked under the
moderate difficulty level. For the extra data: 1) LIDAR denotes methods use extra LIDAR cloud
points in training process. 2) Depth means utilizing depth maps or models pre-trained under another
depth estimation dataset. 3) CAD denotes using dense shape annotations provided by CAD models.
4) Odometry means utilizing extra odometry poses, images, or a well-trained network. 5) None
means no extra data is used.

Table 1 lists the results of the vehicle-side 3D detection methods on the KITTI dataset in recent
years. Our method ranks first among methods that do not use any additional data, which is improved
(2.25%/0.27%/− 0.46%) in AP3D and (2.16%/0.95%/0.39%) in APBEV compared to MonoCon
[22].
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2.2 Detailed results on Rope3D

Table 2 shows the comparison of the results of methods on the Rope3D dataset in recent years.
Compared with other methods, our method has greatly improved AP and Ropescore which ranks
first.

Method Extra Data
IOU = 0.5 IOU = 0.7

Car Big Vehicle Car Big Vehicle
AP Rope AP Rope AP Rope AP Rope

M3D-RPN [1] Ground 54.19 62.65 33.05 44.94 16.75 32.90 6.86 24.19
M3D-RPN [1] Depth 67.17 73.14 39.06 49.95 33.94 46.45 11.28 28.12
Kinematic3D [2] Ground 50.57 58.86 37.60 48.08 17.74 32.99 6.10 22.88
MonoDLE [15] Ground 51.70 60.36 40.34 50.07 13.58 29.46 9.63 25.80
MonoDLE [15] Depth 77.50 80.84 49.07 57.22 54.53 62.48 17.25 32.00
MonoFlex [26] Ground 60.33 66.86 37.33 47.96 33.78 46.12 10.08 26.16
MonoFlex [26] Depth 59.78 66.66 59.81 66.07 35.64 47.43 24.61 38.01
BEVFormer [10] None 50.62 58.78 34.58 45.16 24.64 38.71 10.05 25.56
BEVDepth [9] None 69.63 74.70 45.02 54.64 42.56 53.05 21.47 35.82
BEVHeight [24] None 74.60 78.72 48.93 57.70 45.73 55.62 23.07 37.04
MonoUNI(Ours) None 92.45 92.63 76.30 79.20 74.50 78.26 43.04 52.63

AP and Rope denote AP3D|R40 and Ropescore respectively.

Table 2: Monocular 3D detection performance of Car and Big Vehicle categories on Rope3D val
set.

2.3 Detailed results on DAIR-V2X-I

Method M V eh.(IOU=0.5) Ped.(IOU=0.25) Cyc.(IOU=0.25)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [8] L 63.07 54.00 54.01 38.53 37.20 37.28 38.46 22.60 22.49
SECOND [23] L 71.47 53.99 54.00 55.16 52.49 52.52 54.68 31.05 31.19
MVXNet [20] LC 71.04 53.71 53.76 55.83 54.45 54.40 54.05 30.79 31.06
ImvoxelNet [19] C 44.78 37.58 37.55 6.81 6.746 6.73 21.06 13.57 13.17
BEVFormer [10] C 61.37 50.73 50.73 16.89 15.82 15.95 22.16 22.13 22.06
BEVDepth [9] C 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34
BEVHeight [24] C 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54
MonoUNI(Ours) C 90.92 87.24 87.20 51.78 49.10 48.02 69.05 69.80 69.64

M, L, C denotes modality, LiDAR, camera respectively.

Table 3: Monocular 3D detection performance of Car category on DAIR-V2X-I val set.

3 Repartitioning of the Rope3D dataset

To investigate the influence of focal length diversity on model performance, we partitioned the
Rope3D [25] dataset according to the focal length of each image. We observed that the focal lengths
of the Rope3D dataset predominantly fell within two focal length ranges: 2150-2200 and 2749-2780.
Based on the provided training-test distribution from the official website and taking into account the
focal length of each image, we reorganized the Rope3D dataset as follows:

Table 4: The number of images in each subset of the Rope3D dataset.
numbers 2100 2700 all

Train 20247 20086 40333
Val 3149 1527 4676
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We conducted training and evaluation on three distinct sets using the widely adopted two-stage
approach GUPNet [13], the single-stage approach SMOKE [11], and our proposed method MonoUNI,
respectively.

Table 5: Analysis for different focal lengths on Rope3D dataset with new train/val division.

Method Train_set AP3D(IOU = 0.5|R40)
val_2100 val_2700 val_all

GUPNet [13] train_2100 13.20 0.03 7.42
GUPNet [13] train_2700 0.17 21.65 3.07
GUPNet [13] train_all 10.82 5.85 9.38
SMOKE [11] train_2100 9.77 0.13 6.19
SMOKE [11] train_2700 0.04 23.20 3.64
SMOKE [11] train_all 6.04 18.01 8.48

MonoUNI train_2100 25.78 21.30 24.47
MonoUNI train_2700 5.77 23.42 9.25
MonoUNI train_all 26.63 38.10 28.91

As shown in Table 5, due to the presence of ambiguity issues arising from focal length and mounting
angles, the ordinary vehicle-side 3D detection methods exhibited lower AP on individual focal length
testing subsets when trained on the entire dataset, compared to training them separately on the
corresponding focal length training subsets. MonoUNI introduces the concept of normalized depth
to address the ambiguity issue, effectively mitigating the mutual interference problem between two
different focal length training subsets. By employing this approach, MonoUNI achieves state-of-
the-art average precision (AP) performance across all testing subsets. Interestingly, when training
solely on the train_2100 subset, the model achieved a level of accuracy on the val_2700 subset that
was comparable to models trained exclusively on the train_2700 subset. This further highlights the
effectiveness of our method.

Figure 2: Qualitative Results on Rope3D. The 3D green boxes are produced by MonoUNI and the
red boxes are the ground truths.
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4 More Qualitative Results

We provide more qualitative results in Figure 2 and Figure 3.

Figure 3: Qualitative Results on KITTI. The 3D green boxes are produced by MonoUNI and the
red boxes are the ground truths.
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