
Appendix A. Exact Number of Interventions

Theorem 4 The expected number of distinct node interventions performed by a learner that uses

algorithm 1 to determine the parent node P is given by

E[N(G, P)] =
X

X2V

1

|A(P)4A(X) [{X}| . (2)

Proof First we show that algorithm 1 is equivalent to algorithm 3 in the sense that the same sequences
of nodes are intervened on by both algorithms with the same probability. Although the algorithm 3
is not practical because it uses the graph structure on line 5, it allows us to present a proof for this
theorem. This algorithm first samples a permutation ⌧ of nodes in V and then intervenes on a node
X 2 ⌧ only if none of the nodes in A(P)4A(X) appeared before X in the permutation. As an
example, suppose that algorithm 3 selects permutation (X3, X2, X1, P) in fig. 1. Then the nodes
intervened on by algorithm 3 are the same as the nodes intervened on by algorithm 1 in the example
in section 5. This is because X2 is a descendant of X3 (and X3 is not an ancestor of P) and therefore
it will not be intervened on. Moreover, if algorithm 3 selects permutations (X3, X1, X2, P) and
(X3, X1, P,X2), the resulting intervention sequences would be the same run of algorithm 3.

Algorithm 3 An algorithm equivalent to algorithm 1.
Require: Set of nodes V of G given as input
Output: The parent node P 2 V of the reward node or ? if there is no parent node in V

1: Sample a random permutation ⌧ of nodes in V
2: P̂ ?, i 0
3: ForX 2 ⌧ do
4: i i+ 1
5: if A(P)4A(X) \ (⌧1, . . . , ⌧i�1) 6= ; then
6: continue
7: Intervene on X to determine if P 2 D(X)
8: if P 2 D(X) then
9: P̂ X

10: return P̂

By induction on the intervened on nodes, the base case is clear since in both algorithm 1 and
algorithm 3 the first node is sampled with probability 1/n and always intervened on. Let W =
(W1, . . . ,Wl) be a uniformly random permutation of any l elements of V and W0 be a subsequence of
W with an element of W 2W included in W0 if no element of A(P)4A(W) \ {W} was included
before it. For the example in fig. 1 and sequence W = (X3, X2) we have W0 = (X3) since, as
mentioned before, X3 2 A(P)4A(X2)\{X2}. Note that in algorithm 1 a node could be intervened
on only when it was not intervened on before and none of the non-common ancestors of that node
and the parent node were intervened on. Thus, let S = {X 2 V : A(P)4A(X) [{X} \W0 = ;}
be the set of nodes that could be intervened on by algorithm 1 in the next round. The probability that
a node X 2 S is sampled by algorithm 1 given the sequence W0 is 1/s, where s = |S|. On the other

16

C-BANDITS

hand, the probability that a node X 2 S is intervened on next by algorithm 3 is

P {X is sampled before A(P)4A(X) \ {X}|W} (4)

=
n�l�sX

k=0

P {Wl+1:l+k \ (A(P)4A(X) \ {X}) = ; and Wl+1+k = X|W} (5)

=
n�l�sX

k=0

�n�l�s
k

�
k!(n� l � k � 1)!

(n� l)!
(6)

=
n�l�sX

k=0

(n� l � s)!(n� l � k � 1)!

(n� l � s� k)!(n� l)!
(7)

=
1

s

n�l�sX

k=0

�n�l�k�1
s�1

�
�n�l

s

� =
1

s
, (8)

where Wl+1:l+k consists of k elements sampled uniformly at random after sampling W, we used
the fact that there are n� l � s “good“ elements from which we need to sample k elements before
sampling Wl+1+k = X while the remaining elements could come in any order, and to get the last
equality we used the hockey-stick identity (Jones, 1994). The hockey-stick identity states that for
any n, r 2 N such that n � r it holds that

Pn
i=r

�i
r

�
=
�n+1
r+1

�
. By the chain rule of probability, the

intermediate result holds.
Next, with W = (W1, . . . ,Wn) being a uniformly random permutation corresponding to a run

of algorithm 3, and defining AX = {algorithm 3 intervenes on X}, W<i = (W1, . . . ,Wi�1) we
can get

E[N(G, P)] = E[
X

X2V
I {AX}] =

X

X2V
P {AX} (9)

=
X

X2V

n�|A(P)4A(X)\{X}|X

i=1

P {A(P)4A(X) \ {X} \W<i = ;|Wi = X}P {Wi = X} (10)

=
X

X2V

n�|A(P)4A(X)\{X}|X

i=1

�n�|A(P)4A(X)\{X}|�1
i�1

�
(i� 1)!(n� i)!

(n� 1)!
· 1
n

(11)

=
X

X2V

1

|A(P)4A(X) \ {X}|+ 1

n�|A(P)4A(X)\{X}|X

i=1

� n�i
|A(P)4A(X)\{X}|

�
� n
|A(P)4A(X)\{X}|+1

� (12)

=
X

X2V

1

|A(P)4A(X) \ {X}|+ 1
, (13)

where we used the fact that to have A(P)4A(X)\{X}\W<i = ; we need to sample i�1 “good“
elements from n� |A(P)4A(X) \ {X}|� 1 elements (since Wi is fixed to be X) while the rest of
the n� i elements could be shuffled, and to get the last equality we used the hockey-stick identity
(Jones, 1994).

17

Appendix B. Logarithmic Upper Bound

Lemma 12 All possible arguments C with which the recursive function in algorithm 1 is called are

contained within the candidate family CG(P).

The proof of this lemma uses the following proposition.

Proposition 13 For a graph G = (V, E) let U ✓ V and S ◆ D(U), then DS(U) = D(U).

Proof Let X 2 D(U), then there is a directed path from some U 2 U to X in G. Each node on
this path belongs to D(U) ✓ D(U) ✓ S. Thus, in the graph GS this path is preserved and we get
X 2 DS(U). Conversely, if X 2 DS(U), then there is a directed path from some U 2 U to X in
GS . Adding vertices and connections to a graph does not remove existing paths and thus there is a
path from U 2 U to X in G and therefore X 2 D(U).

Proof [Proof of lemma theorem 6] In the proof we omit writing CG(P) and write C instead for
simplicity. The proof is by induction. For the base case we have C = V = V \ D(;) 2 C. By
induction hypothesis

C = V \ D(W) for some W ✓ V \ A(P), or (14)
C = D̄(Z) \ DD(Z)(W) for some Z 2 A(P),W ✓ D(Z) \ AD(Z)(P). (15)

Notice that in eq. (15) we have D(W) ✓ D(D(Z) \ AD(Z)(P)) ✓ D(Z) and thus by theorem 13 it
could be rewritten as

C = D̄(Z) \ D(W) for some Z 2 A(P),W ✓ D(Z) \ AD(Z)(P). (16)

Next, we will consider four cases depending on whether the condition P 2 DC(X) on line 7 of
algorithm 1 holds and whether C conforms to eq. (14) or eq. (16).

Case I: P 2 DC(X). Consider the set D(X) \ D(W 0) for some W 0 ✓ D(X). It consists precisely
of descendants of X but not Y 2W 0 ✓ D(X). Thus, we can remove all nodes Y 2 D(W 0) from
the original graph G and the descendants of X in this new graph will be equal to D(X) \ D(W 0):

D(X) \ D(W 0) = DV\D(W 0)(X). (17)

Next, we consider two subcases depending on whether C conforms to eq. (14) or eq. (16).

i) C is such that eq. (14) holds for some W ✓ V \ A(P). Then using the above, it is left to show
that there exists W 0 ✓ D(X) \ AD(X)(P) such that DV\D(W 0)(X) = DV\D(W)(X) = DC(X)
since D̄(X) is what the recursive function will be called with in algorithm 1. For this we can set
W 0 = D(W) \ D(X). Indeed, W does not contain any ancestors of P and thus D(W) does not
contain ancestors of P in G which means that W 0 \AD(X)(P) = ;. Moreover, V \ D(W) removes
only non-descendants of X from G compared to V \ D(W 0). This is true because

D(X) \ (V \ (D(W) \D(X))) = D(X) \ D(W) ✓ V \ D(W) (18)

and D̄C(X) 2 C follows from theorem 13.

18

C-BANDITS

ii) C is such that eq. (16) holds for some Z 2 A(P),W ✓ D(Z) \ AD(Z)(P). Similarly to the
item i) for W 0 = D(W) \D(X) we get

D(X) \ (V \ (D(W) \D(X))) = D(X) \ D(W) ✓ D̄(Z) \ D(W), (19)

where the last step follows from the fact that Z 2 Ā(X) which is true because X 2 C ✓ D̄(Z).
Additionally, W 0 ✓ D(X) \ AD(X)(P). This is true because W does not contain the ancestors of P
in GD(Z) and D(X) is a subset of D(Z) since Z 2 Ā(X). Finally, the fact that D̄C(X) 2 C follows
from combining the results above and theorem 13.

Case II: P 2 Dc
C(X) which is equivalent to X 2 Ac

C(P). In fact, we will show that X 62 A(P)
by contradiction. To this end, assume that X 2 A(P). In algorithm 1 the candidate set C with
which the recursive function is called decreases in size during each call. At the same time, if at
some point sample Y 2 A(P) \ Ac(X) gets sampled, then the candidate set will consists of a
subset of descendants of Y to which X does not belong. Thus, to sample X at some point we must
not have sampled such Y before which means A(P) \Ac(X) ✓ C. In particular, this means that
A(P) \D(X) ✓ C which intern leads to X 2 Ac

C(P) which is a contradiction. Thus, X 62 A(P).

In what follows, we again consider two subscases depending on whether C conforms to eq. (14) or
eq. (16).

i) C = V \ D(W) for some W ✓ Ac(P). First, we show that

D(X) \ DC(X) ✓ D(W). (20)

Indeed, for Y 2 D(X) \ DC(X) there must be a directed path from X to Y in G but not in
GV\D(W) which corresponds to the original graph with the descendants of W removed. Therefore,
the descendants of W block all the directed paths from X to Y and therefore Y 2 D(W). Next,
notice that since X 2 Ac(P) we can set W 0 = W [{X} ✓ Ac(P) and using the result above get

C \ DC(X) = V \ D(W) \ DC(X) = V \ D(W) \ D(X) = V \ D(W 0) 2 C. (21)

ii) C = D̄(Z)\D(W) for some Z 2 A(P),W ✓ D(Z)\AD(Z)(P). Again, consider directed paths
from X to any Y 2 D(X) \ DC(X). Note that D(X) \ DC(X) = DD̄(Z)(X) \ DD̄(Z)\D(W)(X)

where we used theorem 13 with the fact that X 2 D̄(Z) which implies D(X) ✓ D̄(Z), and the
definition of C. Similarly to the previous item we get that removing the set D(W) from GD̄(Z)

removes all paths from X to Y in this graph and thus Y 2 D(W) or D(X) \ DC(X) ✓ D(W).
Setting W 0 = W [{X} as before gives W 0 ✓ D(Z) \ AD(Z)(P) since X 2 D̄(Z) and as stated
above X 62 A(P). Thus, by theorem 13 we get the desired result.

Theorem 7 For a constant 0 < ↵ < 1 and C 2 C, let the set of “heavy” non-ancestors to be

HC(↵) :=
�
X 2 Ac

C(P)
�� |DC(X)| � ↵ |C|

. (3)

Assume that G is such that for any C 2 CG(P) at least one of the following holds i) |HC(↵)| � � |C|,
ii) |AC(P)| � � |C|, or iii) |C|  c logk(n), for fixed 0 < ↵,�, � < 1, c 2 R>0, and k � 1. Then,

E[N(G, P)] = O(logk n).

19

Proof Based on the definition of algorithm 1, it is straightforward to see that the following recursion
holds

T (C) = 1

|C|
X

X2AC(P)

T (D̄C(X)) +
1

|C|
X

X2Ac
C(P)

T (Dc
C(X)) + 1, (22)

where T (C) denotes the number of interventions performed by the recursive function in algorithm 1
given candidate set C. We will show that T (C)  c0 log |C|+c logk(n) for some c0 > 0 by considering
two cases: |C|  c log(n) and |C| > c log(n). The case where |C|  c log(n) is straightforward
since each node in C is intervened on at most once and |C|  c logk(n).

Next, consider the case |C| > c logk(n). We provide a proof for the case when |HC(↵)| � � |C|
then comment on why the result holds when |AC(P)| � � |C|. By theorem 6 we have that for all
X 2 AC(P) it holds that D̄C(X) 2 C and for all X 2 Ac

C(P) it holds that Dc
C(X) 2 C, thus the

condition of the theorem holds for the recursive calls and we can use induction hypothesis after
which it is left to check that

c0

|C|
X

X:X2AC(P)^|DC(X)|>1

log(|DC(X)|� 1) +
c0

|C|
X

X2Ac
C(P)

log(|C|� |DC(X)|) + 1 (23)

+
c

|C|
X

X2AC(P)

logk(n) +
c

|C|
X

X2Ac
C(P)

logk(n) (24)

is bounded above by c0 log |C| + c logk(n). First, note that the eq. (24) is bounded by c logk(n)
since AC(X) [Ac

C(X) = C. Next, consider the eq. (23). Note that for X 62 HC(↵) we can
upper bound |DC(X)| � 1 and |C| � |DC(X)| by |C|. At the same time, for X 2 HC(↵) we have
|C|� |DC(X)|  (1� ↵) |C|. Then our goal is to show

c0(|C|� |HC(↵)|)
|C| log |C|+ c0 |HC(↵)|

|C| log((1� ↵) |C|) + 1 (25)

 c0 log |C| = c0(|C|� |HC(↵)|)
|C| log |C|+ c0 |HC(↵)|

|C| log |C| , (26)

rearranging we get

|C|
c0 |HC(↵)|

 log
1

1� ↵
= log

✓
↵

1� ↵
+ 1

◆
. (27)

Notice that since for any x > �1 it holds that x
1+x  log(x+ 1), it suffices to show

|C|
c0 |HC(↵)|

 ↵ () |C|  c0 |HC(↵)|↵. (28)

From our assumption on |HC(↵)| it suffices to pick c0 � 1
↵� . For the base case consider C = {X,Y }

then for X 6= P we have that either there is a single edge P ! X or P is disconnected with X for
the condition of the theorem to hold. Then the recursion in eq. (22) could be rewritten as

T ({X,Y }) = 1

2
T ({Y }) + 1

2
T ({X}) + 1, (29)

from which it follows that
T ({X,Y }) = 2  c log(2). (30)

20

C-BANDITS

For the case when |AC(P)| � � |C| consider the set H0 of size at least �
2 |C| of the ancestors of

P which are closest to P in the topologically sorted order in the graph GC . Each node X 2 H0 has
at most |C| � �

2 |C| descendants. The rest of the proof follows similar steps as for the case when
|HC(↵)| � � |C|.

Appendix C. Fast Parent Discovery in Erdős-Rényi Graphs

In this subsection we show that Erdős-Rényi graphs satisfy the condition for fast discovery of the
parent node for sufficiently large values of p. We first state the following theorem.

Theorem 14 Let Gn,p be Erdős-Rényi random DAG with probability of each edge between n nodes

being equal to p. Assume p � 1�
⇣

1�c
n�1

⌘1/(n�1)
for some constant c 2 [0, 1], and denote by X,Y

the first and last nodes in the topological order, respectively. It holds that

E |D(X)| � cn, and (31)
E |A(Y)| � cn. (32)

Proof In the proof we show by induction that the expected number of descendants of the root node
(the first node in topological order) is lower bounded by cn. The expected number of the ancestors
could be lower bounded using the same reasoning. Denote by pn,i the probability that there are
exactly i descendants of the root node in the graph Gn,p and note that

E |D(X)| =
nX

i=1

ipn,i. (33)

Furthermore, pn,i satisfies the following recursion:

pn,i = (1� (1� p)i�1)pn�1,i�1 + (1� p)ipn�1,i (34)

= pn�1,i�1 + (1� p)i�1((1� p)pn�1,i � pn�1,i�1), (35)

with p1,1 = 1 and pn,i = 0 if i > n or i = 0. Thus, we can write

E |D(X)| =
nX

i=1

ipn�1,i�1 +
nX

i=1

i(1� p)i�1((1� p)pn�1,i � pn�1,i�1) (36)

=
nX

i=1

ipn�1,i�1 �
nX

i=1

(1� p)i�1pn�1,i�1 (37)

+
nX

i=1

⇥
i(1� p)ipn�1,i � (i� 1)(1� p)i�1pn�1,i�1

⇤
. (38)

Note that
nX

i=1

⇥
i(1� p)ipn�1,i � (i� 1)(1� p)i�1pn�1,i�1

⇤
= 0 (39)

21

as a telescoping sum and by induction hypothesis we have that
nX

i=1

ipn�1,i�1 =
nX

i=1

(i� 1)pn�1,i�1 +
nX

i=1

pn�1,i�1 � c(n� 1) + 1, (40)

therefore it is left to prove
nX

i=1

(1� p)i�1pn�1,i�1  1� c. (41)

To prove this we first show that pn,i  (1� p)n�i, again by induction. This holds for n = 1 and
all i or i = 0 and all n > 1. Furthermore by induction hypothesis we have

pn,i  (1� (1� p)i�1)(1� p)n�i + (1� p)i(1� p)n�1�i (42)

= (1� p)n�i + (1� p)n�1 + (1� p)n�1 = (1� p)n�i. (43)

Using this result together with the fact that pn�1,0 = 0 we have

nX

i=1

(1� p)i�1pn�1,i�1  (n� 1)(1� p)n�1  1� c, (44)

where the last inequality follows from the assumption of the theorem. To finish the proof, note that
for n = 1 we have E |D(X)| = 1 � c.

Corollary 15 The family of Erdős-Rényi random DAGs satisfies the condition of theorem 7 in

expectation if

p � 1�
✓

1� c

logk n� 1

◆1/(logk n�1)

,

for any constant c 2 [0, 1]. Therefore, for such graphs, RAPS requires E[N(G, P)] = O(logk n)
expected number of interventions.

Proof From our lower bound on p and theorem 14 it follows that for all subgraphs of size at least
logk n the first and last nodes in the topological order have at least cn descendants and ancestors
respectively. Let C be an arbitrary candidate set of size larger than 4 logk n considered by algorithm 1
when run on the graph Gn,p. Let j 2 [m] with m = |C| be the index of P in the topologically sorted
order in the subgraph of Gm,p over nodes in C. We will comment bellow on the situation when
P 62 C. We consider two cases. First, if j  m/2, then consider m/4 subgraphs each consisting of
m�m/2� i last nodes for i 2 [m/4] of the original graph Gn. The size of each of these subgraph
is at least logk n and by theorem 14 we have that each node at index m/2 + i� 1 in the topological
order of the original graph Gm has at least cm/4 descendants. Since there are m/4 such nodes, the
first condition of theorem 7 is satisfied. The same happens for the cases when P 62 C because in that
case all the nodes in C are non-ancestors of P since for P 62 C it must be the case that the algorithm
intervened on P at some point before considering C. Second, if j > m/2, then by theorem 14 we
have that the number of ancestors of P is at least cn/2 which means that the second condition of
theorem 7 is satisfied.

22

C-BANDITS

Remark 16 Note that since (1� 1/n)n  e�1
we have log(n/c) log (1� 1/n)  � log(n/c)

n and

thus (1� 1/n)log(n/c) 
�
c
n

�1/n
. Using this together with the Bernoulli inequality (1+x)r � 1+rx

for x � �1 and r � 1 we get that assuming logk n � 1+max(1, (1�c)e) the condition of theorem 8

is satisfied for p � log(logk(n)�1)�log(1�c)

logk(n)�1
. Additionally, by using L’Hópital’s rule and the fact that

limn!1 (1/n)1/n = 1, we get that the two lower bounds for p presented in theorem 8 and here are

asymptotically equivalent.

Appendix D. Sublinear Upper Bound

Theorem 9 Let G be an arbitrary DAG in which there are at most O
⇣

n
logd(n)

⌘
nodes X 2 V \{P}

such that either P is disconnected with X , or all paths between P and X are blocked by colliders.

Then, E[N(G, P)] = O
⇣

n
logd n

⌘
, where d is the maximum degree in the skeleton of G.

Proof Let AX = {the algorithm intervenes on the node X}, then

E[N(G, P)] = E[
X

X2V
I {AX}] =

X

X2V
P(AX). (45)

We split the sum above into three parts. First, consider the nodes X that are at distance at most
m from the parent node for some m to be specified later. There are at most dm+1 such nodes and
for each of them we bound the probability P(AX) by 1. Similarly, for all nodes X such that there
is no collider-free path between P and X we also bound the probability P(AX) by 1. Each of the
leftover nodes has a collider-free path of length at least m to P . We will show that this means that
the probability P(AX)  2/m. Define

BX = {the algorithm intervenes on the node P before intervening on the node X} , (46)

then using the law of total probability we can write

P(AX) = P(AX |BX)P(BX) + P(AX |Bc
X)P(Bc

X), (47)

where Bc
X stands for the complement of the event BX , i.e.

Bc
X = {the algorithm intervenes on node P after intervening on the node X} . (48)

Consider the probability P(AX |BX). For this probability not to be zero it must be the case that the
node X is a descendant of the parent node P . Therefore, there must be a directed path of length at
least m from P to X . Note that any node on this path except for the node P cannot be intervened on
before the node X is intervened on. Therefore, by the time the algorithm intervenes on the node X
there are at least m nodes in the set of candidate nodes from which it has to sample the node X and
hence

P(AX |BX)  1

m
. (49)

Next, consider the probability P(Bc
X). If there is a directed path from P to X , then no node on this

path could have been intervened on before the round at which the algorithm intervenes on X since

23

otherwise X would have been removed from the candidate set. Similarly, if there is a directed path
from X to P , then intervening on any node on the path means excluding X from the candidate set.
Thus, in these two cases P(Bc

X)  1/(m+ 1) as there are at least m+ 1 nodes on the path of length
at least m. Lastly, consider the case when there are no directed paths between P and X . Since for
this X there exists a collider-free path, there must be a path containing exactly one ancestor of both
X and P . Intervening on any node on this path other than the node which is an ancestor of both
X and P means excluding X from the candidate set because the intervened on node would be an
ancestor of X or P but not both. Thus, there are at least m nodes in the candidate set by the time the
algorithm intervenes on X and therefore

P(Bc
X)  1

m
. (50)

Bounding the other probabilities by one gives P(AX)  2/m. Bounding the number of nodes in the
third group by n and combining all of the above we get

E[N(G, P)] = O
✓
dm+1 +

n

m
+

n

logd(n)

◆
. (51)

Finally, setting m = logd

⇣
n

logd(n)

⌘
� 1 finishes the proof.

Appendix E. Regret Bounds

E.1. Cumulative Regret

Lemma 17 Let

AX,Z =
n
9x 2 [K], z 2 [K]|Z| :

���R̄� R̄do(X=x,Z=z)
��� > �/2

o
,

DX,Y,Z =
n
9x, y 2 [K], z 2 [K]|Z| :

���P̂ (Y = y)� P̂ (Y = y|do(X = x,Z = z))
��� > "/2

o

for any X,Y 2 V , Z ✓ P with nodes being the last in some topological order of P and Ac
X,Z, D

c
X,Y,Z

be their compliments. Define E as the event that for every node we correctly determine its descendants

and whether it is an ancestor of P using the criteria described in section 5.1, i.e.

E =
\

Z

\

X2A(P)

AX,Z \
\

X2Ac(P)

Ac
X,Z \

\

X2V

⇣ \

Y 2D̄(X)

DX,Y,Z \
\

Y 2Dc(X)

Dc
X,Y,Z

⌘
,

where the intersection with respect to Z is over all possible sequences of last elements of P in all topo-

logical orders. Then it holds that P {E} � 1�� if B = max
n

32
�2 log

⇣
8nK(K+1)n

�

⌘
, 8
"2 log

⇣
8n2K2(K+1)n

�

⌘o
.

Proof By Hoeffding’s inequality for bounded random variables for fixed X,Y 2 V with X 2 A(Y),
Z ✓ P , x, y 2 [K] and z 2 [K]|Z| it holds that

���P̂ (Y = y|do(X = x,Z = z))� P {Y = y|do(X = x,Z = z)}
��� � (52)

�

s
1

2B
log

✓
8n2K2(K + 1)n

�

◆
(53)

24

C-BANDITS

with probability at most �
4n2K2(K+1)n and

���P̂ (Y = y|do(Z = z))� P {Y = y|do(Z = z)}
��� �

s
1

2B
log

✓
8

�

◆
(54)

with probability at most �
4nK(K+1)n . Additionally, by Hoeffding’s inequality for 1-subgaussian

random variables we have that for fixed X 2 V and x 2 [K] it holds that

���E[R|do(X = x,Z = z)]� R̄do(X=x,Z=z)
��� �

s
2

B
log

✓
8nK(K + 1)n

�

◆
(55)

with probability at most �
4nK(K+1)n . Moreover,

���R̄do(Z=z) � E[R|do(Z = z)]
��� �

s
2

B
log

✓
8(K + 1)n

�

◆
(56)

with probability at most �
4(K+1)n . Consider the event which is the union of the above bad events.

Since for Z there are
P|P|

`=0

�|P|
`

�
K` = (K + 1)|P| choices, by union bound we have that the

probability of this bad event is at most �. Note that under the complement of this bad event for
X 62 A(P) and all x 2 [K], z 2 [K]|Z| by assumption 2 and the choice of B as in the statement of
theorem 17 we have

���R̄do(Z=z) � R̄do(X=x,Z=z)
��� 

���R̄do(Z=z) � E[R|do(Z = z)]
��� (57)

+
���R̄do(X=x,Z=z) � E[R|do(X = x,Z = z)]

��� (58)

 �/2, (59)

and for some x 2 [K], z 2 [K]|Z|

���R̄do(Z=z) � R̄do(X=x,Z=z)
��� � |E[R|do(Z = z)]� E[R|do(X = x,Z = z)]| (60)

�
���R̄do(Z=z) � E[R|do(Z = z)]

��� (61)

�
���E[R|do(X = x,Z = z)� R̄do(X=x,Z=z)]

��� (62)

> �/2, (63)

Similarly, under the complement of the same event we get that for Y 62 D(X) and all x, y 2 [K], z 2
[K]|Z| it holds that

���P̂ (Y = y|do(Z = z))� P̂ (Y = y|do(X = x,Z = z)
���  (64)


���P̂ (Y = y|do(Z = z))� P {Y = y|do(Z = z)}

��� (65)

+
���P̂ (Y = y|do(X = x,Z = z))� P {Y = y|do(X = x,Z = z)}

��� (66)

 "/2, (67)

25

and if Y 2 D(X), then for some x, y 2 [K], z 2 [K]|Z|
���P̂ (Y = y|do(Z = z))� P̂ (Y = y|do(X = x,Z = z)

��� � (68)

� |P {Y = y|do(X = x,Z = z)}� P {Y = y|do(Z = z)}| (69)

�
���P {Y = y|do(X = x,Z = z)}� P̂ (Y = y|do(X = x,Z = z))

��� (70)

�
���P̂ (Y = y|do(Z = z))� P {Y = y|do(Z = z)}

��� > "/2. (71)

Theorem 3 Assume that P 6= ;, i.e., the reward variable has at least one parent in V . For the

learner that uses algorithm 2 and then runs a UCB the following bound
2

for the conditional regret

holds with probability at least 1� �:

RT
L(G,P | E)max

⇢
1

�2
,
1

"2

�
K |P|+1E[N(G,P)] log

✓
nKn

�

◆
+
X

x2[K]|P|

�P=x

✓
1 +

log T

�2
P=x

◆
. (1)

Proof By lemma theorem 17 it holds that for every node we can correctly identify whether that
node is an ancestor of P and all the descendants of that node with probability at least 1� � using
the criteria described in section 5.1. That means that algorithm 1 will correctly discover the parent
node under the same good event in BE[N(G, P)]

P|P|+1
`=1 K` � BE[N(G, P)]K |P|+1 interventions

since to discover each new parent we need to perform interventions over all possible values of
the previously discovered parents and all the remaining candidate nodes. Subsequently running a
standard bandit algorithm such as UCB to find an optimal intervention on P leads to regret bound of
P

x2[K]|P| �P=x

⇣
1 + log T

�2
P=x

⌘
(Lattimore and Szepesvári, 2020).

E.2. Simple Regret

In this subsection we provide an upper bound on simple regret. First, similar to how it is done in the
main text, we define conditional simple regret:

rTL(G,P|E) = max
X✓V

max
x2[K]|X|

E[R|do(X = x)]� E[R|do(XT+1 = xT+1), E], (72)

where E is the event that all descendants of any node in V are correctly identified together with
whether any node is an ancestor of P , defined in theorem 17. Suppose that the learner runs a standard
bandit algorithm that is designed to minimize cumulative regret, for example, UCB, from round
N(G,P) + 1 to round T . After that the final intervention do(X = x) for arbitrary x 2 [K] and
X 2 V is sampled with probability

1

T

TX

t=1

I {It = do(X = x)} , (73)

where It is the intervention performed in round t. Standard conversion of cumulative regret bound to
simple regret bound (see e.g., Lattimore and Szepesvári, 2020, Proposition 33.2) leads to theorem 18
stated below.

2. f(n) � g(n) stands for an inequality up to a universal constant.

26

C-BANDITS

Algorithm 4 Full version of RAPS for unknown number of parents
Require: Set of nodes V of G, ",�, probability of incorrect parent set estimate �
Output: Estimated set of parent nodes P̂

1: P̂ ;,S ;, P̂ ?, C V ,D0 ; . D0 is the set of descendants of last ancestor of R
2: B max

n
32
�2 log

⇣
8nK(K+1)n

�

⌘
, 8
"2 log

⇣
8n2K2(K+1)n

�

⌘o

3: Observe B samples from PCM and compute R̄ and P̂ (X) for all X 2 V
4: while C 6= ; do
5: X ⇠ Unif(C)
6: for x 2 [K] and z 2 [K]|P̂| do
7: Perform B interventions do(X = x, P̂ = z)

8: Compute R̄do(X=x,P̂=z), P̂ (Y |do(X = x, P̂ = z)) for all Y 2 V
9: Estimate descendants of X:

D
⇢
Y 2 V | 9x 2 [K], z 2 [K]|P̂|,

such that
���P̂ (Y |do(P̂ = z))� P̂ (Y |do(X = x, P̂ = z))

��� > "/2

�

10: if 9x 2 [K], z 2 [K]|P̂| such that
���R̄do(P̂=z) � R̄do(X=x,P̂=z)

��� > �/2 then
11: C D \ {X}
12: P̂ X,D0 D
13: else
14: C C \ D
15: S S [D
16: if C = ; and P̂ 6= ? then
17: P̂ P̂ [

n
P̂
o

18: S S [D0

19: C V \ S
20: P̂ ?
21: return P̂

Corollary 18 For the learner described above we can bound conditional simple regret as follows:

rTL(G,P|E) � 1

T
max

⇢
1

�2
,
1

"2

�
K |P|+2E[N(G,P)] log

✓
nKn

�

◆
(74)

+
1

T

X

x2[K]|P|

�P=x

✓
1 +

log T

�2
P=x

◆
. (75)

Appendix F. Generalization to Multiple Parent Nodes

Theorem 10 Let ⌧ (P) be the set of all topological orderings of the parent nodes P . Assume that

the condition of theorem 7 holds for all graph-parent-node pairs with at least c logk(n) nodes in the

27

graph in the set

�
(GV\D(P),?)

[
⇢
(GV\S(⌧,i), ⌧i)

�� ⌧ 2 ⌧ (P), i 2 [|P|],S(⌧, i) =
[

P2⌧ [i+1:]

D(P)

�
,

where ⌧ [i+1:] consists of the last |P|� i elements of ⌧ , ⌧i is the i-th element of ⌧ and c > 0 is some

constant. Then the expected number of interventions required by algorithm 2 to find all parent nodes

is O
�
|P| logk n

�
. Similarly, assume that all graph-parent-node pairs in the set above with graphs of

size at least
cn

logd(n)
satisfy the condition of theorem 9. Then the expected number of interventions

required by algorithm 2 is O
⇣

|P|n
logd n

⌘
.

Proof As noted in the main text, algorithm 2 discovers the parent nodes in a reverse topological order,
let ⌧ 2 ⌧ (P) be such an order and i =

���P̂
���  |P| be a number of the iteration of the while loop in

algorithm 2. First, assume i < |P|. We argue that the expected number of interventions during a
call of algorithm 1 is the same as the expected number of interventions done by algorithm 1 when
there is only one parent node P which is equal to the (|P|� i)-th element of ⌧ and P̂ = ; on the
graph GV\S(⌧,|P|�i). If i = |P|, then we need to show that the call to algorithm 1 with P̂ = P on the
graph GV\D(P) is the same as running algorithm 1 on the graph-parent-node pair (GV\D(P),?) with
P̂ = ;. Proving these results leads to the proof of the result of the theorem since by the assumption
of the theorem we have that (GV\S(⌧,|P|�i), P) and (GV\D(P),?) satisfy the assumptions of either
theorem 7 or theorem 9. Let X be an arbitrary node, intervened on during the call of algorithm 1
by algorithm 2. If X is an ancestor of P in GC for some C, then X is also an ancestor of P in
GV\S(⌧,|P|�i)\C since no ancestor of P is contained in S(⌧, |P|� i) because of its definition. Then
in there will be a recursive call for the candidate set D̄C(X). At the same time, if X is not an ancestor
of any node in P̂ in GC then X is not an ancestor of any such node in GV\S(|P|�i)\C since it is a
subgraph of the graph GC , and therefore there will be a recursive call for the candidate set Dc

C(X).
Finally, if X is not an ancestor of P in GC but there exist some P 0 2 P such that P 0 6= P and X
is an ancestor of P 0 in GC , then the call to algorithm 1 by algorithm 2 will return P 0 which is a
contradiction. Thus, by induction on the elements of P we have that the sequences of candidate
sets C with which the recursive function of algorithm 1 is called when this algorithm is called by
algorithm 2 and the sequences of of candidate sets C with which the recursive function of algorithm 1
is called when this algorithm is executed on GV\S(⌧,|P|�i) are equally likely and we conclude that
the expected number of interventions in these two cases is the same.

Corollary 19 Let Gn,p be an Erdős-Rényi graph with

p � 1�
✓

1� c0

logk(c1 log
k(n))� 1

◆1/(logk(c1 logk(n))�1)

,

for some constants c0 2 [0, 1] and c1 2 R>0, then to discover P , algorithm 2 needs E[N(G,P)] =
O
�
|P| logk(n)

�
expected number of interventions.

Proof The minimum p in the condition of theorem 8 grows with decreasing n. Therefore, for the
condition of theorem 10 it suffices that for the smallest subgraph GV\D(P) considered by algorithm 2

28

C-BANDITS

the condition of theorem 8 holds. However, this graph needs to be of size at least c1 logk(n) since
otherwise the bound is trivial. Plugging n0 = c1 log

k(n) as n in the condition of theorem 8 leads to
the desired result.

Appendix G. Universal Lower Bound

In this section we show that the result of section 6.1 is tight in the sense that any algorithm that finds
the parent node P (or determines it does not exist in the graph G) requires at least the number of
interventions performed by RAPS.

Theorem 20 Fix a causal graph G and a parent node P . Any learner L that correctly identifies the

parent node P , for any graph obtained from G by relabeling
3
of the nodes and having P take one of

n vertices or P = ?, satisfies

E[NL(G, P)] �
X

X2V

1

|AG(P)4AG(X) \ {X}|+ 1
,

where the expectation is taken with respect to the random assignment of the indices 1 through n
identifying each node and the randomness in running RAPS.

The proof could be found below. Consider, for example, a null graph G = (V, ;). The number of
ancestors of every vertex is equal to one and the expression in theorem 20 becomes ⌦(n). At the
same time, even if the graph is connected and its skeleton is a line graph it is possible to have a lower
bound of ⌦(n) by having all vertices separated from P by colliders as in fig. 6. In this figure, every
node Xi where 1  i < n� 1 is odd is a collider on the path between Xi�1 and Xi+1 and assume
that X0 ⌘ P . The number of ancestors of every node Xj , where 1 < j < n � 1 is even, equals
one leading to ⌦(n) lower bound. If a graph is connected and has no colliders, theorem 9 results in
O
⇣

n
logd(n)

⌘
upper bound on the number of interventions. The upper bound in theorem 9 is tight for

perfect d-ary trees. In such trees the number of non-common ancestors between P (possibly P = ?)
and any node X is lower bounded by the distance from X to the root assuming that X comes from
one of the subtrees, other than the subtree containing P . Thus, considering only the last term in the
summation results in

E[NL(G, P)] �
logd(n+1)X

h=1

(d� 1)dh�1

h+ 1
� (n+ 1)(d� 1)

d(logd(n+ 1) + 1)
,

which matches the asymptotic upper bound of theorem 9. By adding an extra knowledge about the
essential graph, the algorithm in Greenewald et al. (2019) can detect the parent node with at most
O(log n) number of atomic interventions.
Proof [Proof of theorem 20] The proof uses Yao’s principle (Yao, 1977) from which it follows that
we need to show that the best deterministic algorithm performs at least the number of interventions
in the lower bound of the theorem against some distribution over graphs G. Thus, in what follows, let
P be the probability measure over the random graphs obtained by randomly and uniformly relabeling

3. Relableing corresponds to the assignment of indices 1 through n identifying each node, but not the assignment of
random variables to nodes.

29

P X1 X2 X3 . . . Xn�1

Figure 6: An example of a graph with a skeleton that is a line graph and n/2 � 1 colliders (n is
assumed to be even). Our lower bound in theorem 20 implies that any learner requires ⌦(n) atomic
interventions to discover P in this graph.

the nodes of the graph G, such a random graph will be denoted by H. Assume that the learner L does
not intervene on the same node twice. Moreover, assume that if it intervenes on a non-ancestor of P
it will not subsequently intervene on any of its’ descendants and that if it intervenes on an ancestor of
P it will not subsequently intervene on any of the non-descendants of that ancestor. We can make
this assumption as any learner which does not satisfy it would intervene on the same nodes with the
same results as a new learner which avoids making these redundant interventions. We denote by D

the set of all learners that satisfy this assumption. Our goal is to lower bound

inf
L2D

EH[N(H,L)] = inf
L2D

E
"
X

X2V
I {AX}

#
= inf

L2D

X

X2V
P {AX} , (76)

where AX = {the learner L intervenes on the node X}. Let Z be a node selected uniformly at
random and independently from the sampling of the graph and the parent node, then

X

X2V
P {AX} = n

X

X2V
P {Z = X}P {AX} = nP {A} , (77)

where A = {the learner L intervenes on a randomly selected node Z}. Note that for learner L there
are only two ways not to intervene on any node Z. The first is to intervene either on an ancestor of
Z which is not an ancestor of P and the second is to intervene on an ancestor of P which is not an
ancestor of Z. Using this we get

P {A} = P {L intervenes on Z before any node in AH(P)4AH(Z) \ {Z}} . (78)

We note that any deterministic learner L could be represented by a sequence of nodes W1, . . . ,Wn

with Wi 6= Wj for i 6= j, and for a random graph H the learner intervenes on the node Wi if there is
no element of AH(P)4AH(Wi) in the sequence W<i = (W1, . . . ,Wi�1). Using the law of total
probability we write

P {A} =
n�1X

l=0

P
�
A
�� |AH(P)4AH(Z) \ {Z}| = l

P {|AH(P)4AH(Z) \ {Z}| = l} . (79)

Moreover, we have

P
�
A
�� |AH(P)4AH(Z) \ {Z}| = l

= (80)

=
n�lX

i=1

P
n
(AH(P)4AH(Z) \ {Z}) \W<i = ;| (81)

|AH(P)4AH(Z) \ {Z}| = l, Z = Wi

o
⇥ P {Z = Wi} (82)

=
n�lX

i=1

�n�i
l

�
l!(n� l)!

(n� 1)!
· 1
n
=

1

l + 1
, (83)

30

C-BANDITS

Figure 7: (a) Comparison between eq. (2) from theorem 4 and the experimental number of in-
terventions of algorithm 1 on Erdős-Rényi random DAGs. (b-c) The results of running RAPS on
Erdős-Rényi random DAGs with large and small p. (d) Results of running algorithm 2 to discover
multiple parent nodes.

where to get to the last line we used the fact that Z is selected uniformly at random, we have to
choose l elements from n� i elements to label the set AH(P)4AH(Z) \ {Z} while the rest of the
nodes could be labeled randomly, and to get the last equality we used the hockey-stick identity (Jones,
1994) similar to the proof of theorem 4 in appendix A. Finally, the result follows from noticing that
the probability of |AH(P)4AH(Z) \ {Z}| = l is independent of the labeling of the nodes and thus
is equal to |{X2V:|AG(P)4AG(X)\{X}|=l}|

n .

Appendix H. Experiments

In this section we discuss additional experimental results aimed at testing our theoretical findings.
Unless stated otherwise we obtain the average regret or number of interventions to discover the
parent node(s) and the standard deviation over 20 independent runs.

H.1. Algorithmic Aspect

In this subsection we ignore the statistical aspect of finding the set of parent nodes and assume that
each intervention gives us perfect information about the descendants of the intervened on node as
well as whether that node is an ancestor of a parent node.

Firstly, we confirm that the eq. (2) could be used to compute the expected number of interventions
required to discover the parent node in fig. 7. In this experiment we generate Erdős-Rényi random
DAG as described in section 6.2.1 with different values of p and for each such DAG compute the
expected number of interventions as predicted in eq. (2), as well as perform 20 independent runs on

31

the same graph of algorithm 1. The average over those 20 runs and the standard deviation are shown
as the line and the shaded area, respectively, similar to the other figures. For this experiment we set
the number of nodes in all graphs n = 1000. Notice also that eq. (2) matches the lower bound in
theorem 20, thus in fig. 7 we show that the performance of our algorithm matches the performance of
the best possible algorithm.

Secondly, in fig. 7 we confirm the result of theorem 8 by showing that when p = 1 �⇣
0.5

log2(n)�1

⌘1/(log2(n)�1)
in Erdős-Rényi random DAG obtained as discussed in section 6.2.1, then

the number of interventions required scales as O(log n). At the same time, in fig. 7 we show that
when p = logn

n , then the number of interventions scales as n
logn .

Additionally, we verify the result of theorem 11 in fig. 7. On this figure we see that in Erdős-Rényi
graphs with p as in the lower bound of theorem 11 (with c0 = 0.5, c1 = 1 and k = 1) the number of
interventions required to discover |P| parents grows as (|P|+ 1) log(n).

H.2. Statistical Aspect

In fig. 8 we present the regret of running our approach RAPS+UCB and of running just UCB on
Erdős-Rényi graphs. For this figure we set p = log log(10)/ log(10) and K = 4. We sample an
Erdős-Rényi graph as discussed in section 6.2.1 with 9 nodes and then add the reward node with a
uniformly selected parent. The PCM is such that each node takes the value of a randomly selected
parent and uniformly sampled value in the set [K] when there are no parents. The probability of the
reward node taking value equal to 1 is the value of its’ parent divided by the maximum value that
it can take, K. The value of � is set to be 0.01. For UCB algorithm there is only one line since the
regrets between the different runs are very close. We can see that while the average regrets of the
two approaches are close, RAPS+UCB has a much bigger variance: it can be much faster than UCB
due to quickly finding the parent node or it can not find the parent node during the selected horizon
T = 107. In our analysis of the results we found that this is due to the large budget B that might
be required for some Erdős-Rényi graphs. Note that with our approach it is possible to estimate the
number of steps it will take to discover the set of parent nodes and thus one can decide whether or
not to use RAPS before the experiment. Due to the dependence of budget B on " and �, we explore
how the values of these variables depend on the parameters of Erdős-Rényi graphs and the number
of parents.

In fig. 9 we present the results of our experiments aimed at studying the behavior of " and �. For
the first figure we vary probability of an edge p and set n = 10, for the second we vary the number
of nodes n and set probability of an edge to be p = log log(n)/ log(n), while for the last figure we
set p = log log log(n)/ log log(n) and n = 16. We can see that for Erdős-Rényi graphs " can take
small values for substantially high probability and its’ value decreases with the number of nodes n.

32

C-BANDITS

Figure 8: Regret on Erdős-Rényi graph with p = log log(n)/ log(n). Bold opaque lines show the
mean over 10 runs, other lines show the regrets for each of the 10 runs.

Figure 9: Values of " and � for different parameters of Erdős-Rényi graphs and the number of
parents.

33

	Introduction
	Related Work
	Preliminaries
	Problem Setting

	Regret Analysis
	Randomized Parent Search Algorithm
	Determining Descendants

	Analysis of raps for Single Parent Case
	Expected Number of Interventions
	Fast Regime
	Erdős-Rényi Random Graphs

	Slow Regime

	Generalization to Multiple Parent Nodes
	Experiments
	Conclusion
	Exact Number of Interventions
	Logarithmic Upper Bound
	Fast Parent Discovery in Erdős-Rényi Graphs
	Sublinear Upper Bound
	Regret Bounds
	Cumulative Regret
	Simple Regret

	Generalization to Multiple Parent Nodes
	Universal Lower Bound
	Experiments
	Algorithmic Aspect
	Statistical Aspect

