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Abstract

Large language models (LLMs) have enabled the development of numerous spe-
cialized, task-specific variants. However, the maintenance and deployment of these
individual models present substantial challenges in terms of resource utilization
and operational efficiency. In this work, we propose the Mixture of Distributions
(MoD) framework, a novel approach for merging LLMs that operates directly
on their output probability distributions, rather than on model weights. Unlike
traditional weight-averaging methods, MoD effectively preserves the specialized
capabilities of individual models while enabling efficient knowledge sharing across
tasks. Through extensive experimentation on mathematical reasoning benchmarks
using Qwen2.5 models, we demonstrate that MoD significantly outperforms ex-
isting model merging techniques across multiple benchmarks. All code, data, and
experimental materials are published at https://github.com/knovel-eng/mod.

1 Introduction

In this paper, we introduce a novel method for merging large language models (LLMs) called Mixture
of Distributions (MoD). MoD extends previous approaches by incorporating a probabilistic framework
that optimally balances task specialization with generalization. By constructing a mixture distribution
over model parameters, MoD retains the unique strengths of each model while minimizing the risk
of catastrophic forgetting. Our experiments with Qwen2.5-1.5B and Qwen2.5-7B models (Team,
2024; Yang et al., 2024) show that MoD significantly outperforms traditional merging techniques,
particularly in multitask settings involving mathematics.

Our main contributions are as follows:

• We propose Mixture of Distributions (MoD), a novel and efficient method for merging
LLMs, which demonstrates superior performance over existing approaches.

• We present extensive experimental results with Qwen2.5 models on math-related tasks,
underscoring MoD’s enhanced effectiveness.

• We release our code to support further research in this area1.

The remainder of this paper details the MoD methodology (Section 2), presents our experimental
validation (Section 3), and concludes with a discussion of the results (Section 4).

(*)English Name is Andrew Dang
1https://github.com/knovel-eng/mod

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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(a) Weighted Average Method

(b) MoD (Our Method)

Figure 1: Comparison of our MoD method with the Weighted Average method. While weighted
averaging methods for merging LLMs often produce new distributions that alter the characteristics of
the original models (see Fig. 1a), our MoD approach effectively preserves key density structures,
accurately maintaining peak densities at θ = 0 and θ = 5 (see Fig. 1b).

2 Methodology

In this section, we present the Mixture of Distributions (MoD) method for merging large language
models (LLMs) through direct combination of their output probability distributions. By operating
in the distribution space rather than interpolating model weights, MoD effectively addresses key
challenges, particularly the distortion of density functions commonly observed in traditional weight-
based approaches. We establish the mathematical framework, present the underlying motivation, and
detail the implementation of our approach.

2.1 Notation and Symbols

Let θ1 and θ2 denote the parameter sets (weights) of two large language models (LLMs), where each
θi follows a multivariate normal distribution, θi ∼ N (µi,Σi). Given a sequence of input tokens x, let
pθ1(x) and pθ2(x) represent the probability density functions (PDFs) of the two models evaluated at x.
Our objective is to derive a unified output distribution pθ(x) that preserves the essential characteristics
of both original models while providing a coherent merged representation.

2.2 Motivation

Traditional weight-based merging approaches (Matena and Raffel, 2022; Garipov et al., 2018)
compute the merged model’s parameters through linear combination:

θ = αθ1 + (1− α)θ2

where α ∈ [0, 1]. However, this approach frequently distorts the original probability distributions.
Specifically, linear interpolation between θ1 and θ2 can lead to high density assignments at points θ
where neither pθ1(x) nor pθ2(x) initially exhibited significant probability mass. This phenomenon
results in poor generalization performance on downstream tasks, as illustrated in Figure 2.

To address these limitations, we propose a distribution-centric merging method that operates directly
on the models’ output PDFs. The Mixture of Distributions (MoD) method ensures preservation of
both models’ probabilistic properties while maintaining their fundamental density structures.
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Figure 2: Distribution distortion in weighted averaging methods, demonstrating failure to preserve
maximum density at θ = 0 despite high density in the red distribution.

2.3 Mixture of Distributions (MoD)

The MoD framework directly combines the output distributions of the constituent models. Rather
than merging parameters, we define the unified output distribution as a weighted combination of
probability densities:

pθ(x) = αpθ1(x) + (1− α)pθ2(x)

where α ∈ [0, 1]. Here, pθ1(x) and pθ2(x) represent the probability density functions of models 1
and 2 at point x, with α and (1− α) serving as mixture weights.

Solving for Mixture Weights The determination of optimal mixture weights requires solving:
f : Rn × Rn → Rn

θ = f(θ1, θ2)
(1)

where f represents the mapping function that identifies appropriate mixture weights while maintaining
distributional dimensionality. We approach this through quantile function analysis. The quantile
function Q(p) identifies the value θspecific such that:

Q(p) = inf{θspecific ∈ R : P (θ ≤ θspecific) = p}
where P (θ ≤ θspecific) represents the cumulative distribution function (CDF) of the mixture distri-
bution, and θspecific denotes a specific value in the distribution of θ. To address the computational
complexity of quantile function optimization, we employ a threshold-based approach. We normalize
θ1 within [0, 1] as θ1−normalize and choose α as a threshold that governs distributional contributions:

θ =

{
θ1, if θ1−normalize < α

θ2, otherwise.

This formulation ensures selective integration of significant distributional components.

Maximizing Density at Key Points A core advantage of MoD is its preservation of original density
structures while emphasizing critical distributional regions. Unlike weight-averaging methods, which
often generate spurious density peaks, MoD maintains density characteristics at crucial points x
through dynamic adjustment of mixture weights based on input sequences (Figure 3).

3 Experiment

Datasets To evaluate the performance and efficiency of our merged model, we focus on a range
of mathematics-focused benchmark datasets. Specifically, we use 12 datasets representing diverse
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Figure 3: MoD successfully preserves maximum density characteristics at θ = 0, demonstrating
effective distribution merging compared to traditional approaches.

aspects of mathematical reasoning and problem-solving: GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021c), SVAMP (Patel et al., 2021), ASDiv (Miao et al., 2020), MAWPS (Patel
et al., 2021), CARP En (Zhang et al., 2023a), GaoKao 2023 En (Zhang et al., 2023b), OlympiadBench
(He et al., 2024), College Math (Tang et al., 2024), MMLU STEM (Hendrycks et al., 2021b,a),
AIME242, AMC233.

The details of these datasets, including the number of samples, are summarized in Table 1.

Table 1: Datasets and Number of Samples for Evaluation
Dataset #Num Samples
GSM8K 1319
MATH 5000
College Math 2818
SVAMP 1000
ASDiv 2215
MAWPS 2065
CARP En 976
GaoKao 2023 En 385
OlympiadBench 675
MMLU STEM 3018
AIME24 30
AMC23 40

Metrics We report 5-shot pass@1 (Song et al., 2022; Chen et al., 2021) performance for MMLU
(STEM) and zero-shot pass@1 performance on the remaining benchmarks (Kojima et al., 2023).

We compare the performance of our MoD method with several established model-merging techniques,
including Linear (Matena and Raffel, 2022), Task-Arithmetic (Ilharco et al., 2023), TIES (Yadav
et al., 2023), DARE (Yu et al., 2024), and SLERP (Shoemake, 1985). These methods represent
widely used and advanced approaches for merging large language models, implemented using the
Mergekit package (Goddard et al., 2024)4.

2https://huggingface.co/datasets/AI-MO/aimo-validation-aime
3https://huggingface.co/datasets/AI-MO/aimo-validation-amc
4https://github.com/arcee-ai/mergekit

4

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://github.com/arcee-ai/mergekit


Experimental Evaluation We conducted extensive experiments to evaluate the effectiveness of
MoD by merging two variants of Large Language Models (LLMs): Qwen-2.5 Instruct and Qwen-2.5
Math Instruct, each available in 1.5B and 7B parameter versions. The general-purpose Qwen-2.5
Instruct model serves as the base model with a density of 0.9, while the mathematics-specialized
Qwen-2.5 Math Instruct contributes with a density of 0.1 across all experimental configurations.
This combination was specifically chosen to demonstrate MoD’s capability in merging models with
complementary task-specific strengths.

Table 2: Performance comparison of different methods across mathematical benchmarks by merging
Qwen2.5-1.5B-Instruct and Qwen2.5-1.5B-Math-Instruct

Method
Benchmarks

GSM8K MATH
College
Math

SVAMP ASDiv MAWPS
CARP

En
GaoKao
2023 En

Olympiad
Bench

MMLU
STEM

AIME24 AMC23

Linear 39.3 11.7 9.5 61.1 64.1 76.1 23.6 14.3 3.1 34.8 0.0 2.5
Task-Arithmetic 47.2 27.9 18.5 74.3 79.6 85.5 40.4 28.1 7.0 19.4 0.0 17.5
TIES 16.5 12.0 9.5 46.4 50.9 54.1 18.8 10.9 2.4 5.8 0.0 0.0
DARE 51.5 22.1 13.9 64.3 69.8 78.8 34.2 21.8 6.1 45.1 3.3 10.0
SLERP 47.3 20.9 13.9 58.1 64.8 70.3 31.8 21.8 6.2 42.4 0.0 7.5
MoD (Our) 74.5 55.8 38.0 85.1 88.0 95.1 56.0 47.0 20.6 59.5 10.0 27.5

Baseline Models Our evaluation results for the 1.5B parameter models, presented in Table 2,
demonstrate MoD’s superior performance across all benchmarks. On fundamental mathematical tasks
such as GSM8K, MoD achieves 74.5% accuracy, surpassing the previous state-of-the-art method
DARE by a substantial margin of 23 percentage points. The performance differential becomes even
more pronounced on complex benchmarks like MATH, where MoD attains 55.8% accuracy compared
to Task-Arithmetic’s 27.9%. Notably, MoD exhibits robust performance on both elementary and
advanced mathematical reasoning tasks, achieving 95.1% on MAWPS and 88.0% on ASDiv. The
method’s generalization capabilities are further evidenced by strong performance on specialized
benchmarks, including CARP En (56.0%) and the challenging Olympiad Bench (20.6%). In contrast,
baseline methods including Linear, Task-Arithmetic, TIES, and SLERP demonstrate significant
limitations, particularly on competitive mathematics benchmarks, with several methods failing to
achieve measurable performance on AIME24, and TIES showing 0% accuracy on AMC23.

Table 3: Performance comparison of different methods across mathematical benchmarks by merging
Qwen2.5-7B-Instruct and Qwen2.5-7B-Math-Instruct

Method
Benchmarks

GSM8K MATH
College
Math

SVAMP ASDiv MAWPS
CARP

En
GaoKao
2023 En

Olympiad
Bench

MMLU
STEM

AIME24 AMC23

Linear 91.9 70.7 45.6 92.7 95.1 97.9 58.8 62.1 35.0 56.9 13.3 47.5
Task-Arithmetic 72.5 40.8 24.0 84.9 89.8 92.8 47.2 37.7 12.0 32.5 0.0 10.0
TIES 53.3 35.8 22.9 75.3 81.5 86.5 40.3 31.4 10.5 25.6 0.0 15.0
DARE 90.9 71.6 45.3 92.2 95.1 97.5 59.0 60.8 34.8 55.7 13.3 42.5
SLERP 91.5 72.2 46.0 92.2 94.9 98.0 59.8 62.3 36.4 58.1 13.3 47.5
MoD (Our) 92.4 75.4 47.0 94.5 95.4 98.1 60.6 64.2 37.6 51.0 13.3 47.5

The results for the 7B parameter models, detailed in Table 3, further validate MoD’s effectiveness
across diverse mathematical tasks. MoD establishes new state-of-the-art benchmarks on fundamental
tests, achieving 92.4% on GSM8K and 75.4% on MATH. This superior performance extends to
practical applications, with exceptional results on MAWPS (98.1%) and ASDiv (95.4%). The
method demonstrates particular strength in specialized domains, achieving 64.2% on GaoKao 2023
En and 60.6% on CARP En, substantially outperforming established methods such as SLERP
and DARE. MoD’s capability in advanced mathematical reasoning is further demonstrated by its
leading performance on Olympiad Bench (37.6%). While maintaining competitive performance on
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standardized tests (AIME24: 13.3%, AMC23: 47.5%), MoD’s consistent superiority across varied
mathematical tasks underscores its robust architecture and strong generalization capabilities.

LLM Merging Competition However, in the LLM Merging Competition: Building LLMs Effi-
ciently through Merging5, one of the competition’s strict rules specifies that all models used must
have been uploaded before May 31st, 2024. Based on prior experimental evaluations on Qwen2.5
models and several external comparisons, we selected Starling-7B (Zhu et al., 2023) as the base
model to merge with Hermes-2-Pro-Mistral-7B6. The resulting merged model served as our final
submission. Notably, during the inference phase, our method required only 15 GB of a 48 GB GPU,
demonstrating its efficiency and resource effectiveness.

4 Conclusion

In this paper, we introduced Mixture of Distributions (MoD), a novel approach for merging Large
Language Models that preserves and leverages the strengths of constituent models through prob-
abilistic distribution combination. Our method demonstrates significant advantages over existing
parameter-merging techniques by maintaining critical density characteristics while enabling selective
integration of model capabilities. The experimental results across diverse mathematical benchmarks
validate MoD’s effectiveness, achieving state-of-the-art performance on both fundamental and ad-
vanced tasks. Our findings suggest that distribution-based merging approaches offer a promising
direction for developing more capable and adaptable language models, particularly in specialized
domains requiring precise knowledge integration.
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A Background

In the past year, we have witnessed significant advancements in open-source large language models
(LLMs), many of which are available on the Hugging Face model hub (Wolf et al., 2020). These
models are trained on datasets containing trillions of tokens and range from 1 to 70 billion parameters
(Minaee et al., 2024; Zhang et al., 2024). The diversity of open-source checkpoints is remarkable,
with a broad classification into pretrained models (Zhuang et al., 2021) and models fine-tuned for
instruction-following across a range of domains, such as coding (RoziÃĺre et al., 2024) and medical
applications (Wu et al., 2023). However, fine-tuning separate models for each specific task poses two
key challenges:

1. Each task-specific model must be stored and deployed independently, leading to increased
storage and deployment costs.

2. Independently trained models are unable to share insights across tasks, limiting their ability
to enhance task-specific performance or generalize to other domains (Sanh et al., 2022;
Ramé et al., 2022; Yu et al., 2024).

Training these models from scratch is resource-intensive, as illustrated by the Mistral-7B model,
which incurred costs between 2 to 3 million USD (Jiang et al., 2023). Further fine-tuning of
pretrained models often results in catastrophic forgetting (Wang et al., 2024), where the model’s
original generalization capabilities degrade, impairing its performance across multiple tasks (Cheng
et al., 2024; Wu et al., 2024). Moreover, aligning models to human preferences demands substantial
effort and data collection, making it impractical for most research teams to replicate (Wang et al.,
2023; Rafailov et al., 2023).

These challenges bring into focus the critical question of how to best utilize existing pretrained
checkpoints for research and practical applications. In this context, model merging has emerged
as a promising approach, combining parameters from multiple task-specific models into a single,
unified model. This technique enables multitask and continual learning while minimizing catastrophic
forgetting, all without the steep costs of training models from scratch (Yadav et al., 2023).

B Related Work

Model Merging Recent advances in large language models (LLMs) have highlighted model merg-
ing as a crucial strategy for combining the capabilities of multiple models into a unified system
(Ainsworth et al., 2023; Goddard et al., 2024; Labrak et al., 2024). This approach has gained
prominence for its ability to enhance multitask performance and enable continual learning without
requiring costly retraining procedures. Initial investigations in this domain explored weight aver-
aging techniques, which directly combined parameters of models sharing identical architectures
and initializations (Matena and Raffel, 2022; Garipov et al., 2018). While these methods demon-
strated promising results, they revealed significant limitations when applied to models trained on
heterogeneous tasks or initialized differently, prompting the development of more sophisticated
approaches.

Merging Techniques The theoretical foundation for many modern merging approaches stems
from Linear Mode Connectivity (LMC) (Frankle et al., 2020), which demonstrates that models
fine-tuned from a common pretrained checkpoint often permit linear interpolation while maintaining
performance integrity (Nagarajan and Kolter, 2021; Neyshabur et al., 2021). This insight has led
to the development of several practical methodologies. Model Soups (Wortsman et al., 2022) and
weight averaging techniques (Matena and Raffel, 2022; Garipov et al., 2018) offer elegant solutions
for merging models with shared initialization. Task Arithmetic (Ilharco et al., 2023) extends this
framework by introducing task vectors, demonstrating that arithmetic operations on the differences
between fine-tuned models and their base model yield semantically meaningful results. More
recent approaches, including Trim, Elect Sign Merge (TIES merging) (Yadav et al., 2023), Model
Breadcrumbs (Davari and Belilovsky, 2024), and Drop And REscale (DARE) (Yu et al., 2024), have
introduced sophisticated methods for sparsifying and combining task vectors, enabling the integration
of multiple models while preserving their individual capabilities. The application of Spherical Linear
intERPolation (SLERP) (Shoemake, 1985) represents a significant advancement over simple weight
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averaging, revealing that spherical paths often present lower loss barriers compared to direct linear
interpolation.

The challenge of merging independently trained models with different initializations presents a
more complex scenario. Git-Rebasin (Ainsworth et al., 2023) addresses this challenge by exploiting
neural networks’ permutation symmetry, enabling the alignment of neurons across independently
trained models to facilitate effective merging. Complementary approaches such as Optimizing Mode
Connectivity via Neuron Alignment (Tatro et al., 2020) and Optimal Transport Fusion (OTFusion)
(Imfeld et al., 2024) have further developed this concept, demonstrating enhanced capabilities in
reducing interpolation barriers between models with distinct random initializations.

Recent research has pushed the boundaries of model merging by exploring the integration of models
with heterogeneous architectures. The Composition to Augment Language Models (CALM) approach
(Bansal et al., 2024) leverages cross-attention mechanisms to integrate models with diverse neural
architectures, marking a significant advancement in the field. Similarly, the FUSELLM framework
(Wan et al., 2024) focuses on aligning probabilistic distributions across different language models,
facilitating the fusion of models with varying output characteristics. While these methods incur
higher computational costs and may require additional pretraining, they represent important progress
toward creating more versatile and adaptable models.

In this paper, we introduce Mixture of Distributions (MoD), a novel approach that shifts the paradigm
from weight interpolation to probabilistic output combination. Our method leverages the probability
density functions of large language models, enabling a more nuanced integration that preserves the
distinctive strengths of each model. The sections detail the methodology of MoD (Section 2), present
our experimental validation (Section 3), provide conclusions (Section 4).

C Limitations and Future Work

While MoD demonstrates superior performance compared to existing methods, we acknowledge
some limitations in our current study. First, our experimental validation is primarily confined
to the mathematical domain, which, while comprehensive, may not fully represent the method’s
generalizability across other specialized fields. Second, our current approach employs a simplified
strategy for determining mixture weights, which may not capture optimal combinations for all
scenarios.

These limitations suggest several promising directions for future research. First, extending the
evaluation of MoD to diverse domains beyond mathematics would provide valuable insights into the
method’s robustness and general applicability. Second, developing more sophisticated approaches for
determining optimal mixture weights could potentially enhance the method’s performance further.
Additionally, investigating the theoretical foundations of distribution-based merging approaches
could lead to more principled strategies for model combination and integration. These directions
would contribute to a deeper understanding of model merging techniques and their applications in
developing more capable language models.

D YAML Configuration

This appendix details the configuration parameters implemented across all methodologies in this
study, specifically for the 1.5B parameter model variant. These configurations are similar to those
employed in the 7B parameter implementation.

base_model: Qwen/Qwen2 .5-1.5B-Instruct

experts:
- source_model: Qwen/Qwen2 .5-1.5B-Instruct
- source_model: Qwen/Qwen2.5-Math -1.5B-Instruct

model_kwargs:
- device_map: cuda
- low_cpu_mem_usage: True
- trust_remote_code: True
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weights: [0.9, 0.1]

Configuration 1: MoD Method (Our)

models:
- model: Qwen/Qwen2 .5-1.5B-Instruct

parameters:
weight: 0.9

- model: Qwen/Qwen2.5-Math -1.5B-Instruct
parameters:

weight: 0.1
merge_method: linear
dtype: float16

Configuration 2: Linear Method

models:
- model: Qwen/Qwen2 .5-1.5B-Instruct

# No parameters necessary for base model
- model: Qwen/Qwen2.5-Math -1.5B-Instruct

parameters:
density: 0.9
weight: 0.1

merge_method: dare_ties
base_model: Qwen/Qwen2 .5-1.5B-Instruct
parameters:

int8_mask: true
dtype: bfloat16

Configuration 3: DARE Method

models:
- model: Qwen/Qwen2 .5-1.5B-Instruct
- model: Qwen/Qwen2.5-Math -1.5B-Instruct

parameters:
density: 0.9
weight: 0.1

merge_method: ties
base_model: Qwen/Qwen2 .5-1.5B-Instruct
parameters:

normalize: true
dtype: bfloat16

Configuration 4: TIES Method
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models:
- model: Qwen/Qwen2 .5-1.5B-Instruct

parameters:
weight: 0.9

- model: Qwen/Qwen2.5-Math -1.5B-Instruct
parameters:

weight: 0.1

base_model: Qwen/Qwen2 .5-1.5B-Instruct
merge_method: task_arithmetic
parameters:

normalize: true
int8_mask: true

dtype: bfloat16

Configuration 5: Task Arithmetic Method

slices:
- sources:

- model: Qwen/Qwen2 .5-1.5B-Instruct
layer_range: [0, 28]

- model: Qwen/Qwen2.5-Math -1.5B-Instruct
layer_range: [0, 28]

merge_method: slerp
base_model: Qwen/Qwen2 .5-1.5B-Instruct
parameters:

t:
- filter: self_attn

value: 0.1
- filter: mlp

value: 0.1
- value: 0.1

dtype: bfloat16

Configuration 6: SLERP Method
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