
Supplementary Materials
A Organization of Supplementary Materials

The supplementary materials consist of five main sections.

Related Work. In Appendix B, we give a detailed overview of the related literature.

Proofs for Section 3. In Appendix C, we give the proofs of Theorem 1 and Proposition 1.

Algorithm and Implementation Details. In Appendix D, we provide further details about the imple-
mentation and training procedure for PerSim and the RL methods we benchmark against.

Detailed Experimental Setup. In Appendix E, we detail the setup used to run our experiments. In
Appendix E.1, we describe the OpenAI environments used. In Appendix E.2, we describe how we
generate the offline training datasets for each environment.

Additional Experimental Results. In Appendix F, we provide more details for the experiments we
run. Specifically, in Appendix F.1, we provide comprehensive results for the long-horizon prediction ac-
curacy of model-based methods across all five test agents. In Appendix F.2, we provide comprehensive
results for the achieved reward in the various environments for both the model-based and model-free
methods across all five test agents. In Appendix F.3, we present additional visualizations of the latent
agent factors. In Appendix F.4, we provide more details about the PerSim+BCQ/CQL experiments
described in Section 5.4. In Appendix F.5, we describe and evaluate our proposed extension of PerSim
to unseen test agents. In Appendix F.6, we evaluate PerSim’s robustness to further data scarcity as we
reduce the number of training agents.

B Related Work

Model-based Online RL. In model-based RL methods [50, 40, 19, 49, 21, 33, 12], the transition
dynamics or simulator is learnt and subsequently utilized for policy learning. Compared to their model-
free counterparts, model-based approaches, when successful, have proven to be far more data-efficient
in terms of the number of samples required to learn a good policy and have shown to generalize better
to unseen (state, action) tuples [10, 11, 26, 21, 17]. Recently, such methods have also been shown to
effectively deal with agent heterogeneity, e.g., [29] learns a context vector using the recent trajectory of
a given agent, with a common context encoder across all agents. Several recent works also utilize the
meta-learning framework [13] to quickly adapt the model for model-based RL [39, 37, 36]. Thus far,
the vast majority of the model-based RL literature has focused on the online setting, where transition
dynamics are learned by adaptively sampling trajectories. Such online sampling helps these methods
efficiently quantify and reduce uncertainty for unseen (state, action)-pairs. Further, there has been
some work showing the success of online model-based RL approaches with offline data, with minimal
change in the algorithm [19, 53]. This serves as additional motivation to compare with a state-of-the-art
model-based RL method such as [29], which is designed to address agent heterogeneity.

Model-free Offline RL. As stated earlier, the offline RL paradigm [27, 31] is meant to allow one to
leverage large pre-recorded (static) datasets to learn policies. Such methods are particularly pertinent
for situations in which interacting with the environment can be costly and/or unethical, e.g., healthcare,
autonomous driving, social/economic systems. The vast majority of offline RL methods are model-
free [15, 24, 28, 32, 51, 4, 25]. Despite their rapidly increasing popularity, traditional offline RL
methods suffer from “distribution shift”, i.e., the policy learnt using such methods perform poorly on
(state, action)-pairs that are unseen in the offline dataset [24, 15, 3, 31]. To overcome this challenge,
offline RL methods design policies that are “close”, in an appropriate sense, to the observed behavioural
policy in the offline dataset [24, 51, 15]. They normally do so by directly regularizing the learnt
policy (e.g. parameterized via the Q-function) based on the quantified level of uncertainty for a given
(state, action)-pair. Most offline RL methods tend to be designed for the case where there is no agent
heterogeneity. To study how much offline methods suffer if agent heterogeneity is introduced, we
compare with one state-of-the-art offline RL method [15].

Model-based Offline RL. Model-based offline RL is a relatively nascent field. Two recent excellent
works [23, 53] have shown that in certain settings, first building a model from offline data and
then learning a policy outperforms state-of-the-art model-free offline RL methods on benchmark
environments. By learning a model of the transition dynamics first, it allows such methods to trade-off
the risk of leaving the behavioral distribution with the gains of exploring diverse states. However,
the current inventory of model-based offline RL methods still require a large and diverse dataset

14

for each agent of interest—in fact, these methods restrict attention to the setting where there is just
one agent of interest and one gets observations just from that one agent. Our approach effectively
resolves the challenge via developing a principled and generic model representation. It is worth
mentioning that several recent theoretical works have shown that structured MDPs (e.g., low-rank or
linear transition model or value functions) can lead to provably efficient RL algorithms [52, 1, 20, 42],
albeit in different settings. Extending the current model-based offline RL methods to work with sparse
data from heterogeneous agents, possibly by building upon the latent low-rank tensor representation
we propose, remains interesting future work.

C Theoretical Results

C.1 Proof of Theorem 1

Proof. We will construct the function hd by partitioning the latent parameter spaces associated with
agents, states, and actions. We then complete the proof by showing that hd is entry-wise close to f̃d.

Partitioning the latent spaces to constructhd. Fix some �1,�3>0. Since the latent row parameters ✓n
come from a compact space [0,1]d1 , we can construct a finite covering or partitioning P1(�1)⇢ [0,1]d1

such that for any ✓n 2 [0,1]d1 , there exists a ✓n0 2 P1(�1) satisfying k✓n � ✓n0k2  �1. By the
same argument, we can construct a partitioning P3(�3)⇢ [0,1]d3 such that k!a�!a0k2 �3 for any
!a2 [0,1]d3 and some !a0 2P3(�3).

For each ✓n, let p1(✓n) denote the unique element in P1(�1) that is closest to ✓n. Similarly, define
p3(!a) as the corresponding element in P3(�3) that is closest to !a. We enumerate the elements of
P1(�1) as {✓̃1,...,✓̃|P1(�1)|}. Analogously, we enumerate the elements of P3(�3) as {!̃1,...,!̃|P3(�3)|}.
We now define hd as follows:

hd(n,s,a)=

|P1(�1)|X

i=1

|P3(�3)|X

j=1

(p1(✓n)= ✓̃i) (p3(!a)= !̃j)fd(✓̃i,⇢s,!̃j).

f̃d is well approximated by hd. Here, we bound the maximum difference of any entry in f̃d from hd.
Using the Lipschitz property of fd (Assumption 1), we obtain for any (n,s,a),

|f̃d(n,s,a)�hd(n,s,a)|

=
���fd(✓n,⇢s,!a)�

|P1(�1)|X

i=1

|P1(�3)|X

j=1

(p1(✓n)= ✓̃i) (p3(!a)= !̃j)fd(✓̃i,⇢s,!̃j)
���

= |fd(✓n,⇢s,!a)�fd(p1(✓n),⇢s,p3(!a))|
L(k✓n�p1(✓n)k2+k!a�p3(!a)k2)
L(�1+�3).

This proves that f̃d is entry-wise arbitrarily close to hd.

Concluding the proof. It remains to write hd(n,s,a) as
Pr
`=1u`(n)v`(s,d)w`(a) and bound the

induced r. To that end, for `=(i,j)2 [|P1(�1)|]⇥[|P3(�3)|], we define

u`(n) := (p1(✓n)= ✓̃i), v`(s,d) :=fd(✓̃i,⇢s,!̃j), w`(a) := (p3(!a)= !̃j).

This allows us to write r= |P1(�1)|·|P3(�3)|. Since each of the latent spaces is a unit cube of different
dimensions, i.e., [0,1]x with x2{d1,d3}, we can simply create partitions P1(�1),P3(�3) by creating
grid of cubes of size �1 and �3 respectively. In doing so, the number of such cubes will scale as
|P1(�1)|  C��d1

1 ,|P3(�3)|  C��d3
3 , where C is an absolute constant. As such, r  C��d1

1 ��d3
3 .

Setting �=�1=�3 completes the proof.

C.2 Proof of Proposition 1

Proof. To show that r = 3, it suffices to find u(n), v(sn, 1), v(sn, 2), w(an) 2 R3 such that
hd(n,sn, an) =

Pr
`=1 u`(n)v`(sn, d)w`(an) for any n 2 [N], sn = [sn1, sn2] 2 S, an 2 A, and

d2{1,2}. In particular, we require that u(n) can only depend on agent n, i.e., not on the action or state.
Analogously, v(sn,1) and v(sn,2) can only depend on the state, and w(an) can only depend on the

15

action. Towards this, consider the following factors:
u(n)=[1 gn 1], w(an)=[1 1 an],

v(sn,1)=
h
sn1+sn2 � cos(3sn1)

2
1
2

i
, v(sn,2)=[sn2 �cos(3sn1) 1].

Recalling h1(n,sn,an) = sn1+sn2� gncos(3sn1)
2 +an

2 and h2(n,sn,an) = sn2�gncos(3sn1) + an
completes the proof.

D Algorithm and Implementation Details

D.1 PerSim

Step 1 Details: Learning Personalized Simulators. As explained in Section 4, the personalized
simulators are effectively trained by learning gu, gv , and gw, which correspond to the agent, state, and
action encoders, respectively. Below, we detail the architecture used for each function.

1. Agent encoder: gu. We use a single layer that takes in a one-hot encoder of the agent and returns
an r-dimensional latent factor.

2. State encoder: gv . We use a multilayer perceptron (MLP) with 1 hidden layer of 256 ReLU
activated nodes for both MountainCar and CartPole, and an MLP with 4 hidden layers each with
256 ReLU activated nodes for HalfCheetah.

3. Action encoder: gw. In environments with discrete action spaces, i.e., MountainCar and CartPole,
we use a single layer that takes in a one-hot encoder of the action and produce an r-dimensional
latent factor. For HalfCheetah, we use an MLP with 2 hidden layers of 256 ReLU activated nodes.

We choose the tensor rank r to be 3, 5, and 15 for the MountainCar, CartPole, and HalfCheetah
environments, respectively. The choice is made via cross validation from the set {3,5,10,15,20,30}.
Specifically, 20% of the data points (selected randomly from different trajectories) are set aside for
validation in the hyper-parameter selection process. We train our simulators with a learning rate of
0.001, 300 epochs, and a batch size of 512 for HalfCheetah and MountainCar and 64 for CartPole.
Please refer to the pseudo-code in Algorithm 1 for a detailed description of the training procedure.

Algorithm 1 Training Personalized Dynamic Models
1: Input: Dataset D, Rank r, Learning rate ⌘, Batch size B, Number of epochs K
2: Output: gu(·;), gv(·;�), gw(·;✓)
3: Initialize , �, and ✓
4: for each epoch do :
5: for each batch do :
6: for i=1 to B do :
7: Sample {si,ai,s0i,ni}⇠D
8: Compute �si s0i�si
9: Get agent latent factor bu(ni) gu(ni;)

10: Get state latent factor bv(si) :=[bv(si,d)]d2[D] gv(si;�)
11: Get action latent factor bw(ai) gw(ai;✓)

12: Get the error estimate Li k�si�
Pr
`=1bu`(ni)v`(si) bw`(ai)k

2
2

13: end for
14: Update �⌘r 1

B

PB
i=1Li

15: Update � ��⌘r� 1
B

PB
i=1Li

16: Update ✓ ✓�⌘r✓ 1
B

PB
i=1Li

17: end for
18: end for

Step 2 Details: Learning a Decision-making Policy. As outlined in Section 4, we use MPC to select
the best action. Specifically, we sample C candidate action sequences of length h, which we denote as
{a(i)1 ,...,a(i)h }Ci=1. The actions are sampled using cross entropy in environments with continuous action
spaces and random shooting in environments with discrete action space [9, 7].

Since the offline data may not span the entire state-action space, planning using a learned simulator
without any regularization may result in “model exploitation” [31]. To overcome this issue, we gauge
the model uncertainty, as is common in the literature, as follows. We train an ensemble ofM simulators

16

{g(m)
u ,g(m)

s ,g(m)
a }Mm=1. Then, for i2 [C], we evaluate the average reward of performing the i-th action

sequence, which we denote by r(i), using the estimates across the M simulators. Specifically,

r(i)=
1

M

MX

m=1

hX

t=1

R
⇣
bs(m,i)
t ,a(i)t

⌘
,

where bs(m,i)
t is the predicted trajectory according to the m-th simulator and the sequence of actions

{a(i)1 ,...,a(i)h }, and R is the reward function (which we assume is known, as is done in prior works
[29, 23]). Finally, we choose the first element from the sequence of actions with the best average
reward, i.e., the sequence {a(i

⇤)
1 ,...,a(i

⇤)
h }, where i⇤=argmaxi2[C] r

(i).

For MountainCar and CartPole, we use random shooting to sample 1000 candidate actions with a
planning horizon of 50. For HalfCheetah, we use the cross entropy method to sample 200 candidate
actions with a planning horizon of 30. For all environments, we train M=5 simulators.

D.2 Benchmarking Algorithms

Vanilla CaDM + PE-TS CaDM. We use the implementation provided by the authors in [29].2 To train
on offline data, we modify the sampling procedure in the implementation. Specifically, we change it to
sample from a replay buffer containing the recorded trajectories. Similar to our method, we use MPC
with a planning horizon of 30 for HalfCheetah, and 50 for MountainCar and CartPole. We train the
forward dynamic model, the backward dynamic model, and the context encoder for 20 iterations each
with a maximum of 200 epochs and a learning rate of 0.001. For PE-TS, as is done in [29], we use an
ensemble of five dynamics models, and use twenty particles for trajectory sampling.

BCQ-P +BCQ-A. We use the implementation provided by the authors in [15].3 Specifically, we use
discrete BCQ for MountainCar and CartPole, and continuous BCQ for HalfCheetah. For both BCQ-P
and BCQ-A, we train the policy for 5.5⇥105 iterations.

CQL-P +CQL-A. We use the CQL implementation provided by the d3rlpy library [41].4 Specifically,
we use discrete CQL for MountainCar and CartPole, and continuous CQL for HalfCheetah. For discrete
CQL, we set the number of critics to 3, the parameter ↵ to 1, and we use a batch size of 512 and a
learning rate of 10�4. For continuous CQL, we set the Lagrange threshold to 5, the policy learning rate
to 3e�5, and the critic learning rate to 3e�4. We choose these parameters according to the guidelines
the authors provide in [25].

MOReL-P +MOReL-A. We use the available open source implementation of MOReL [15].5 We
further extend the implementation to accommodate for environments with discrete actions. We use
uncertainty penalty of -50 in MountainCar and CartPole and a penalty of -200 in HalfCheetah. For the
dynamic model, we use an MLP with two hidden layers. Each layer has 128 neurons in MountainCar
and CartPole, and 1024 neurons in HalfCheetah as done in the original paper.

E Detailed Setup

E.1 Environments

Table 4: Environment parameters used for experiments.
Environment Parameter range Test agents Policy training agents

MountainCar gravity 2 [0.0001, 0.0035] {0.0001, 0.0005, 0.0010,
0.0025, 0.0035}

{0.0003, 0.00075, 0.00175,
0.0025, 0.0030}

CartPole length 2[0.15, 0.85]
force 2 [2.0, 18]

{(2.0,0.5), (10.0,0.5), (18.0, 0.5),
(10.0,0.85), (10.0,0.15)}

{(6.0,0.5), (14.0,0.5), (10.0,0.5),
(10.0,0.675), (10.0, 0.325)}

HalfCheetah relative mass 2 [0.2,1.8]
relative damping 2 [0.2,1.8]

{(0.3,1.7), (1.7,0.3), (0.3, 0.3),
(1.7,1.7), (1.0,1.0)}

{(0.6,1.4), (1.4,0.6), (0.6, 0.6),
(1.4,1.4)}

2https://github.com/younggyoseo/CaDM
3https://github.com/sfujim/BCQ
4https://github.com/takuseno/d3rlpy
5https://github.com/SwapnilPande/MOReL

17

We perform experiments on three environments from the OpenAI Gym: two classical non-linear control
environments, MountainCar and CartPole, and one Mujoco environment, HalfCheetah [47]. Next, we
describe these three environments in detail.

MountainCar. In MountainCar, the goal is to drive a under-powered car to the top of a hill by taking
the least number of steps.

• Observation. We observe x(t), ẋ(t): the position and velocity of the car, respectively.
• Actions. There are three possible actions {0,1,2}: (0) accelerate to the left; (1) do nothing; (2)

accelerate to the right.
• Reward. The reward is defined as

R(t)=

⇢
1, x(t)�0.5
�1, otherwise.

• Environment modification. We vary the gravity within the range [0.0001,0.0035]. Note that with a
weaker gravity, the environment is trivially solved by directly moving to the right. On the other hand,
with a stronger gravity, the car must drive left and right to build up enough momentum. See Table 4
for details about the parameter ranges and the test agents.

CartPole. In CartPole, a pole is attached to a cart moving on a frictionless track. The goal is to prevent
the pole from falling over by moving the cart to the left or to the right, and to do so for as long as
possible (maximum of 200 steps).

• Observation. We observe x(t),ẋ(t),✓(t),✓̇(t): the cart’s position, its velocity, the pole’s angle, and
its angular velocity, respectively.

• Actions. There are two possible actions {0,1}: (0) push to the right; (1) push to the left.
• Reward. The reward is 1 for every step taken without termination. The environment terminates when

the pole angle exceeds 12 degrees or when the cart position exceeds 2.4.
• Environment modification. As in [29], we vary the length of the pole and push force within the ranges
[0.15,0.85] and [2.0,18.0], respectively. See Table 4 for details about the parameter ranges and the
test agents.

HalfCheetah. In HalfCheetah, the goal is to move the cheetah as fast as possible. The cheetah’s body
consists of 7 links connected via 6 joints.

• Observation. We observe an 18-dimensional vector that includes the angle and angular velocity of all
six joints, as well as the 3-D position and orientation of the torso. Additionally, as is done in previous
studies [29, 23], we append the center of mass velocity to our state vector to enable computing the
reward from observations.

• Actions. The action a(t)2 [�1,1]6 represents the torque applied at the six joints.
• Reward. The reward is defined as

R(t)=v(t)�0.05ka(t)k2,
where v(t) is the center of mass velocity at time t.

• Environment modification. As in [29], we scale the mass of every link and the damping of every joint
by factors m and d, respectively. Specifically, we vary both m and d within the range [0.2,1.8]. See
Table 4 for details about the parameter ranges and the test agents.

E.2 Offline Datasets

As stated in Section 5, we generate four offline datasets for each environment with varying “optimality”
of the sampling policy. Specifically, we generate 500 trajectories (one per agent) for each environment
as per the following sampling procedures:

(i) Pure. In the Pure procedure, actions are sampled according to a fixed policy (for each agent) that
has been trained to achieve reasonably good performance. Specifically, for each environment, we first
train a policy using online model-free algorithms for the training agents shown in Table 4. Specifically,
we train these logging policies using DQN [34] for MountainCar and CartPole, and using TD3 for
and HalfCheetah. We train these policies to achieve rewards of approximately -200, 120, 3000, for
MountainCar, CartPole, and HalfCheetah respectively. Then, to sample a trajectory for each of the 500
agents, we use the policy trained on the training agent with the closest parameter value.

(ii) Random. Actions are selected uniformly at random.

(iii) Pure-"-20. Actions are selected uniformly at random with probability of 0.2, and selected via the
pure policy otherwise.

18

(iv) Pure-"-40. Actions are selected uniformly at random with probability of 0.4, and selected via the
pure policy otherwise.

See Table 5 for details about the reward observed for the five test agents using these four sampling
procedures, and the average reward and trajectory length achieved across all 500 agents.

Table 5: Observed reward and trajectory length in the four sampled datasets in each environment. Agent
1 to Agent 5 refer to the five test agents. The average is taken across all 500 agents.

Environment Data Observed Reward Average
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Average Trajectory Length

MountainCar
Pure -48.0 -50.0 -57.0 -171.0 -134.0 -112.926 113.914
Random -500.0 -500.0 -500.0 -500.0 -500.0 -496.324 496.344
Pure-eps-2 -46.0 -54.0 -73.0 -165.0 -140.0 -155.252 156.214
Pure-eps-4 -55.0 -64.0 -500.0 -264.0 -208.0 -227.278 228.18

CartPole
Pure 197 200 193 179 200 185.14 186.14
Random 59 23 10 26 17 22.39 23.39
Pure-eps-2 180 199 30 179 199 157.92 158.92
Pure-eps-4 38 23 11 170 14 92.80 93.80

HalfCheetah
Pure 522.40 1246.32 251.25 2646.85 1011.99 1894.10 1000.00
Random -395.58 -65.77 -106.80 -150.01 -323.86 -251.75 1000.00
Pure-eps-2 399.95 938.58 189.17 1742.85 1137.45 1121.52 1000.00
Pure-eps-4 508.11 -115.94 128.64 1155.23 216.69 771.71 1000.00

19

F Additional Experimental Results

F.1 Detailed Prediction Error Results

In this section, we provide additional results for the prediction error experiments. As detailed in Section
5, we evaluate the accuracy of the learned transition dynamics for each of the five test agent, focusing
on long-horizon model prediction. Specifically, we predict the next 50-step state trajectory given an
initial state and an unseen sequence of 50 actions. The sequence of 50 actions are chosen according to
an unseen test policy. Precisely , the test policies are fitted via DQN for MountainCar and CartPole,
and via TD3 for and HalfCheetah, for the agent with the default covariate parameters. The test policies
were trained to achieve an average rewards of -150, 150, 4000 for the MountainCar, CartPole, and
HalfCheetah environments, respectively. As described in Section 5, we report the mean RMSE and
the median R2 across 200 trials. The results are summarized in Tables 6, 7, and 8 for MountainCar,
CartPole, and HalfCheetah, respectively. Additionally, Figure 4 visualizes the prediction accuracy of
PerSim up to 90-steps ahead predictions for two test agents in MountainCar and CartPole.

Table 6: Prediction error: MountainCar

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0.0001 0.0005 0.001 0.0025 0.0035

Pure
PerSim 0.025 (0.969) 0.090 (0.973) 0.031 (0.978) 0.014 (0.942) 0.039 (0.803)
Vanilla CaDM 0.149 (0.741) 0.126 (0.767) 0.075 (0.913) 0.177 (-18.426) 0.238 (-30.148)
PE-TS CaDM 0.326 (-1.912) 0.288 (-3.449) 0.194 (-2.61) 0.154 (-1.114) 0.148 (-0.179)

Random
PerSim 0.004 (0.999) 0.003 (1.000) 0.001 (1.000) 0.001 (1.000) 0.001 (1.000)
Vanilla CaDM 0.256 (0.428) 0.203 (0.264) 0.162 (-1.041) 0.134 (0.710) 0.217 (-1.767)
PE-TS CaDM 0.242 (0.310) 0.177 (0.725) 0.156 (-0.259) 0.101 (0.868) 0.075 (0.967)

Pure-"-20
PerSim 0.004 (1.000) 0.003 (1.000) 0.001 (1.000) 0.002 (0.999) 0.004 (0.998)
Vanilla CaDM 0.227 (0.309) 0.201 (0.271) 0.131 (0.405) 0.101 (-0.369) 0.157 (-2.252)
PE-TS CaDM 0.35 (-2.571) 0.282 (-3.829) 0.216 (-1.706) 0.139 (0.746) 0.13 (0.892)

Pure-"-40
PerSim 0.006 (0.999) 0.005 (1.000) 0.004 (1.000) 0.006 (0.992) 0.003 (0.999)
Vanilla CaDM 0.199 (0.54) 0.176 (0.542) 0.106 (0.703) 0.119 (0.384) 0.187 (-9.005)
PE-TS CaDM 0.639 (-2.273) 0.283 (-2.299) 0.174 (-0.631) 0.192 (-6.056) 0.157 (0.546)

Table 7: Prediction Error: CartPole

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(2/0.5) (10.0/0.5) (18.0/0.5) (10/0.85) (10/0.15)

Pure
PerSim 0.001 (1.000) 0.001 (1.000) 0.002 (1.000) 0.001 (1.000) 0.035 (0.995)
Vanilla CaDM 0.403 (0.712) 0.152 (0.425) 0.148 (0.664) 0.039 (0.975) 2.531 (-0.532)
PE-TS CaDM 0.031 (0.993) 0.011 (0.995) 0.016 (0.997) 0.006 (1.000) 0.319 (0.651)

Random
PerSim 0.014 (0.982) 0.022 (0.970) 0.030 (0.979) 0.006 (0.999) 0.152 (0.883)
Vanilla CaDM 0.172 (0.095) 0.282 (-0.483) 0.514 (-0.381) 0.098 (0.639) 3.307 (-0.734)
PE-TS CaDM 0.564 (-1.357) 0.493 (-0.200) 0.891 (-0.458) 0.216 (0.450) 3.764 (-1.104)

Pure-"-20
PerSim 0.000 (1.000) 0.001 (1.000) 0.008 (0.999) 0.001 (1.000) 0.048 (0.984)
Vanilla CaDM 0.270 (-0.982) 0.037 (0.973) 0.046 (0.991) 0.058 (0.943) 2.193 (-0.432)
PE-TS CaDM 0.639 (-1.206) 0.252 (0.000) 0.434 (-0.170) 0.148 (0.384) 2.680 (-0.561)

Pure-"-40
PerSim 0.000 (1.000) 0.002 (1.000) 0.011 (0.998) 0.000 (1.000) 0.018 (0.998)
Vanilla CaDM 0.233 (-0.883) 0.055 (0.956) 0.032 (0.993) 0.035 (0.987) 3.286 (-0.618)
PE-TS CaDM 0.051 (0.983) 0.017 (0.992) 0.013 (0.998) 0.010 (0.999) 0.411 (0.553)

20

Table 8: Prediction Error: HalfCheetah

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(0.3/1.7) (1.7/0.3) (0.3/0.3) (1.7/1.7) (1.0/1.0)

Pure
PerSim 1.401 (0.890) 4.766 (0.574) 4.385 (0.791) 1.409 (0.840) 2.505 (0.793)
Vanilla CaDM 3.902 (0.472) 3.851(0.490) 6.308 (0.380) 2.881 (0.336) 1.804 (0.829)
PE-TS CaDM 3.147 (0.614) 3.080 (0.682) 5.270 (0.572) 1.833 (0.647) 1.915 (0.784)

Random
PerSim 1.194 (0.916) 4.064 (0.670) 4.070 (0.812) 1.291 (0.855) 2.325 (0.812)
Vanilla CaDM 4.030 (0.435) 4.121(0.430) 4.446 (0.672) 3.840 (-0.432) 4.270 (0.255)
PE-TS CaDM 2.735 (0.731) 2.756 (0.688) 4.141 (0.767) 2.031 (0.601) 1.957 (0.773)

Pure-"-20
PerSim 1.172 (0.922) 4.283 (0.660) 3.832 (0.844) 1.123 (0.880) 2.057 (0.840)
Vanilla CaDM 3.613 (0.534) 3.455 (0.538) 6.046 (0.477) 2.256 (0.575) 2.070 (0.753)
PE-TS CaDM 2.913 (0.699) 2.959 (0.652) 4.818 (0.647) 1.970 (0.633) 2.073 (0.744)

Pure-"-40
PerSim 1.016 (0.940) 4.021 (0.664) 3.742 (0.853) 1.287 (0.868) 1.887 (0.836)
Vanilla CaDM 3.685 (0.493) 3.612 (0.480) 6.000 (0.392) 2.561 (0.521) 2.136 (0.738)
PE-TS CaDM 3.021 (0.672) 3.025 (0.614) 5.075 (0.615) 1.792 (0.668) 1.930 (0.779)

21

(a) MountainCar with gravity 0.0001

(b) MountainCar with gravity 0.0025

(c) CartPole with pole length 0.85

(d) CartPole with pole length 0.5

Figure 4: Visualization of the prediction accuracy of PerSim for two heterogeneous agents in Moun-
tainCar and CartPole, and how it compares with the two CaDM variants. Specifically, given an initial
state and a sequence of actions, we predict future states for the next 90 steps. Ground-truth states and
predicted states are denoted by the opaque and translucent objects, respectively.

22

F.2 Detailed Average Reward Results

In this section, we show the full results for the experiments for the reward achieved in each environment.
Specifically, we report the average reward achieved by PerSim and several state-of-the-art model-based
and model-free offline RL methods on the three benchmark environments across 5 trials. We evaluate
the performance of each method using the average reward over 20 episodes for the model-based
methods and the average reward over 100 episodes for the model-free methods. We repeat each
experiment five times and report the mean and standard deviation.

The results are summarized in Tables 9, 10, and 11 for MountainCar, CartPole, and HalfCheetah,
respectively.

Table 9: Average Reward: MountainCar

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0.0001 0.0005 0.001 0.0025 0.0035

Pu
re

PerSim -56.80±1.83 -74.30±6.59 -114.1±16.1 -189.4±6.44 -210.6±4.27
Vanilla CaDM -106.3±44.1 -289.8±195 -332.8±193 -432.3±117 -471.8±43.0
PE-TS CaDM -74.23±16.5 -119.1±44.4 -361.3±240 -492.3±13.3 -500.0±0.0
BCQ-P -67.60±22.3 -68.60±19.6 -79.20±14.7 -267.8±202 -295.1±180
BCQ-A -44.79±0.08 -50.50±0.40 -63.52±0.19 -380.7±170 -500.0±0.0
CQL-P -176.1±45.2 -161.8±40.6 -166.1±33.9 -316.4±26.4 -362.9±17.9
CQL-A -44.60±0.0 -49.70±0.0 -63.30±0.3 -500.0±0.0 -499.3±0.7
MOReL-P -46.00±1.1 -53.20±3.3 -220.3±162.6 -500.0±0.0 -500.0±0.0
MOReL-A -373.0±33.5 -488.8±4.9 -499.4±0.2 -500.0±0.0 -500.0±0.0

R
an

do
m

PerSim -57.70±5.63 -74.30±6.39 -120.4±2.17 -186.6±4.25 -210.1±4.48
Vanilla CaDM -62.57±5.11 -75.27±4.59 -274.9±74.2 -479.3±21.7 -497.5±4.39
PE-TS CaDM -82.00±3.47 -115.7±7.63 -472.1±48.3 -500.0±0.0 -500.0±0.0
BCQ-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0
BCQ-A -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0
CQL-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0
CQL-A -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0
MOReL-P -45.00±0.3 -50.40±0.5 -68.20±5.4 -500.0±0.0 -500.0±0.0
MOReL-A -495.0±3.9 -480.6±3.1 -500.0±0.0 -500.0±0.0 -500.0±0.0

Pu
re

-"
-2

0

PerSim -54.20±0.56 -67.80±0.48 -111.7±6.20 -191.2±6.70 -199.7±3.99
Vanilla CaDM -56.73±4.20 -70.70±1.54 -148.7±11.6 -463.2±57.5 -478.9±35.8
PE-TS CaDM -107.6±36.3 -158.5±84.3 -464.6±37.3 -500.0±0.0 -500.0±0.0
BCQ-P -71.21±24.4 -72.10±20.5 -78.41±14.3 -286.6±196 -328.3±158
BCQ-A -364.5±180 -435.7±63.7 -282.7±308 -260.6±51.4 -204.5±68.9
CQL-P -79.40±16.1 -78.80±13.9 -86.50±10.8 -357.9±12.5 -407.6±15.3
CQL-A -44.70±0.1 -49.70±0.0 -63.30±0.2 -500.0±0.0 -500.0±0.0
MOReL-P -83.50±15.6 -81.70±14.2 -88.60±11.1 -357.0±13.8 -407.4±17.1
MOReL-A -44.60±0.1 -49.70±0.0 -63.30±0.2 -500.0±0.0 -500.0±0.0

Pu
re

-"
-4

0

PerSim -54.60±0.55 -71.10±1.89 -115.7±4.80 -189.7±7.14 -200.3±2.26
Vanilla CaDM -55.23±0.76 -67.90±7.30 -163.7±30.8 -481.7±25.3 -496.2±4.31
PE-TS CaDM -102.3±20.3 -120.7±18.8 -476.0±41.5 -500.0±0.0 -500.0±0.0
BCQ-P -50.01±7.50 -57.10±10.3 -66.11±3.91 -373.6±180 -352.0±211
BCQ-A -94.87±0.88 -80.03±38.5 -329.6±242 -358.7±201 -486.5±20.6
CQL-P -61.40±2.1 -64.90±2.1 -75.10±1.2 -366.9±21.3 -429.1±18.8
CQL-A -44.70±0.0 -49.70±0.0 -63.30±0.4 -500.0±0.0 -490.1±9.6
MOReL-P -61.30±2.3 -65.80±1.2 -75.00±1.4 -373.2±19.3 -428.5±21.0
MOReL-A -44.70±0.0 -49.70±0.0 -63.30±0.4 -500.0±0.0 -492.1±9.3

True env+MPC -53.95±4.10 -72.43±7.80 -110.8±23.8 -182.9±22.9 -197.5±20.7

23

Table 10: Average Reward: CartPole

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(2/0.5) (10.0/0.5) (18.0/0.5) (10/0.85) (10/0.15)

Pu
re

PerSim 199.7±0.58 198.7±0.86 198.5±1.16 193.8±4.28 192.0±2.28
Vanilla CaDM 168.0±19.7 197.7±1.50 173.6±6.10 190.8±6.80 58.10±10.7
PE-TS CaDM 92.30±44.8 200.0±0.0 200.0±0.0 193.6±8.30 127.5±9.50
BCQ-P 166.2±39.3 187.4±14.7 187.2±15.0 181.2±13.5 182.8±15.0
BCQ-A 65.40±67.5 138.0±80.3 79.20±79.9 79.20±69.5 132.1±85.0
CQL-P 154.4±17.7 190.8±1.2 193.9±1.7 190.9±0.7 170.2±0.6
CQL-A 122.8±63.4 189.4±6.6 199.3±0.7 179.4±20.6 193.6±5.4
MOReL-P 35.80±1.4 90.40±26.2 94.20±25.1 96.60±24.1 66.40±24.5
MOReL-A 33.70±3.8 16.00±6.5 16.20±0.6 27.50±0.1 10.10±0.7

R
an

do
m

PerSim 197.7±7.82 189.5±4.28 190.3±4.74 193.0±6.60 185.7±3.49
Vanilla CaDM 150.5±15.7 158.7±17.1 161.4±15.8 175.6±5.80 65.10±16.3
PE-TS CaDM 88.60±18.5 194.0±2.00 197.6±2.20 196.1±3.00 171.0±21.7
BCQ-P 44.80±34.0 58.21±58.0 56.92±56.0 57.91±53.0 36.40±36.0
BCQ-A 43.90±16.4 18.70±13.1 7.200±0.84 21.10±5.81 39.50±12.1
CQL-P 39.90±29.9 72.30±41.7 67.80±44.4 77.90±26.2 148.7±17.1
CQL-A 67.40±49.1 9.300±0.1 16.30±9.9 30.60±26.4 7.000±1.9
MOReL-P 50.20±7.9 59.10±17.8 57.80±17.8 68.90±17.4 40.40±12.4
MOReL-A 35.80±0.4 20.70±1.0 14.30±1.4 27.50±0.7 10.60±0.2

Pu
re

-"
-2

0

PerSim 199.8±0.24 200.0±0.0 200.0±0.0 199.1±1.3 197.8±1.68
Vanilla CaDM 171.1±38.1 195.3±3.00 180.7±4.30 193.4±2.10 64.20±10.0
PE-TS CaDM 98.30±42.9 199.6±0.50 199.0±1.40 198.6±0.40 141.1±12.0
BCQ-P 98.90±30.2 170.9±19.0 163.0±36.5 162.1±15.5 86.10±72.1
BCQ-A 67.30±62.2 130.0±76.1 33.40±0.62 65.60±51.8 140.0±80.6
CQL-P 163.7±13.6 197.4±2.9 198.6±2.4 198.1±2.6 190.4±6.6
CQL-A 42.40±11.9 189.8±10.2 22.20±20.0 199.0±1.9 199.8±0.2
MOReL-P 166.7±13.6 197.0±3.1 198.3±2.6 197.7±2.7 189.4±7.1
MOReL-A 41.40±13.1 188.3±11.0 20.00±21.9 198.8±2.1 199.9±0.2

Pu
re

-"
-4

0

PerSim 199.9±0.18 199.8±0.20 199.3±1.34 198.0±1.21 197.4±1.72
Vanilla CaDM 160.6±46.6 197.3±1.50 194.9±3.70 191.9±6.40 79.60±31.6
PE-TS CaDM 91.90±67.6 199.8±0.20 200.0±0.0 197.0±1.40 143.5±17.5
BCQ-P 28.90±6.80 24.97±12.8 27.90±25.9 31.80±25.9 18.50±11.1
BCQ-A 34.60±1.55 23.20±17.8 7.180±0.76 47.71±48.7 23.20±9.44
CQL-P 182.2±18.0 197.4±4.6 198.9±2.1 198.3±2.9 191.9±8.7
CQL-A 20.70±0.7 25.70±14.3 15.30±7.3 134.2±10.2 9.700±8.1
MOReL-P 178.9±18.7 196.8±5.0 198.7±2.3 197.9±3.1 190.6±9.3
MOReL-A 20.70±0.8 23.90±15.5 16.60±7.6 135.4±11.2 10.80±8.8

True env+MPC 200.0±0.0 200.0±0.0 200.0±0.0 198.4±7.20 200.0±0.0

24

Table 11: Average Reward: HalfCheetah

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(0.3/1.7) (1.7/0.3) (0.3/0.3) (1.7/1.7) (1.0/1.0)

Pu
re

PerSim 1984 ±763 997.0±403 714.7±314 113.5±289 1459 ±398
Vanilla CaDM 50.31±71.7 -134.0±81.1 11.39±171 -169.8±67.5 331.3±201
PE-TS CaDM 481.1±252 503.7±181 553.0±127 246.0±261 840.1±383
BCQ-P 549.8±322 2006 ±153 -65.18±92.8 2564 ±70.2 2469 ±67.2
BCQ-A -262.7±96.6 -139.0±236 165.6±83.1 1649 ±622 937.2±221
CQL-P -353.5±78.4 -453.6±71.9 -476.7±129 2037 ±294 -145.1±189
CQL-A -65.00±105 -257.9±35.9 -279.6±34.4 689.3±52.9 301.9±98.9
MOReL-P -1297±519 -1256 ±627 -1470 ±727 -1175 ±592 -1256 ±608
MOReL-A -726.2±4.9 -666.1±42.6 -841.7±39.5 -599.6±28.2 -688.6±12.4

R
an

do
m

PerSim 2124 ±518 2060 ±900 472.0±56.9 565.2±377 474.8±344
Vanilla CaDM 288.4±32.4 362.9±55.4 351.8±34.9 358.4±205 475.0±102
PE-TS CaDM 754.6±242 744.5±281 767.4±214 555.4±73.1 2486 ±1488
BCQ-P -1.460±0.16 -1.750±0.22 -1.690±0.19 -1.790±0.21 -1.720±0.20
BCQ-A -498.9±108 -113.3±13.0 -159.5±51.7 -35.73±7.22 -171.9±41.5
CQL-P -481.5±25.9 -442.2±56.4 -672.4±17.6 -254.5±39.6 -418.2±23.4
CQL-A -0.700±0.4 -2.800±0.8 -0.600±0.3 -2.000±0.6 -5.500±2.0
MOReL-P -102.3±45.7 -188.7±37.1 -181.0±67.7 -142.5±26.8 -141.4±7.3
MOReL-A -430.8±195 -673.7±39.3 -365.5±97.4 -645.5±53.0 -674.9±28.9

Pu
re

-"
-2

0

PerSim 3186 ±604 1032 ±232 1120 ±243 971.2±916 1666 ±930
Vanilla CaDM 412.0±152 31.92±109 460.2±159 60.33±139 166.6±71.8
PE-TS CaDM 1082 ±126 1125 ±132 1067 ±64.3 1098 ±344 2843 ±204
BCQ-P 254.6±352 406.7±71.1 385.9±57.1 -95.34±65.8 738.0±512
BCQ-A 376.8±102 84.66±53.3 230.1±10.0 1180 ±87.3 617.5±32.6
CQL-P 838.7±24.5 3155 ±125 539.9±313 1479 ±51.0 3561 ±170
CQL-A -15.50±9.0 -73.00±26.3 -108.0±64.6 656.9±181.6 357.6±110
MOReL-P 0.600±210 -171.2±125 -219.9±76.7 -106.3±18.6 -83.60±110
MOReL-A -781.0±37.9 -613.1±49.9 -847.1±64.7 -599.2±4.6 -702.9±26.8

Pu
re

-"
-4

0

PerSim 2590 ±813 1016 ±283 1365 ±582 803.9±912 724.9±236
Vanilla CaDM 465.6±49.2 452.7±130 720.0±74.9 176.7±359 952.8±591
PE-TS CaDM 1500 ±246 1218 ±221 1339 ±54.8 1569 ±306 3094 ±825
BCQ-P 78.25±200 173.8±189 417.1±155 -56.12±64.4 55.46±128
BCQ-A 269.2±60.7 -181.5±57.4 193.0±31.8 636.4±137 207.0±106
CQL-P 808.5±240 1662 ±220 -156.3±119 1416 ±71.8 1908 ±461
CQL-A -6.200±2.9 -386.0±42.4 37.10±154 1121 ±95.6 1184 ±604
MOReL-P 8.500±61.6 -114.2±72.2 -195.9±77.3 -66.60±7.5 22.60±28.7
MOReL-A -325.9±17.1 -644.5±18.8 -798.8±130 -609.0±16.8 -711.7±19.1

True env+MPC 7459 ±171 42893±6959 66675±9364 1746±624 36344±7924

25

F.3 Visualization of Agent Latent Factors

In this section, we visualize the learned agent latent factors associated with the 500 heterogeneous
agents in each of the three benchmark environments. Specifically, we visualize the agent latent factors
in MountainCar, as we vary the gravity (Figure 5a); CartPole, as we vary the pole’s length and the push
force (Figures 5c and 5b, respectively); HalfCheetah, as we vary the cheetah’s mass and the joints’
damping (Figures 5e and 5d, respectively).

(a) MountainCar: gravity (b) CartPole: push force (c) CartPole: pole length

(d) HalfCheetah: joints’ damping (e) HalfCheetah: links’ mass

Figure 5: t-SNE [48] visualization of the agent latent factors for the 500 heterogeneous agents in
MountainCar, CartPole, and HalfCheetah. Colors indicate the value of the modified parameter in each
environment (e.g., gravity in MountainCar). These figures demonstrate that the learned latent factors
indeed capture the relevant information about the agents heterogeneity in all environments.

F.4 Persim+BCQ/CQL: Experimental details

We evaluate PerSim’s simulation efficacy by quantifying how much the simulated trajectories improve
the performance of model-free RL methods such as BCQ and CQL. In particular, we use PerSim to
generate synthetic trajectories for each agent of interest to augment the training data available for
BCQ/CQL.

We carry out these experiments for the three environments: MountainCar, CartPole, and HalfCheetah.
In all environments, as is done in previous experiments (see Section 5.1), we train PerSim using a
single observed trajectory from each of the 500 training agents. For these trajectories, the actions are
selected randomly, and the covariates of the training agents are selected as described in Section 5.1.
Then, we use the trained simulators to produce 5 synthetic trajectories for each test agent. See Table
4 for information about the test agents in each environment and the range of covariates used for the
training agents.

When generating these synthetic trajectories, we use MPC to choose the sequence of actions that
maximizes the reward estimated by the simulator, as described in Appendix D.1. We use a horizon h of
50 for MountainCar and CartPole, and a horizon h of 30 for HalfCheetah. The only difference is that
instead of choosing the first element from the sequence of actions with the best average reward, we
choose the full sequence of actions, and repeat the sampling process until we have a full trajectory.

F.5 Generalizing to Unseen Agents

Setup. In this experiment, we evaluate PerSim’s ability to generalize to unseen agents. An advantage
of the factorized approach of PerSim is that the heterogeneity of an agent is captured by its latent agent
factors (see Table 5). Hence, the problem of generalizing to unseen agents boils down to accurately
estimating the latent agent factors. To estimate these latent agent factors, we assume access to the
covariates of the unseen agents, as well as a fraction 1�p>0 of the covariates of the training agents.

26

With access to this information, we propose the following natural two-step procedure to estimate the
latent agent factor: (1) Use a supervised learning method to learn a mapping between the (available)
training agent covariates and the learned agent-specific latent factor in PerSim (see Figure 1); (2) Apply
this mapping on the covariate data of an unseen test agent to estimate its latent agent factor, which is
sufficient to build a personalized simulator for it.

We conduct this experiment for MountainCar, where we train PerSim using 500 agents, each with a
gravity value selected uniformly at random from the range [0.0001,0.0035]. We then evaluate PerSim’s
performance on 5 unseen agents selected as follow:

1. One unseen agent from the training range [0.0001,0.0035]. Specifically, the one with gravity 0.002.
2. Two agents outside the lower end of the range with gravity of 0.00008 and 0.00005.
3. Two agents outside the upper end of the range with gravity of 0.0037, and 0.004.

We first train PerSim on trajectories generated from the aforementioned 500 training agents, and carry
out the experiments for trajectories generated via the random and pure policies. Then, we learn a
mapping between the learned agent factors and covariates through an MLP with 2 hidden-layers each
with 64 units. We assume access to a fraction p2 {1.0,0.5,0.25,0.1} of the covariates to train this
function. We report PerSim’s efficacy through the same two metrics we used before: prediction error
and average reward for the five unseen agents.

Results. As Table 12 shows, in terms of prediction error, PerSim outperforms both Vanilla CaDM
and PE-TS CaDM in both the random and pure datasets for all unseen test agents. Further, Table
13 shows that PerSim achieves the best reward among the three baselines (BCQ-P, Vanilla CaDM
and PE-TS CaDM) for most unseen test agents. Pleasingly, these results are consistent as we vary
p2{1.0,0.5,0.25,0.1}. That is, even with access to only 10% of the covariates of the training agents
(i.e., p=0.1), PerSim is able to simulate the unseen agents well. Note that PerSim is trained without
access to any of the latent covariates (e.g., gravity in MountainCar), but to generalize to unseen agents,
it requires access to some of the covariates to learn the mapping between these covariates and the latent
agent factors. It is important to note that PerSim utilizes explicit knowledge of the covariates of the
unseen test agents (and a subset of the training agents), which these other methods do not do in their
current implementations. Indeed, it is our latent factor representation (in particular, the agent-specific
latent factors) which seamlessly allows us to utilize these covariates to build simulators for the unseen
agents.

Table 12: Prediction Error: MountainCar, Unseen Agents

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0.00005 0.00008 0.002 0.0037 0.004

R
an

do
m

PerSim(p=1.0) 0.004 (1.00) 0.004 (1.00) 0.000 (1.00) 0.001 (1.00) 0.002 (1.00)
PerSim(p=0.5) 0.007 (0.99) 0.006 (0.99) 0.000 (1.00) 0.001 (1.00) 0.001 (1.00)
PerSim(p=0.25) 0.005 (0.99) 0.004 (1.00) 0.000 (1.00) 0.001 (1.00) 0.001 (1.00)
PerSim(p=0.1) 0.005 (0.99) 0.005 (0.99) 0.000 (1.00) 0.000 (1.00) 0.000 (1.00)
Vanilla CaDM 0.378 (0.13) 0.373 (0.12) 0.159 (0.13) 0.329 (0.16) 0.339 (0.15)
PE-TS CaDM 0.399 (0.06) 0.351 (0.08) 0.176 (0.07) 0.193 (0.04) 0.214 (0.05)

Pu
re

PerSim(p=1.0) 0.192 (0.99) 0.183 (0.98) 0.029 (0.86) 0.029 (0.90) 0.034 (0.88)
PerSim(p=0.5) 0.039 (0.98) 0.052 (0.99) 0.029 (0.84) 0.030 (0.89) 0.036 (0.86)
PerSim(p=0.25) 0.061 (0.98) 0.479 (0.98) 0.029 (0.88) 0.034 (0.87) 0.039 (0.84)
PerSim(p=0.1) 0.043 (0.98) 0.046 (0.98) 0.033 (0.83) 0.029 (0.90) 0.034 (0.88)
Vanilla CaDM 0.213 (0.05) 0.204 (0.04) 0.199 (0.04) 0.357 (0.03) 0.362 (0.03)
PE-TS CaDM 0.432 (0.07) 0.450 (0.09) 0.187 (0.04) 0.230 (0.06) 0.232 (0.07)

F.6 Robustness to Data Scarcity

Setup. In this experiment, we address the robustness of PerSim to data scarcity. In particular,
we decrease the number of observed agents from N = 250 to N = 25 in all three benchmarking
environments. As is done in previous experiments, we compare with the two variants of CaDM and
BCQ, and evaluate the performance on five test agents. We use trajectories generated by a random
policy in MountainCar and HalfCheetah, and pure policy for CartPole. We use a pure policy for
CartPole to ensure that each trajectory is not too short (see Table 5 for the average length of a trajectory
in each environment under different policies). We perform these experiments five times, where in each
time, the agent covariates are re-sampled from the covariates range. We report the average reward
across the five trials and the corresponding standard deviations.

27

Table 13: Average Reward: MountainCar, Unseen Agents

Data Method Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0.00005 0.00008 0.002 0.0037 0.004

R
an

do
m

PerSim(p=1.0) -53.82±0.41 -53.97±0.35 -188.7±6.46 -202.6±2.69 -200.2±0.74
PerSim(p=0.5) -53.98±0.93 -54.57±0.39 -192.3±3.61 -207.8±2.53 -204.0±1.15
PerSim(p=0.25) -53.77±0.33 -54.22±0.88 -196.4±4.48 -206.4±5.45 -209.9±5.33
PerSim(p=0.1) -53.25±0.56 -54.23±1.05 -198.2±1.38 -207.3±0.86 -208.6±3.40
Vanilla CaDM -102.4±15.6 -97.17±20.6 -500.0±0.0 -500.0±0.0 -500.0±0.0
PE-TS CaDM -82.60±20.2 -96.07±5.10 -500.0±0.0 -500.0±0.0 -500.0±0.0
BCQ-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0

Pu
re

PerSim(p=1.0) -75.17±12.8 -74.73±11.4 -179.3±4.74 -203.7±4.13 -201.4±5.72
PerSim(p=0.5) -79.83±14.9 -79.40±13.9 -181.9±2.02 -206.7±6.51 -201.6±4.67
PerSim(p=0.25) -77.28±13.4 -77.73±19.7 -178.4±2.77 -199.7±3.41 -209.1±4.83
PerSim(p=0.1) -85.08±22.7 -90.42±19.6 -183.0±1.40 -204.2±6.48 -203.0±5.12
Vanilla CaDM -52.63±1.05 -54.90±2.60 -446.8±51.2 -494.1±9.30 -494.1±10.3
PE-TS CaDM -60.17±2.66 -63.43±4.80 -374.4±77.3 -500.0±0.0 -500.0±0.0
BCQ-P -184.9±170 -183.1±170 -277.6±183 -322.7±146 -333.7±139

Results. We report the average reward achieved by PerSim and baselines in Tables 14, 15 and 16 for
MountainCar, CartPole, and HalfCheetah, respectively. As demonstrated in the tables, even when we
vary the number of trajectories, PerSim consistently achieves a higher reward than the other baselines
across all agents in MountainCar and CartPole. In HalfCheetah, PerSim and PE-TS CaDM perform the
best among the baselines. One thing to note is the high variance in HalfCheetah experiments, across
all baselines, indicating the fundamental challenge faced when dealing with environments with both
high-dimensional state space and limited data. Addressing such a challenge remains an interesting
direction for future work.

Table 14: Average Reward: MountainCar with different number of training agents.

Data N Method
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0.0001 0.0005 0.001 0.0025 0.0035

R
an

do
m

250

PerSim -53.70±0.41 -66.50 ±1.21 -116.6±3.18 -192.3±1.23 -199.6±3.40
Vanilla CaDM -59.90±1.61 -78.13±7.11 -332.6±41.3 -467.8±16.2 -500.0±0.0
PE-TS CaDM -73.66±3.15 -106.8±7.15 -473.8±37.0 -500.0±0.0 -500.0±0.0
BCQ-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0

R
an

do
m

100

PerSim -55.00±0.70 -67.02±1.76 -110.3±3.46 -193.1±5.21 -197.4±3.05
Vanilla CaDM -66.00±5.06 -83.10±8.64 -307.1±96.2 -486.3±23.7 -500.0±0.0
PE-TS CaDM -79.33±4.36 -106.5±19.3 -418.4±27.3 -492.7±10.3 -499.9±0.14
BCQ-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0

R
an

do
m

50

PerSim -54.20±0.90 -66.40±0.17 -110.2±8.65 -188.7±5.25 -199.6±3.23
Vanilla CaDM -58.80±1.40 -66.37±0.35 -131.8±17.6 -497.2±4.85 -500.0±0.0
PE-TS CaDM -67.86±7.15 -79.73±6.37 -290.5±76.9 -458.4±26.8 -498.5±2.12
BCQ-P -214.3±202 -348.6±186 -428.1±103 -500.0±0.0 -500.0±0.0

R
an

do
m

25

PerSim -56.80±1.81 -67.50±2.81 -139.9±29.5 -246.8±39.1 -243.8±47.1
Vanilla CaDM -62.33±3.34 -76.80±10.9 -275.7±63.9 -473.0±24.1 -496.5±4.90
PE-TS CaDM -67.26±6.95 -86.96±10.9 -331.0±121 -497.9±2.92 -500.0±0.0
BCQ-P -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0 -500.0±0.0

28

Table 15: Average Reward: CartPole with different number of training agents.

Data N Method
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(2/0.5) (10.0/0.5) (18.0/0.5) (10/0.85) (10/0.15)

Pu
re 250

PerSim 200.0±0.0 198.6±1.96 197.3±3.82 198.3±1.45 196.4±5.11
Vanilla 132.7±15.1 192.8±1.69 191.9±2.59 186.4±0.99 65.21±12.1
PE-TS CaDM 65.65±17.0 200.0±0.0 199.4±0.90 185.8±11.8 167.5±15.7
BCQ-P 130.2±1.31 169.6±21.6 173.3±7.94 167.3±8.81 179.6±2.71

Pu
re 100

PerSim 200.0±0.0 199.6±0.39 199.5±0.64 197.8±1.67 197.7±2.15
Vanilla CaDM 150.1±29.3 187.8±2.67 180.4±8.08 182.1±13.5 80.10±12.8
PE-TS CaDM 65.66±23.6 200.0±0.0 199.9±0.14 200.0±0.0 170.0±21.0
BCQ-P 90.67±52.1 49.18±32.0 119.0±78.6 108.9±70.1 81.30±66.6

Pu
re 50

PerSim 200.0±0.0 199.4±0.87 199.0±1.34 191.2±2.87 182.7±15.1
Vanilla CaDM 107.8±6.89 194.68±3.87 184.3±2.90 187.3±8.70 76.46±14.1
PE-TS CaDM 96.47±61.2 200.00±0.0 196.0±4.02 192.6±7.40 152.9±20.2
BCQ-P 121.0±30.0 70.96±15.8 122.4±18.6 145.6±29.0 100.1±44.2

Pu
re 25

PerSim 200.0±0.0 197.3±3.75 200.0±0.0 200.0±0.05 183.5±6.20
Vanilla CaDM 108.6±16.1 190.3±3.65 187.1±1.22 185.9±6.89 56.76±11.0
PE-TS CaDM 56.93±19.9 185.2±5.02 175.5±13.9 149.0±14.9 155.3±15.1
BCQ-P 135.9±4.07 55.27±47.4 154.7±9.99 152.5±16.7 144.9±25.3

Table 16: Average Reward: HalfCheetah with different number of training agents.

Data N Method
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
(0.3/1.7) (1.7/0.3) (0.3/0.3) (1.7/1.7) (1.0/1.0)

R
an

do
m

250

PerSim 1688±1093 1415±1311 703.1±531 281.0±309 510.6±510
Vanilla CaDM 277.6±62.6 335.0±278 240.4±530 278.9±98.0 362.2±124
PE-TS CaDM 1006±556 1833±666 986.2±211 659.2±76.3 2303±571
BCQ-P -1.780±0.36 -1.410±0.19 -1.830±0.21 -1.880±0.25 -1.830±0.26

R
an

do
m

100

PerSim 2072±284 1164±102 1115±493 903.3±398 1058±219
Vanilla CaDM 168.9±154 131.1±110 93.20±182 176.5±131 415.9±151
PE-TS CaDM 803.0±335 657.5±125 676.0±244 586.8±43.2 1484±934
BCQ-P -1.630±0.08 -1.430±0.08 -1.770±0.12 -1.830±0.10 -1.860±0.10

R
an

do
m

50

PerSim 821.9±529 1984±58.2 103.0±122 66.49±194 701.2±112
Vanilla CaDM 236.0±234 670.0±167 68.55±220 248.7±44.4 802.8±355
PE-TS CaDM 496.4±166 1002±423 119.6±62.0 541.4±180 1895±989
BCQ-P -1.710±0.28 -1.510±0.22 -1.800±0.21 -1.770±0.26 -1.910±0.17

R
an

do
m

25

PerSim 1110±328 1125±195 686.4±352 106.4±81.1 801.2±349
Vanilla CaDM 229.8±370 187.5±215 -72.3±148 206.0±132 877.0±449
PE-TS CaDM 619.9±271 878.6±470 84.30±221 291.3±258 1464±913
BCQ-P -134.8±8.40 -210.5±53.4 -170.0±14.9 -178.5±22.9 -87.75±19.0

29

	Introduction
	Problem Statement
	Latent Low-rank Factor Representation
	PerSim Algorithm
	Experiments
	Setup and Benchmarks
	Model Learning: Prediction Error
	Policy Performance: Average Reward
	Combination with Model-Free Methods: PerSim+BCQ/CQL
	Additional Experiments

	Conclusion
	Organization of Supplementary Materials
	Related Work
	Theoretical Results
	Proof of Theorem 1
	Proof of Proposition 1

	Algorithm and Implementation Details
	PerSim
	Benchmarking Algorithms

	Detailed Setup
	Environments
	Offline Datasets

	Additional Experimental Results
	Detailed Prediction Error Results
	Detailed Average Reward Results
	Visualization of Agent Latent Factors
	Persim+BCQ/CQL: Experimental details
	Generalizing to Unseen Agents
	Robustness to Data Scarcity

