20
21
22
23

Supplementary Materials for the submission
You Shall not Pass: the Zero-Gradient Problem in
Predict and Optimize for Convex Optimization

Anonymous Author(s)
Affiliation
Address

email

A Proofs

Proof of Lemma 3.4. Let Aw denote an arbitrary direction and let d = V4 2™ () Aw be the cor-
responding directional derivative of the decision. The existence of d is guaranteed by the strict
complementary slackness conditions and Lemma 3.3. Let t — 0. Then, we have

(t) == 2" (0 + tAW) = & + td + 0,(t),
where o, (t) is the “little 0” notation, i.e., lim;_, g+ lloa (tt)”z = 0. To prove the lemma, we first want
to show that d " n; = 0, Vi € I(Z). Then, we will show that it implies the lemma’s claim.

By definition, n; = V,g;(&). Then, since g;(-) is differentiable and ¢;(Z) = 0, Vi € I(&), we have
the following first-order approximation for g; (:ﬁ’ (t)) :

9i(2'(1)) = gi(2 +td+ o(t)) = g;(&) + tn, d+ og4(t) = tn; d + 0,4(t).

Since &’ is the solution of the internal optimization problem, the inequality g;(Z’(¢)) < 0 holds.
Hence, the equation above implies that nl-Td < 0. Now, we want to show that, in fact, nde = 0. For
a proof by contradiction, suppose that n,/ d < 0. Then, by definition of 04(t), there exists € > 0, such
that

0<t<e = g(2(t) <O.

Now, we will to show that g; (9%’ (t)) < 0 contradicts the complementary slackness condition at Z.
From Lemma 3.3, we know the KKT multiplier, o/} () := «; (1 + tAw), is a continuous function
of ¢. On the one hand, from the KKT conditions, we know that g;(#/(t)) < 0 = a(t) = 0.
Therefore, o(t) = 0 for t < e. Hence, we have

lim o (t) = 0.

t—0+ Z()

On the other hand, the continuity implies that lim; ,q+ o}(t) = «}(0) = «; and, due to strict
complementary slackness, a; > 0. Hence, we also have

lim o(t) > 0.
t—0+t

We arrived at a contradiction and therefore can claim that d " n; = 0 for all n;. Since {n;|i € I()}
is a basis of N(%), this implies that for any direction v € N(%) and for any A, we have
v Vg o' () A = 0. In other words, vector v’ V. z*(w) is orthogonal to the whole space
of 1 and hence it must be zero, v V, z* () = 0, Vv € N(2). Hence V(%) is contained in the left
null space of V., x* (). O

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

24
25
26
27
28

29
30
31
32

33
34

35
36

37
38

39

40

41
42

43

44
45

46

47
48

49

50

51
52
53
54
55
56
57
58

Proof of Lemma 3.6. First, consider the case when the unconstrained maximum w is in the interior
of C. By definition of z7, p, it means that & = z, p () is also in the interior of C and # = 1. Then,

xy)p is the identity function around @, and hence) p (W + Aw) = z(w) + A for small enough

Ad. Hence, Vx5 p(w) = I. Since no constraints are active in this case (/(Z) =), the lemma’s
claim holds.

Now, consider the case when some constraints are active, and thus Z lies on the boundary of C. To get
the exact form of the Jacobian V,, 2, p(w), we will compute lim; 0 27, p (@ + tAw) for all possible

At. As in the QP case the predictions lie in the same space as 2, we can do it first for Aw € N (%)
and then for A | N ().

1. Aw € N(z). For Aw € N (&), we want to show that the corresponding directional derivative is
zero. We begin by computing the internal gradient V,, fop (2, W) :

Vofop(@,0) = =V, ||z — w3 = 2(d —).

Using this formula, we can write the internal gradient for the perturbed prediction w + tAw at the
same point :

waQp(i‘, W+ tAD) = VIpr(i‘,
By definition, N(£) is a linear span of the vectors {n;|i € I(Z
be expressed as

W) + 2tAw.
)}. Hence, since Aw € N (&), it can

Z Sini, 0; €R. (%)

1€I(z)
By Property 3.2, the internal gradient has the following representation:

waQp (Z,0) Z a;ng, «a; > 0. (k%)
1€1(&)

Then, combining () and (%), we obtain

Vafor(@,w +tAD) = Vi fop(@,h) + 2tAd = Y (i + 2t6;)n;
i€I(@)
Since o; > 0, Vi € I(%), there exists ¢ > 0, such that o; — 2t5; > 0 for |t| < e. Therefore,
V. fop(#,®w+tAw) lies in the gradient cone of &, and hence, by Property 3.2, 27, p (0 +tAw) = &
for [t| < e. Therefore, the directional derivative of xy, p () along Aw € N (&) is zero.

2. A L N(2). Next, let Aw be orthogonal to N'(Z). We begin with the first order approximation
of #'(t) :

&'(t) = &+ td + ot).
From the proof of Lemma 3.3, we can know that d .. \/. By definition of ng p» we know that 2 is
the point on C closest to . Likewise, #’(t) is the point on C closest to w + tAw. Hence, d = Aw.
Therefore, for any Aw L N, the directional derivative of x¢p(w) along Aw is one.

So, we have shown that

Vo lyp () At {0 for Aw € N (z)

Aw for Aw L N(%).

Therefore, the lemma is proven. O

Proof of Theorem 3.9. First, we want to construct an orthogonal basis {ej, . ..e,} of R™ that will
greatly simplify the calculations. We start by including the internal gradient in this basis, i.e., we define
e1 = Vi fop(&,w). Then, let I(Z) = {i|g;(£) = 0} be the set of indices of the active constraints
of the original problem and let N'(Z) = span({n;|i € I(Z)}) be a linear span of their normals. By
the liner independence condition from Assumption 2, dim (N (&)) = |I(2)|. Moreover, by Property

3.2, we know that e; € N(£). Then, we can choose vectors e, . . ., €|1(¢)| that complement e; to
an orthogonal basis of A/(#). The remaining vectors €|1(2)|+1> - - - » €n, are chosen to complement
€1,.--,€(3)| to an orthogonal basis of R™. The choice of this basis is motivated by Lemma 3.6:

59
60
61

62
63
64

65
66

67
68

69

70

71

72

73
74
75
76
77
78
79

80

81
82
83
84

ey is a basis of the null-space of the 7—smoothed Jacobian, e, . .., ¢|(z)| form a basis of the null
space of the true QP Jacobian, and the remaining vectors form a basis of space in which we can move

xgp(w).

For brevity, let f, = V, f(Z, w) denote the true gradient vector. By definition, Aw = f, Vg (Z, W)
is obtained via the r—smoothed problem. From Property 3.8, we know that A is a projection of f,
on the vectors e, . . ., e,. Then, since e1, . . ., e, is an orthogonal basis, we have

M= Biei, Bi=fleni=2,....n

=2

Now, let’s see how this Aw affects the true decision z7) p (@ + tAw) for t — 0. First, we have a
first-order approximation

wop (b + tAH) = & + td + o(t),

for some d € R. From Lemma 3.6, we know that d is actually a projection of A onto the vectors
€|1(2)|+1> - - - » €n- Therefore, we have

zhHp(+tAD) =2+ Y Bie;+o(t).
i=|1(2]+1

Finally, the change in the true objective can be expressed as

f(xgp(mmw),w) _ f(xgp(uv),w) - tfj(En: &-ei) Fot) =

i=|I(§c\+1
n
=1 Z ﬁzf €; + 0 Z ﬂz + 0
i=|I(&]+1 i=|I(&|+1

Therefore, perturbing prediction along Aw does not decrease the true objective f (&, w), and hence
fort — 0T, O

B Equality constraints

Assumption 2 postulates that for any z € C, the gradients of active constraints, {V,g;(z)|g:(xz) = 0},
are linearly independent. Now, suppose we include equality constraints in our problem. e.g., we have
a constraint g¢?(z) < 0 and —g°?(x) < 0 for some g. Clearly, the gradients of ¢¢?(x) and —g°?(x)
violate the independence assumption. However, we claim that it does not affect our results. Let w
and Z be a prediction and a corresponding decision and let n®? = V, g®?(Z). Suppose the equality
constraint g°?(&) = 0 is active. Let 1(Z) be the set of indices of the active constraints not including
9¢4(x). Then, we have a representation of the internal gradient,

v:tf(i,7 w) = aiq e — eq eq Jr Z alnl
i€l ()
Suppose that a]? # a5?, e.g., without loss of generality, a{? > a3?. Then,
vxf(i.vw) (- 0[2 neq + Z a;ny;
i€l ()

and hence removing the constraint —g®?(x) < 0 would not change the optimality of Z. The remaining
problem would satisfy complementary slackness and hence would have all the properties demonstrated
in Section 3. Therefore, for the case with equality constraints, we need to extend the complementary
slackness conditions by demanding o7 # ag?.

85

86
87
88
89
90
91

92

93
94
95
96
97
98
99

100
101
102
103
104
105

106

| Search space

Learning rate {5 x107%,107°,2x 1075,5 x 107>,10~%,5 x 10~ 1}
Batch size {1,2,4,8,32}

Proj. distance weight o from Eq. (6) | {0.001,0.0025,0.005,0.01,0.05,0.1,1}

Lshift {07 1, 1}

Tscale {017]-7 5}

Table 1: Search space for different hyperparameters for the portfolio optimization problem

A=2 =1 A=05 A=0.25 A=0.1 A=0
Learning rate 1075 107° 2x107® 2x107° 2x10° 5x107°
Batch size 1 1 1 1 1 1
Penalty weight o from Eq. (6) 0.1 0.1 0.02 0.005 0.005 0.0025
Training epochs 180 180 180 180 180 180
Tshift 1 1 1 1 1 1
Tscale 0.1 0.1 0.1 0.1 0.1 0.1

Table 2: Best performing values of the hyperparameters for the portfolio optimization problem with
different \'s

C Experimental details

In this section, we provide the details of the experiments reported in the paper. All experiments
were conducted on a machine with 32gb RAM and NVIDIA GeForce RTX 3070. The code is
written in Python 3.8, and neural networks are implemented in PyZorch 1.12. For methods requiring
differentiation of optimization problems (those, without r—smoothing), we use the implementation
by Agrawal et. al [2019a]. The code can be found at placeholder for GitHub link. For the reviewers,
the code is submitted through OpenReview.

C.1 Portfolio optimization problem

In the portfolio optimization problem, the predictor ¢y is represented by a fully connected neural
network with two hidden layers of 100 neurons each, and ReLU activation functions. The output layer
has no activation function. Instead, the output of the neural network is scaled by the factor zs.q;e
and shifted by @ p; f¢. For the methods using the QP approximation, the output layer predicts only @
and consists of 200 neurons, one per the decision variable ;. For the method that uses the original
problem formulation and predicts both p and Q, the output layer additionally predicts a 200 x 200
matrix L and then sets Q := (0.9L 4 0.11)(0.9L + 0.11)T, where I is the identity matrix.

For training, we used the Adam optimizer from PyTorch, with custom learning rate and otherwise
default parameters. The values of different hyperparameters were determined by a grid search
procedure, summarized in Table|l] The values used in the experiments are reported in Table [2} These
values may vary across experiments with different A’s. For each A, however, the four studied methods
use the same values of the hyperparameters (the only exception is the projection distance weight «,
which is always zero for methods without regularization).

C.2 Optimal power flow problem

| Search space

Learning rate {5x107%107°,2x 107 5,5 x 107>,10" 1,5 x 10~ 1}
Batch size {1,2,4,8,32}

Proj. distance weight o from Eq. (6) | {0.0001, 0.00025, 0.0005, 0.001, 0.005,0.01, 0.1}
Tshift {07 '17 1}

Tscale {017 17 5}

Table 3: Search space for different hyperparameters in the DC OPF problem

107

109
110
111
112
113
114
115
116

117
118
119

Value

Learning rate 5x 107
Batch size 1
Penalty weight o from Eq. (6) 0.0001
Training epochs 250
Tshift 7
Tscale 1

Table 4: Best performing values of the hyperparameters for the DC OPF problem

Data generation process. Data for the DC OPF problem is generated artificially. First, we
randomly generate a grid topology, see Figure [T| for an example. For each line, its admittance
is set to 65. Nodal voltages are bounded between 325V and 375V, and the reference node has
a fixed voltage of v9 = 350V. The demand in loads (power upper-bound), generators capacity
(power lower-bound), and line current limits are sampled randomly from the following normal
distributions: N (8000, 2500) x watt-hour, N'(—14000, 2500) x watt-hour, N'(25, 5) xampere. The
coefficients w are also sampled form the normal distributions: N'(1.2, 1) for loads, and A/(0.8,0.1)
for generators. Finally, all values are normalized such that vy becomes 7V (surprisingly, it performed
better numerically than scaling vy to 1V'). The observations o consist of the true coefficients w,
demand of the loads, the capacity of the generators, and line current limits.

The predictor in the optimal power flow problem is the same as the one in the portfolio optimization,
except for its hidden layers consisting of 256 neurons and using LeakyReLU activation functions.
The hyperparameters search space and final values are reported in Tables [3|4]

loadl4

Figure 1: Example of randomly generated grid topology. Red triangles represent generator nodes,
and purple squares represent loads.

	Proofs
	Equality constraints
	Experimental details
	Portfolio optimization problem
	Optimal power flow problem

