
Supplementary Materials for the submission
You Shall not Pass: the Zero-Gradient Problem in

Predict and Optimize for Convex Optimization

Anonymous Author(s)
Affiliation
Address
email

A Proofs1

Proof of Lemma 3.4. Let ∆ŵ denote an arbitrary direction and let d = ∇ŵ x∗(ŵ)∆ŵ be the cor-2

responding directional derivative of the decision. The existence of d is guaranteed by the strict3

complementary slackness conditions and Lemma 3.3. Let t → 0+. Then, we have4

x̂′(t) := x∗(ŵ + t∆ŵ) = x̂+ td+ ox(t),

where ox(t) is the “little o” notation, i.e., limt→0+
∥ox(t)∥2

t = 0. To prove the lemma, we first want5

to show that d⊤ni = 0, ∀i ∈ I(x̂). Then, we will show that it implies the lemma’s claim.6

By definition, ni = ∇xgi(x̂). Then, since gi(·) is differentiable and gi(x̂) = 0, ∀i ∈ I(x̂), we have7

the following first-order approximation for gi
(
x̂′(t)

)
:8

gi
(
x̂′(t)

)
= gi

(
x̂+ td+ o(t)

)
= gi(x̂) + tn⊤

i d+ og(t) = tn⊤
i d+ og(t).

Since x̂′ is the solution of the internal optimization problem, the inequality gi(x̂
′(t)) ≤ 0 holds.9

Hence, the equation above implies that n⊤
i d ≤ 0. Now, we want to show that, in fact, n⊤

i d = 0. For10

a proof by contradiction, suppose that n⊤
i d < 0. Then, by definition of og(t), there exists ϵ > 0, such11

that12

0 < t < ϵ =⇒ gi
(
x̂′(t)

)
< 0.

Now, we will to show that gi
(
x̂′(t)

)
< 0 contradicts the complementary slackness condition at x̂.13

From Lemma 3.3, we know the KKT multiplier, α′
i(t) := αi(ŵ + t∆ŵ), is a continuous function14

of t. On the one hand, from the KKT conditions, we know that gi
(
x̂′(t)

)
< 0 =⇒ α′

i(t) = 0.15

Therefore, α′
i(t) = 0 for t < ϵ. Hence, we have16

lim
t→0+

α′
i(t) = 0.

On the other hand, the continuity implies that limt→0+ α′
i(t) = α′

i(0) = αi and, due to strict17

complementary slackness, αi > 0. Hence, we also have18

lim
t→0+

α′
i(t) > 0.

We arrived at a contradiction and therefore can claim that d⊤ni = 0 for all ni. Since {ni|i ∈ I(x̂)}19

is a basis of N (x̂), this implies that for any direction v ∈ N (x̂) and for any ∆ŵ, we have20

v⊤ ∇ŵ x∗(ŵ)∆ŵ = 0. In other words, vector v⊤ ∇ŵ x∗(ŵ) is orthogonal to the whole space21

of ŵ and hence it must be zero, v⊤ ∇ŵ x∗(ŵ) = 0, ∀v ∈ N (x̂). Hence N (x̂) is contained in the left22

null space of ∇ŵ x∗(ŵ).23

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Proof of Lemma 3.6. First, consider the case when the unconstrained maximum ŵ is in the interior24

of C. By definition of x∗
QP , it means that x̂ = x∗

QP (ŵ) is also in the interior of C and x̂ = ŵ. Then,25

x∗
QP is the identity function around ŵ, and hence x∗

QP (ŵ +∆ŵ) = x(ŵ) + ∆ŵ for small enough26

∆ŵ. Hence, ∇ŵx
∗
QP (ŵ) = I. Since no constraints are active in this case (I(x̂) = ∅), the lemma’s27

claim holds.28

Now, consider the case when some constraints are active, and thus x̂ lies on the boundary of C. To get29

the exact form of the Jacobian ∇x x
∗
QP (ŵ), we will compute limt→0 x

∗
QP (ŵ+ t∆ŵ) for all possible30

∆ŵ. As in the QP case the predictions ŵ lie in the same space as x̂, we can do it first for ∆ŵ ∈ N (x̂)31

and then for ∆ŵ ⊥ N (x̂).32

1. ∆ŵ ∈ N (x̂). For ∆ŵ ∈ N (x̂), we want to show that the corresponding directional derivative is33

zero. We begin by computing the internal gradient ∇xfQP (x̂, ŵ) :34

∇xfQP (x̂, ŵ) = −∇x ∥x− w∥22 = 2(ŵ − x̂).

Using this formula, we can write the internal gradient for the perturbed prediction ŵ + t∆ŵ at the35

same point x̂:36

∇xfQP (x̂, ŵ + t∆ŵ) = ∇xfQP (x̂, ŵ) + 2t∆ŵ.

By definition, N (x̂) is a linear span of the vectors {ni|i ∈ I(x̂)}. Hence, since ∆ŵ ∈ N (x̂), it can37

be expressed as38

∆ŵ =
∑

i∈I(x̂)

δini, δi ∈ R. (∗)

By Property 3.2, the internal gradient has the following representation:39

∇xfQP (x̂, ŵ) =
∑

i∈I(x̂)

αini, αi > 0. (∗∗)

Then, combining (∗) and (∗∗), we obtain40

∇xfQP (x̂, ŵ + t∆ŵ) = ∇xfQP (x̂, ŵ) + 2t∆ŵ =
∑

i∈I(x̂)

(αi + 2tδi)ni

Since αi > 0, ∀i ∈ I(x̂), there exists ϵ > 0, such that αi − 2tδi > 0 for |t| < ϵ. Therefore,41

∇xfQP (x̂, ŵ+ t∆ŵ) lies in the gradient cone of x̂, and hence, by Property 3.2, x∗
QP (ŵ+ t∆ŵ) = x̂42

for |t| < ϵ. Therefore, the directional derivative of x∗
QP (ŵ) along ∆ŵ ∈ N (x̂) is zero.43

2. ∆ŵ ⊥ N (x̂). Next, let ∆ŵ be orthogonal to N (x̂). We begin with the first order approximation44

of x̂′(t) :45

x̂′(t) = x̂+ td+ o(t).

From the proof of Lemma 3.3, we can know that d ⊥ N . By definition of x∗
QP , we know that x̂ is46

the point on C closest to ŵ. Likewise, x̂′(t) is the point on C closest to ŵ + t∆ŵ. Hence, d = ∆ŵ.47

Therefore, for any ∆ŵ ⊥ N , the directional derivative of xQP (ŵ) along ∆ŵ is one.48

So, we have shown that49

∇ŵ x∗
QP (ŵ)∆ŵ =

{
0 for ∆ŵ ∈ N (x̂)

∆ŵ for ∆ŵ ⊥ N (x̂).

Therefore, the lemma is proven.50

Proof of Theorem 3.9. First, we want to construct an orthogonal basis {e1, . . . en} of Rn that will51

greatly simplify the calculations. We start by including the internal gradient in this basis, i.e., we define52

e1 = ∇xfQP (x̂, ŵ). Then, let I(x̂) = {i|gi(x̂) = 0} be the set of indices of the active constraints53

of the original problem and let N (x̂) = span({ni|i ∈ I(x̂)}) be a linear span of their normals. By54

the liner independence condition from Assumption 2, dim
(
N (x̂)

)
= |I(x̂)|. Moreover, by Property55

3.2, we know that e1 ∈ N (x̂). Then, we can choose vectors e2, . . . , e|I(x̂)| that complement e1 to56

an orthogonal basis of N (x̂). The remaining vectors e|I(x̂)|+1, . . . , en, are chosen to complement57

e1, . . . , e|I(x̂)| to an orthogonal basis of Rn. The choice of this basis is motivated by Lemma 3.6:58

2

e1 is a basis of the null-space of the r−smoothed Jacobian, e1, . . . , e|I(x̂)| form a basis of the null59

space of the true QP Jacobian, and the remaining vectors form a basis of space in which we can move60

x∗
QP (ŵ).61

For brevity, let fx = ∇xf(x̂, w) denote the true gradient vector. By definition, ∆ŵ = fx ∇ŵx
∗
r(x̂, ŵ)62

is obtained via the r−smoothed problem. From Property 3.8, we know that ∆ŵ is a projection of fx63

on the vectors e2, . . . , en. Then, since e1, . . . , en is an orthogonal basis, we have64

∆ŵ =

n∑
i=2

βiei, βi = f⊤
x ei, i = 2, . . . , n.

Now, let’s see how this ∆ŵ affects the true decision x∗
QP (ŵ + t∆ŵ) for t → 0+. First, we have a65

first-order approximation66

x∗
QP (ŵ + t∆ŵ) = x̂+ td+ o(t),

for some d ∈ R. From Lemma 3.6, we know that d is actually a projection of ∆ŵ onto the vectors67

e|I(x̂)|+1, . . . , en. Therefore, we have68

x∗
QP (ŵ + t∆ŵ) = x̂+

n∑
i=|I(x̂|+1

βiei + o(t).

Finally, the change in the true objective can be expressed as69

f
(
x∗
QP (ŵ + t∆ŵ), w

)
− f

(
x∗
QP (ŵ), w

)
= tf⊤

x

(n∑
i=|I(x̂|+1

βiei

)
+ o(t) =

= t

n∑
i=|I(x̂|+1

βif
⊤
x ei + o(t) = t

n∑
i=|I(x̂|+1

β2
i + o(t) ≥ 0.

Therefore, perturbing prediction along ∆ŵ does not decrease the true objective f(x̂, w), and hence70

f
(
x∗
QP (ŵ + t∆ŵ), w

)
≥ f

(
x∗
QP (ŵ), w

)
for t → 0+.71

B Equality constraints72

Assumption 2 postulates that for any x ∈ C, the gradients of active constraints, {∇xgi(x)|gi(x) = 0},73

are linearly independent. Now, suppose we include equality constraints in our problem. e.g., we have74

a constraint geq(x) ≤ 0 and −geq(x) ≤ 0 for some g. Clearly, the gradients of geq(x) and −geq(x)75

violate the independence assumption. However, we claim that it does not affect our results. Let ŵ76

and x̂ be a prediction and a corresponding decision and let neq = ∇x g
eq(x̂). Suppose the equality77

constraint geq(x̂) = 0 is active. Let I(x̂) be the set of indices of the active constraints not including78

geq(x). Then, we have a representation of the internal gradient,79

∇xf(x̂, ŵ) = αeq
1 neq − αeq

2 neq +
∑

i∈I(x̂)

αini.

Suppose that αeq
1 ̸= αeq

2 , e.g., without loss of generality, αeq
1 > αeq

2 . Then,80

∇xf(x̂, ŵ) = (αeq
1 − αeq

2)neq +
∑

i∈I(x̂)

αini

and hence removing the constraint −geq(x) ≤ 0 would not change the optimality of x̂. The remaining81

problem would satisfy complementary slackness and hence would have all the properties demonstrated82

in Section 3. Therefore, for the case with equality constraints, we need to extend the complementary83

slackness conditions by demanding αeq
1 ̸= αeq

2 .84

3

Search space
Learning rate {5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4, 5× 10−4}
Batch size {1, 2, 4, 8, 32}
Proj. distance weight α from Eq. (6) {0.001, 0.0025, 0.005, 0.01, 0.05, 0.1, 1}
xshift {0, .1, 1}
xscale {0.1, 1, 5}

Table 1: Search space for different hyperparameters for the portfolio optimization problem

λ = 2 λ = 1 λ = 0.5 λ = 0.25 λ = 0.1 λ = 0
Learning rate 10−5 10−5 2× 10−5 2× 10−5 2× 10−5 5× 10−5

Batch size 1 1 1 1 1 1
Penalty weight α from Eq. (6) 0.1 0.1 0.02 0.005 0.005 0.0025
Training epochs 180 180 180 180 180 180
xshift 1 1 1 1 1 1
xscale 0.1 0.1 0.1 0.1 0.1 0.1

Table 2: Best performing values of the hyperparameters for the portfolio optimization problem with
different λ′s

C Experimental details85

In this section, we provide the details of the experiments reported in the paper. All experiments86

were conducted on a machine with 32gb RAM and NVIDIA GeForce RTX 3070. The code is87

written in Python 3.8, and neural networks are implemented in PyTorch 1.12. For methods requiring88

differentiation of optimization problems (those, without r−smoothing), we use the implementation89

by Agrawal et. al [2019a]. The code can be found at placeholder for GitHub link. For the reviewers,90

the code is submitted through OpenReview.91

C.1 Portfolio optimization problem92

In the portfolio optimization problem, the predictor ϕθ is represented by a fully connected neural93

network with two hidden layers of 100 neurons each, and ReLU activation functions. The output layer94

has no activation function. Instead, the output of the neural network is scaled by the factor xscale95

and shifted by xshift. For the methods using the QP approximation, the output layer predicts only ŵ96

and consists of 200 neurons, one per the decision variable xi. For the method that uses the original97

problem formulation and predicts both p̂ and Q̂, the output layer additionally predicts a 200× 20098

matrix L and then sets Q̂ := (0.9L+ 0.1I)(0.9L+ 0.1I)⊤, where I is the identity matrix.99

For training, we used the Adam optimizer from PyTorch, with custom learning rate and otherwise100

default parameters. The values of different hyperparameters were determined by a grid search101

procedure, summarized in Table 1. The values used in the experiments are reported in Table 2. These102

values may vary across experiments with different λ′s. For each λ, however, the four studied methods103

use the same values of the hyperparameters (the only exception is the projection distance weight α,104

which is always zero for methods without regularization).105

C.2 Optimal power flow problem106

Search space
Learning rate {5× 10−6, 10−5, 2× 10−5, 5× 10−5, 10−4, 5× 10−4}
Batch size {1, 2, 4, 8, 32}
Proj. distance weight α from Eq. (6) {0.0001, 0.00025, 0.0005, 0.001, 0.005, 0.01, 0.1}
xshift {0, .1, 1}
xscale {0.1, 1, 5}

Table 3: Search space for different hyperparameters in the DC OPF problem

4

Value
Learning rate 5× 10−5

Batch size 1
Penalty weight α from Eq. (6) 0.0001
Training epochs 250
xshift 7
xscale 1

Table 4: Best performing values of the hyperparameters for the DC OPF problem

Data generation process. Data for the DC OPF problem is generated artificially. First, we107

randomly generate a grid topology, see Figure 1 for an example. For each line, its admittance108

is set to 6S. Nodal voltages are bounded between 325V and 375V, and the reference node has109

a fixed voltage of v0 = 350V. The demand in loads (power upper-bound), generators capacity110

(power lower-bound), and line current limits are sampled randomly from the following normal111

distributions: N (8000, 2500)×watt-hour, N (−14000, 2500)×watt-hour, N (25, 5)×ampere. The112

coefficients w are also sampled form the normal distributions: N (1.2, 1) for loads, and N (0.8, 0.1)113

for generators. Finally, all values are normalized such that v0 becomes 7V (surprisingly, it performed114

better numerically than scaling v0 to 1V). The observations o consist of the true coefficients w,115

demand of the loads, the capacity of the generators, and line current limits.116

The predictor in the optimal power flow problem is the same as the one in the portfolio optimization,117

except for its hidden layers consisting of 256 neurons and using LeakyReLU activation functions.118

The hyperparameters search space and final values are reported in Tables 3,4119

Figure 1: Example of randomly generated grid topology. Red triangles represent generator nodes,
and purple squares represent loads.

5

	Proofs
	Equality constraints
	Experimental details
	Portfolio optimization problem
	Optimal power flow problem

